Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis

Key Points

  • Bile acids are critical components of the gastrointestinal tract that link the gut microbiota to hepatic and intestinal metabolism and therefore influence gastrointestinal motility, intestinal permeability and carcinogenesis

  • The gut microbiota regulates bile acid production and signalling via the biotransformation of intestinal bile acids to unconjugated and secondary forms that readily activate bile acid receptors

  • Bile acids are ligands for the G protein-coupled bile acid receptor 1 (TGR5) and for the nuclear hormone receptor farnesoid X receptor (FXR)

  • The profiles of bile acids and gut microbiota influence each other; bile acids can modulate microbiota composition, which in turn regulates the size and composition of the bile acid pool

  • Disruption of bile acid–microbiota crosstalk promotes inflammation and a gastrointestinal disease phenotype, which can contribute to the development of gastrointestinal cancers, including colorectal cancer and hepatocellular carcinoma

  • The modulation of gut microbiota and bile acid profiles holds promise as a novel therapeutic approach for the treatment of gastrointestinal cancers and represents the next frontier for gastrointestinal cancer research

Abstract

Emerging evidence points to a strong association between the gut microbiota and the risk, development and progression of gastrointestinal cancers such as colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Bile acids, produced in the liver, are metabolized by enzymes derived from intestinal bacteria and are critically important for maintaining a healthy gut microbiota, balanced lipid and carbohydrate metabolism, insulin sensitivity and innate immunity. Given the complexity of bile acid signalling and the direct biochemical interactions between the gut microbiota and the host, a systems biology perspective is required to understand the liver–bile acid–microbiota axis and its role in gastrointestinal carcinogenesis to reverse the microbiota-mediated alterations in bile acid metabolism that occur in disease states. An examination of recent research progress in this area is urgently needed. In this Review, we discuss the mechanistic links between bile acids and gastrointestinal carcinogenesis in CRC and HCC, which involve two major bile acid-sensing receptors, farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (TGR5). We also highlight the strategies and cutting-edge technologies to target gut-microbiota-dependent alterations in bile acid metabolism in the context of cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bile acid biosynthesis, transport and metabolism.
Figure 2: Enterohepatic circulation of bile acids under normal physiological conditions and during dysbiosis and inflammation.
Figure 3: Bile acid-induced hepatic inflammation and carcinogenesis.
Figure 4: Bile-acid-induced TGR5 signalling pathways in macrophages.
Figure 5: Effects of intestinal bile acids on colorectal carcinogenesis.

Similar content being viewed by others

References

  1. Mucci, L. A., Wedren, S., Tamimi, R. M., Trichopoulos, D. & Adami, H. O. The role of gene-environment interaction in the aetiology of human cancer: examples from cancers of the large bowel, lung and breast. J. Intern. Med. 249, 477–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    Article  PubMed  Google Scholar 

  3. Siegel, R. L. et al. Colorectal cancer statistics, 2017. CA Cancer J. Clini. 67, 177–193 (2017).

    Article  Google Scholar 

  4. International Agency for Research on Cancer. Liver cancer. GLOBOCAN 2012: Estimated Incidence Mortality and Prevalence Worldwide in 2012 http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (2017).

  5. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  6. Jia, W., Li, H., Zhao, L. & Nicholson, J. K. Gut microbiota: a potential new territory for drug targeting. Nat. Rev. Drug Discov. 7, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Monte, M. J., Marin, J. J. G., Antelo, A. & Vazquez-Tato, J. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15, 804–816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4523–4530 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Dumas, M. E. et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA 103, 12511–12516 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmes, E. et al. Therapeutic modulation of microbiota-host metabolic interactions. Sci. Transl Med. 4, 137rv136 (2012).

    Article  CAS  Google Scholar 

  12. Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Corrêa-Oliveira, R., Fachi, J. L., Vieira, A., Sato, F. T. & Vinolo, M. A. R. Regulation of immune cell function by short-chain fatty acids. Clin. Transl Immunology 5, e73 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng, X. et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl Med. 5, 172ra122 (2013).

    Google Scholar 

  16. Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst. 105, 1907–1911 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Sheh, A. & Fox, J. G. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 4, 505–531 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moss, S. F. The clinical evidence linking Helicobacter pylori to gastric cancer. Cell. Mol. Gastroenterol. Hepatol. 3, 183–191 (2017).

    Article  PubMed  Google Scholar 

  20. Carboni, M. et al. Chronic atrophic gastritis and risk of N-nitroso compounds carcinogenesis. Langenbecks Arch. Chir. 373, 82–90 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Caygill, C. P., Hill, M. J., Braddick, M. & Sharp, J. C. Cancer mortality in chronic typhoid and paratyphoid carriers. Lancet 343, 83–84 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Prieto, A. I., Ramos-Morales, F. & Casadesús, J. Bile-induced DNA damage in Salmonella enterica. Genetics 168, 1787–1794 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boleij, A. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60, 208–215 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. McCoy, A. N. et al. Fusobacterium is associated with colorectal adenomas. PLoS ONE 8, 15 (2013).

    Google Scholar 

  25. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 13, 800–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, G. Y., Shaw, M. H., Redondo, G. & Nunez, G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 68, 10060–10067 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 21, 36–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernstein, C. et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch. Toxicol. 85, 863–871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lozano, E. et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Mol. Cancer Res. 12, 91–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Forman, B. M. et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81, 687–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Seol, W., Choi, H. S. & Moore, D. D. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9, 72–85 (1995).

    CAS  PubMed  Google Scholar 

  32. Hylemon, P. B. et al. Bile acids as regulatory molecules. J. Lipid Res. 50, 1509–1520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zollner, G., Wagner, M. & Trauner, M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol. Ther. 126, 228–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8, 685–698 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid. Res. 47, 241–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Axelson, M. et al. Bile acid synthesis in cultured human hepatocytes: support for an alternative biosynthetic pathway to cholic acid. Hepatology 31, 1305–1312 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Trauner, M. & Boyer, J. L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Meier, P. J. & Stieger, B. Bile salt transporters. Annu. Rev. Physiol. 64, 635–661 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zollner, G., Marschall, H. U., Wagner, M. & Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm. 3, 231–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lemoy, M.-J. M. F., Westworth, D. R., Ardeshir, A. & Tarara, R. P. Reference intervals for preprandial and postprandial serum bile acid in adult rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 52, 444–447 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Holm, R., Mullertz, A. & Mu, H. Bile salts and their importance for drug absorption. Int. J. Pharm. 453, 44–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Geyer, J., Wilke, T. & Petzinger, E. The solute carrier family SLC10: more than a family of bile acid transporters regarding function and phylogenetic relationships. Naunyn Schmiedebergs Arch. Pharmacol. 372, 413–431 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Dawson, P. A. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb. Exp. Pharmacol. http://dx.doi.org/10.1007/978-3-642-14541-4_4 (2011).

  47. Gadaleta, R. M., Cariello, M., Sabba, C. & Moschetta, A. Tissue-specific actions of FXR in metabolism and cancer. Biochim. Biophys. Acta 1851, 30–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Matsubara, T., Li, F. & Gonzalez, F. J. FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 368, 17–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Kullak-Ublick, G. A., Stieger, B. & Meier, P. J. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126, 322–342 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hata, S. et al. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G829–G839 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanimirov, B., Stankov, K. & Mikov, M. Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat. Dis. Int. 14, 18–33 (2015).

    Article  PubMed  Google Scholar 

  53. Botham, K. M. & Boyd, G. S. The metabolism of chenodeoxycholic acid to beta-muricholic acid in rat liver. Eur. J. Biochem. 134, 191–196 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Bergstrom, S., Danielsson, H. & Goransson, A. On the bile acid meataboism in the pig. Acta Chem. Scand. 13, 776–783 (1959).

    Article  CAS  Google Scholar 

  55. Martin, F. P. et al. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Gao, J. et al. Association between serum bile acid profiles and gestational diabetes mellitus: a targeted metabolomics study. Clin. Chim. Acta 459, 63–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. García-Cañaveras, J. C., Donato, M. T., Castell, J. V. & Lahoz, A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J. Lipid Res. 53, 2231–2241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Stanimirov, B., Stankov, K. & Mikov, M. Pleiotropic functions of bile acids mediated by the farnesoid X receptor. Acta Gastroenterol. Belg. 75, 389–398 (2012).

    CAS  PubMed  Google Scholar 

  60. Gérard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3, 14–24 (2014).

    Article  CAS  Google Scholar 

  61. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Vaquero, J., Monte, M. J., Dominguez, M., Muntane, J. & Marin, J. J. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem. Pharmacol. 86, 926–939 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Song, P., Rockwell, C. E., Cui, J. Y. & Klaassen, C. D. Individual bile acids have differential effects on bile acid signaling in mice. Toxicol. Appl. Pharmacol. 283, 57–64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kanda, T. et al. Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochem. J. 330, 261–265 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beuers, U., Trauner, M., Jansen, P. & Poupon, R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J. Hepatol. 62, S25–S37 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Duboc, H., Taché, Y. & Hofmann, A. F. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig. Liver Dis. 46, 302–312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Stanley, L. A., Horsburgh, B. C., Ross, J., Scheer, N. & Wolf, C. R. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab. Rev. 38, 515–597 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yoneno, K. et al. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology 139, 19–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kliewer, S. A. & Willson, T. M. Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J. Lipid Res. 43, 359–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Wagner, M. et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42, 420–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, J., Liu, M., Zhai, Y. & Xie, W. The antiapoptotic role of pregnane X receptor in human colon cancer cells. Mol. Endocrinol. 22, 868–880 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Uppal, H. et al. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41, 168–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Stedman, C. A. et al. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc. Natl Acad. Sci. USA 102, 2063–2068 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, H. et al. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J. Clin. Invest. 121, 3220–3232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He, J., Nishida, S., Xu, M., Makishima, M. & Xie, W. PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts. Gastroenterology 140, 2095–2106 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Chatterjee, B., Echchgadda, I. & Song, C. S. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 400, 165–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, X. et al. Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha, 25-dihydroxyvitamin D3 via the vitamin D receptor. Mol. Pharmacol. 69, 1913–1923 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Schmidt, D. R. et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J. Biol. Chem. 285, 14486–14494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ding, N. et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Massague, J. TGFbeta in Cancer. Cell 134, 215–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gadaleta, R. M. et al. Activation of bile salt nuclear receptor FXR is repressed by pro-inflammatory cytokines activating NF-kappaB signaling in the intestine. Biochim. Biophys. Acta 1812, 851–858 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Chiang, J. Y. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen, T. L. et al. Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma. Mol. Cell. Proteomics 10, M110.004945 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, X. N. et al. Urinary metabolite variation is associated with pathological progression of the post-hepatitis B cirrhosis patients. J. Proteome Res. 11, 3838–3847 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D. J. & Suchy, F. J. Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J. Biol. Chem. 276, 28857–28865 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Landrier, J. F., Eloranta, J. J., Vavricka, S. R. & Kullak-Ublick, G. A. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G476–G485 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Boyer, J. L. et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1124–G1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zhao, L. et al. High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal. Chem. 89, 5565–5577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Yang, F. et al. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67, 863–867 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Cuperus, F. J., Claudel, T., Gautherot, J., Halilbasic, E. & Trauner, M. The role of canalicular ABC transporters in cholestasis. Drug Metab. Dispos. 42, 546–560 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Halilbasic, E., Claudel, T. & Trauner, M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J. Hepatol. 58, 155–168 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zollner, G. et al. Hepatobiliary transporter expression in human hepatocellular carcinoma. Liver Int. 25, 367–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Anwer, M. S. Intracellular signaling by bile acids. J. Biosci. (Rajshari) 20, 1–23 (2014).

    Google Scholar 

  99. Pikarsky, E. et al. NF-[kappa]B functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Luedde, T. & Schwabe, R. F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 108–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jung, I. H. et al. Predominant activation of JAK/STAT3 pathway by interleukin-6 is implicated in hepatocarcinogenesis. Neoplasia 17, 586–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nag, S., Qin, J., Srivenugopal, K. S., Wang, M. & Zhang, R. The MDM2-p53 pathway revisited. J. Biomed. Res. 27, 254–271 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bernstein, H., Bernstein, C., Payne, C. M., Dvorakova, K. & Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589, 47–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ouyang, X., Ghani, A. & Mehal, W. Z. Inflammasome biology in fibrogenesis. Biochim. Biophys. Acta 1832, 979–988 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Degirolamo, C. et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology 61, 161–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Kong, B. et al. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G295–G302 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Knisely, A. S. et al. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology 44, 478–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Iannelli, F. et al. Massive gene amplification drives paediatric hepatocellular carcinoma caused by bile salt export pump deficiency. Nat. Commun. 5, 3850 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Amaral, J. D., Viana, R. J., Ramalho, R. M., Steer, C. J. & Rodrigues, C. M. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J. Lipid Res. 50, 1721–1734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Woolbright, B. L. & Jaeschke, H. Novel insight into mechanisms of cholestatic liver injury. World J. Gastroenterol. 18, 4985–4993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pean, N., Doignon, I. & Tordjmann, T. Bile acids and liver carcinogenesis: TGR5 as a novel piece in the puzzle? Clin. Res. Hepatol. Gastroenterol. 37, 226–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Gadaleta, R. M. et al. Bile acids and their nuclear receptor FXR: relevance for hepatobiliary and gastrointestinal disease. Biochim. Biophys. Acta 7, 683–692 (2010).

    Article  CAS  Google Scholar 

  114. Zhang, Y. & Wang, L. Nuclear receptor small heterodimer partner in apoptosis signaling and liver cancer. Cancers 3, 198–212 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, G. et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice. Toxicol. Appl. Pharmacol. 272, 299–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wolfe, A. et al. Increased activation of the Wnt/beta-catenin pathway in spontaneous hepatocellular carcinoma observed in farnesoid X receptor knockout mice. J. Pharmacol. Exp. Ther. 338, 12–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anakk, S. et al. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep. 5, 1060–1069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cook, J. W., Kennaway, E. L. & Kennaway, N. M. Production of tumours in mice by deoxycholic acid. Nature 145, 627–627 (1940).

    Article  CAS  Google Scholar 

  119. Xie, G. et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int. J. Cancer 139, 1764–1775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xie, G. et al. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7, 19355–19366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Swidsinski, A., Loening-Baucke, V., Vaneechoutte, M. & Doerffel, Y. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14, 147–161 (2008).

    Article  PubMed  Google Scholar 

  124. Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Degirolamo, C., Rainaldi, S., Bovenga, F., Murzilli, S. & Moschetta, A. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7, 12–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Nagengast, F. M., Grubben, M. J. & van Munster, I. P. Role of bile acids in colorectal carcinogenesis. Eur. J. Cancer 31A, 1067–1070 (1995).

  127. Hofmann, A. F., Cravetto, C., Molino, G., Belforte, G. & Bona, B. Simulation of the metabolism and enterohepatic circulation of endogenous deoxycholic acid in humans using a physiologic pharmacokinetic model for bile acid metabolism. Gastroenterology 93, 693–709 (1987).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, Y. & Chen, Z. Inflammatory bowel disease related innate immunity and adaptive immunity. Am. J. Transl Res. 8, 2490–2497 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, Y. D., Chen, W. D., Yu, D., Forman, B. M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54, 1421–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Jensen, D. D. et al. The bile acid receptor TGR5 does not interact with beta-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J. Biol. Chem. 288, 22942–22960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cao, W. et al. Expression of bile acid receptor TGR5 in gastric adenocarcinoma. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G322–G327 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Komohara, Y., Fujiwara, Y., Ohnishi, K. & Takeya, M. Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev. 99, 180–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Algars, A. et al. Type and location of tumor-infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. Int. J. Cancer 131, 864–873 (2012).

    Article  PubMed  CAS  Google Scholar 

  134. Cook, J. & Hagemann, T. Tumour-associated macrophages and cancer. Curr. Opin. Pharmacol. 13, 595–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. McMahan, R. H. et al. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J. Bio. Chem. 288, 11761–11770 (2013).

    Article  CAS  Google Scholar 

  136. Zhang, Y., Sime, W., Juhas, M. & Sjolander, A. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur. J. Cancer 49, 3320–3334 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Calmus, Y. & Poupon, R. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin. Res. Hepatol. Gastroenterol. 38, 550–556 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Haselow, K. et al. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J. Leukoc. Biol. 94, 1253–1264 (2013).

    Article  PubMed  CAS  Google Scholar 

  139. Kamada, N., Seo, S. U., Chen, G. Y. & Nunez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Littman, D. R. & Rudensky, A. Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Shapiro, H., Thaiss, C. A., Levy, M. & Elinav, E. The cross talk between microbiota and the immune system: metabolites take center stage. Curr. Opin. Immunol. 30, 54–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Stenman, L. K., Holma, R., Eggert, A. & Korpela, R. A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 304, 29 (2013).

    Article  CAS  Google Scholar 

  143. Brestoff, J. R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14, 676–684 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Attili, A. F., Angelico, M., Cantafora, A., Alvaro, D. & Capocaccia, L. Bile acid-induced liver toxicity: relation to the hydrophobic-hydrophilic balance of bile acids. Med. Hypotheses 19, 57–69 (1986).

    Article  CAS  PubMed  Google Scholar 

  146. Radominska, A. et al. Human liver steroid sulphotransferase sulphates bile acids. Biochem. J. 272, 597–604 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gerard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3, 14–24 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Van den Abbeele, P. et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 7, 949–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Goncalves, P., Araujo, J. R., Pinho, M. J. & Martel, F. In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds. Nutr. Cancer 63, 282–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Hague, A., Elder, D. J., Hicks, D. J. & Paraskeva, C. Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int. J. Cancer 60, 400–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Bingham, S. A. et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361, 1496–1501 (2003).

    Article  PubMed  Google Scholar 

  153. Clausen, M. R., Bonnen, H. & Mortensen, P. B. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut 32, 923–928 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, Y. D. et al. Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48, 1632–1643 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Fiorucci, S. et al. Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J. Pharmacol. Exp. Ther. 313, 604–612 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183, 6251–6261 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  159. Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012).

    PubMed  PubMed Central  Google Scholar 

  160. Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. De Gottardi, A. et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. Dig. Dis. Sci. 49, 982–989 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Modica, S., Murzilli, S., Salvatore, L., Schmidt, D. R. & Moschetta, A. Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Res. 68, 9589–9594 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Torres, J. et al. Farnesoid X receptor expression is decreased in colonic mucosa of patients with primary sclerosing cholangitis and colitis-associated neoplasia. Inflamm. Bowel Dis. 19, 275–282 (2013).

    Article  PubMed  Google Scholar 

  164. Bailey, A. M. et al. FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G48–G58 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Lax, S. et al. Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis. Int. J. Cancer 130, 2232–2239 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Maran, R. R. et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J. Pharm. Exp. Ther. 328, 469–477 (2009).

    Article  CAS  Google Scholar 

  167. Ajouz, H., Mukherji, D. & Shamseddine, A. Secondary bile acids: an underrecognized cause of colon cancer. World J. Surg. Oncol. 12, 164–164 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Payne, C. M., Bernstein, C., Dvorak, K. & Bernstein, H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin. Exp. Gastroenterol. 1, 19–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Washo-Stultz, D. et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis. Cancer Lett. 177, 129–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  170. Ridlon, J. M. & Bajaj, J. S. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm. Sin. B 5, 99–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Labbe, A., Ganopolsky, J. G., Martoni, C. J., Prakash, S. & Jones, M. L. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes. PLoS ONE 9, e115175 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Barrasa, J. I., Olmo, N., Lizarbe, M. A. & Turnay, J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol. In Vitro 27, 964–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Axelrad, J. E., Lichtiger, S. & Yajnik, V. Inflammatory bowel disease and cancer: the role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol. 22, 4794–4801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hold, G. L. et al. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J. Gastroenterol. 20, 1192–1210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Mattar, M. C., Lough, D., Pishvaian, M. J. & Charabaty, A. Current management of inflammatory bowel disease and colorectal cancer. Gastrointest. Cancer Res. 4, 53–61 (2011).

    PubMed  PubMed Central  Google Scholar 

  176. Morelli, L. & Capurso, L. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 46, S1–S2 (2012).

    Article  PubMed  Google Scholar 

  177. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Ghouri, Y. A. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–487 (2014).

    PubMed  PubMed Central  Google Scholar 

  179. Scaldaferri, F. et al. Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed. Res. Int. 2013, 435268 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Mallon, P., McKay, D., Kirk, S. & Gardiner, K. Probiotics for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 4, CD005573 (2007).

    Google Scholar 

  181. Boyer, J. L. Nuclear receptor ligands: rational and effective therapy for chronic cholestatic liver disease? Gastroenterology 129, 735–740 (2005).

    Article  PubMed  Google Scholar 

  182. Zollner, G. & Trauner, M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br. J. Pharmacol. 156, 7–27 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hohenester, S. et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55, 173–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Fickert, P. et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130, 465–481 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Ali, A. H., Carey, E. J. & Lindor, K. D. Recent advances in the development of farnesoid X receptor agonists. Ann. Transl Med. 3, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02516605 (2017).

  187. Nevens, F. et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375, 631–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. De Magalhaes Filho, C. D., Downes, M. & Evans, R. Bile acid analog intercepts liver fibrosis. Cell 166, 789 (2016)

    Article  CAS  PubMed  Google Scholar 

  189. Perino, A. & Schoonjans, K. TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol. Sci. 36, 847–857 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Festa, C. et al. Exploitation of cholane scaffold for the discovery of potent and selective farnesoid x receptor (FXR) and G-protein coupled bile acid receptor 1 (GP-BAR1) ligands. J. Med. Chem. 57, 8477–8495 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Pellicciari, R. et al. Nongenomic actions of bile acids. Synthesis and preliminary characterization of 23- and 6,23-alkyl-substituted bile acid derivatives as selective modulators for the G-protein coupled receptor TGR5. J. Med. Chem. 50, 4265–4268 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Pellicciari, R. et al. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52, 7958–7961 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Kobayashi, M. et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Rao, A. et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci. Transl Med. 8, 357ra122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Baghdasaryan, A. et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J. Hepatol. 64, 674–681 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Nicaise, C. et al. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents. Hepatology 48, 1184–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Jones, M. L., Chen, H., Ouyang, W., Metz, T. & Prakash, S. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 2004, 61–69 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Xie, G. et al. Sex-dependent effects on gut microbiota regulate hepatic carcinogenic outcomes. Sci. Rep. 7, 45232 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zheng, M. M., Wang, R. F., Li, C. X. & Xu, J. H. Two-step enzymatic synthesis of ursodeoxycholic acid with a new 7β-hydroxysteroid dehydrogenase from Ruminococcus torques. Process Biochem. 50, 598–604 (2015).

    Article  CAS  Google Scholar 

  200. Palmer, R. H. Bile acid sulfates. II. Formation, metabolism, and excretion of lithocholic acid sulfates in the rat. J. Lipid Res. 12, 680–687 (1971).

    Article  CAS  PubMed  Google Scholar 

  201. Lee, J. et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 121, 1473–1484 (2001).

    Article  CAS  PubMed  Google Scholar 

  202. Nijmeijer, R. M. et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS ONE 6, e23745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Li, T. & Chiang, J. Y. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66, 948–983 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Holt, J. A. et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17, 1581–1591 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Inagaki, T. et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Mellor, H. R. Targeted inhibition of the FGF19-FGFR4 pathway in hepatocellular carcinoma; translational safety considerations. Liver Int. 34, e1–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Halilbasic, E., Baghdasaryan, A. & Trauner, M. Nuclear receptors as drug targets in cholestatic liver diseases. Clin. Liver Dis. 17, 161–189 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Lee, H. Y., Crawley, S., Hokari, R., Kwon, S. & Kim, Y. S. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway. Int. J. Oncol. 36, 941–953 (2010).

    CAS  PubMed  Google Scholar 

  211. Pai, R., Tarnawski, A. S. & Tran, T. Deoxycholic acid activates beta-catenin signaling pathway and increases colon cell cancer growth and invasiveness. Mol. Biol. Cell 15, 2156–2163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02308111 (2017).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01999101 (2016).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02177136 (2016).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02548351 (2017).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02039219 (2017).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01265498 (2015).

  218. Intercept Pharmaceuticals. Intercept Pharmaceuticals initiates phase 1 study of INT-767, a dual FXR and TGR5 agonist. InterceptPharma. http://ir.interceptpharma.com/releasedetail.cfm?releaseid=944736 (2015).

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01877577 (2014).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03162432 (2017).

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01755507 (2016).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02021110 (2016).

  223. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03004118 (2016).

  224. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01857284 (2013).

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00808743 (2013).

Download references

Acknowledgements

Wei J. and G.X. are supported by grants from the US NIH (1U01CA188387-01A1).

Author information

Authors and Affiliations

Authors

Contributions

Wei J. and G.X. researched data for the article and wrote the article. Wei J., G.X. and Weiping J. made substantial contributions to discussion of content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Wei Jia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Hypochlorhydria

A deficiency of hydrochloric acid in the stomach.

Enterotoxigenic bacteria

Bacteria that cause disease in humans and domestic animals by producing enterotoxin.

Enterohepatic circulation

The circulation of bile salts, bilirubin, drugs or other substances from the liver to the bile, followed by entry into the small intestine, absorption by enterocytes and return to the liver via the portal circulation.

Bile canaliculus

A thin tube that collects bile secreted by hepatocytes.

Lithogenic diet

A diet designed to increase the likelihood of stone formation, particularly gallstones.

Senescence-associated secretory phenotype

A phenotype in which cells induced to senesce by genotoxic stress secrete pro-inflammatory cytokines, chemokines, and proteases associated with inflammation and malignancy.

Primary biliary cholangitis

A type of liver disease caused by damage to the bile ducts in the liver.

Primary sclerosing cholangitis

A chronic liver disease characterized by a progressive course of cholestasis with inflammation and fibrosis of the intrahepatic and extrahepatic bile ducts.

Hyperammonaemia

A metabolic disturbance characterized by an excess of ammonia in the blood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15, 111–128 (2018). https://doi.org/10.1038/nrgastro.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing