Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian rhythms of liver physiology and disease: experimental and clinical evidence

Key Points

  • The circadian clock system is a feedback loop of core clock genes and proteins, with post-transcriptional and post-translational regulation, in each cell in nearly every peripheral tissue

  • Nuclear receptors and transcription factors are important for regulating circadian rhythms and rhythmic energy metabolism

  • The liver clock tightly regulates the pharmacokinetics of xenobiotics through each phase, including absorption and uptake, distribution, metabolism, and elimination and clearance

  • Disorganization of circadian clocks in the liver exacerbates liver diseases, including fatty liver, cholestasis, hepatitis, cirrhosis and liver cancer, and these diseases can in turn disrupt the circadian clock system

  • Chrononutrition, the control of circadian clocks by nutrition, is a powerful tool and might be a basic component of life in both humans and animal models

Abstract

The circadian clock system consists of a central clock located in the suprachiasmatic nucleus in the hypothalamus and peripheral clocks in peripheral tissues. Peripheral clocks in the liver have fundamental roles in maintaining liver homeostasis, including the regulation of energy metabolism and the expression of enzymes controlling the absorption and metabolism of xenobiotics. Over the past two decades, research has investigated the molecular mechanisms linking circadian clock genes with the regulation of hepatic physiological functions, using global clock-gene-knockout mice, or mice with liver-specific knockout of clock genes or clock-controlled genes. Clock dysfunction accelerates the development of liver diseases such as fatty liver diseases, cirrhosis, hepatitis and liver cancer, and these disorders also disrupt clock function. Food is an important regulator of circadian clocks in peripheral tissues. Thus, controlling the timing of food consumption and food composition, a concept known as chrononutrition, is one area of active research to aid recovery from many physiological dysfunctions. In this Review, we focus on the molecular mechanisms of hepatic circadian gene regulation and the relationships between hepatic circadian clock systems and liver physiology and disease. We concentrate on experimental data obtained from cell or mice and rat models and discuss how these findings translate into clinical research, and we highlight the latest developments in chrononutritional studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the circadian clock system in mammals.
Figure 2: Core molecular clock machinery.
Figure 3: Chronopharmacokinetics of xenobiotics.
Figure 4: Circadian machinery in liver disease.
Figure 5: Chrononutrition in the liver.

Similar content being viewed by others

References

  1. Tahara, Y. & Shibata, S. Chronobiology and nutrition. Neuroscience 253, 78–88 (2013).

    CAS  PubMed  Google Scholar 

  2. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev. 20, 1868–1873 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Storch, K. F. et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730–741 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadacca, L. A., Lamia, K. A., deLemos, A. S., Blum, B. & Weitz, C. J. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120–124 (2011).

    CAS  PubMed  Google Scholar 

  7. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    CAS  PubMed  Google Scholar 

  8. Bass, J. & Takahashi, J. S. Circadian integration of metabolism and energetics. Science 330, 1349–1354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  11. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    CAS  PubMed  Google Scholar 

  12. Sangoram, A. M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21, 1101–1113 (1998).

    CAS  PubMed  Google Scholar 

  13. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002).

    CAS  PubMed  Google Scholar 

  14. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    CAS  PubMed  Google Scholar 

  15. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng, Q. J. et al. Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng, Q. J. et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl Acad. Sci. USA 107, 15240–15245 (2010).

    CAS  PubMed  Google Scholar 

  18. Lee, H. M. et al. The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc. Natl Acad. Sci. USA 108, 16451–16456 (2011).

    CAS  PubMed  Google Scholar 

  19. Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187–192 (2005).

    CAS  PubMed  Google Scholar 

  20. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    CAS  PubMed  Google Scholar 

  21. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 348, 1488–1492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338, 349–354 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang, B. et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159, 1140–1152 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Menet, J. S., Rodriguez, J., Abruzzi, K. C. & Rosbash, M. Nascent-seq reveals novel features of mouse circadian transcriptional regulation. eLIFE 1, e00011 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    CAS  PubMed  Google Scholar 

  28. Fustin, J. M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013).

    CAS  PubMed  Google Scholar 

  29. Chen, R., D'Alessandro, M. & Lee, C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr. Biol. 23, 1959–1968 (2013).

    CAS  PubMed  Google Scholar 

  30. Du, N. H., Arpat, A. B., De Matos, M. & Gatfield, D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLIFE 3, e02510 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Haus, E. & Halberg, F. Persisting circadian rhythm in hepatic glycogen of mice during inanition and dehydration. Experientia 22, 113–114 (1966).

    CAS  PubMed  Google Scholar 

  32. North, C. et al. Circadian organization of thirteen liver and six brain enzymes of the mouse. Am. J. Anat. 162, 183–199 (1981).

    CAS  PubMed  Google Scholar 

  33. Feuers, R. J., Casciano, D. A., Tsai, T. H. & Scheving, L. E. Regulation of the circadian rhythm of hepatic pyruvate kinase in mice. Prog. Clin. Biol. Res. 227A, 163–172 (1987).

    CAS  PubMed  Google Scholar 

  34. Turek, F. W. et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    CAS  PubMed  Google Scholar 

  36. Zhang, E. E. et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152–1156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jetten, A. M., Kang, H. S. & Takeda, Y. Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front. Endocrinol. (Lausanne) 4, 1 (2013).

    Google Scholar 

  39. Everett, L. J. & Lazar, M. A. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol. Metab. 25, 586–592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Martelot, G. et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7, e1000181 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Delezie, J. et al. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J. 26, 3321–3335 (2012).

    CAS  PubMed  Google Scholar 

  42. Cho, H. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123–127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26, 657–667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Solt, L. A. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485, 62–68 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Takeda, Y. et al. Retinoic acid-related orphan receptor γ (RORγ): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet. 10, e1004331 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Takeda, Y. et al. Retinoid acid-related orphan receptor γ, RORγ, participates in diurnal transcriptional regulation of lipid metabolic genes. Nucleic Acids Res. 42, 10448–10459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, E. J. et al. Retinoic acid receptor-related orphan receptor α-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379–1388 (2012).

    CAS  PubMed  Google Scholar 

  49. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. & Albrecht, U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, S. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 502, 550–554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. Science 324, 654–657 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bellet, M. M., Orozco-Solis, R., Sahar, S., Eckel-Mahan, K. & Sassone-Corsi, P. The time of metabolism: NAD+, SIRT1, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 76, 31–38 (2011).

    CAS  PubMed  Google Scholar 

  54. Zhou, B. et al. CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1. Hepatology 59, 2196–2206 (2014).

    CAS  PubMed  Google Scholar 

  55. Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    CAS  PubMed  Google Scholar 

  57. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell. Metab. 20, 1006–1017 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Baraldo, M. The influence of circadian rhythms on the kinetics of drugs in humans. Expert Opin. Drug Metab. Toxicol. 4, 175–192 (2008).

    CAS  PubMed  Google Scholar 

  60. Dallmann, R., Brown, S. A. & Gachon, F. Chronopharmacology: new insights and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 54, 339–361 (2014).

    CAS  PubMed  Google Scholar 

  61. Zhang, Y. K., Yeager, R. L. & Klaassen, C. D. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab. Dispos. 37, 106–115 (2009).

    PubMed  Google Scholar 

  62. Xu, C., Li, C. Y. & Kong, A. N. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch. Pharm. Res. 28, 249–268 (2005).

    CAS  PubMed  Google Scholar 

  63. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2002).

    CAS  PubMed  Google Scholar 

  64. Gachon, F. & Firsov, D. The role of circadian timing system on drug metabolism and detoxification. Expert Opin. Drug Metab. Toxicol. 7, 147–158 (2011).

    PubMed  Google Scholar 

  65. Matsunaga, N., Ikeda, M., Takiguchi, T., Koyanagi, S. & Ohdo, S. The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver. Hepatology 48, 240–251 (2008).

    CAS  PubMed  Google Scholar 

  66. Duez, H. et al. Regulation of bile acid synthesis by the nuclear receptor Rev-erbα. Gastroenterology 135, 689–698 (2008).

    CAS  PubMed  Google Scholar 

  67. Ma, K. et al. Circadian dysregulation disrupts bile acid homeostasis. PLoS ONE 4, e6843 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. DeBruyne, J. P., Weaver, D. R. & Dallmann, R. The hepatic circadian clock modulates xenobiotic metabolism in mice. J. Biol. Rhythms 29, 277–287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller, B. H. et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl Acad. Sci. USA 104, 3342–3347 (2007).

    CAS  PubMed  Google Scholar 

  70. Lavery, D. J. et al. Circadian expression of the steroid 15 α-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol. Cell. Biol. 19, 6488–6499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohdo, S., Koyanagi, S. & Matsunaga, N. Chronopharmacological strategies: intra- and inter-individual variability of molecular clock. Adv. Drug Deliv. Rev. 62, 885–897 (2010).

    CAS  PubMed  Google Scholar 

  72. Gachon, F., Olela, F. F., Schaad, O., Descombes, P. & Schibler, U. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 4, 25–36 (2006).

    CAS  PubMed  Google Scholar 

  73. Murakami, Y., Higashi, Y., Matsunaga, N., Koyanagi, S. & Ohdo, S. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology 135, 1636–1644. e3 (2008).

    CAS  PubMed  Google Scholar 

  74. Li, H. & Wang, H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin. Drug Metab. Toxicol. 6, 409–426 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kang, H. S. et al. Gene expression profiling reveals a regulatory role for RORα and RORγ in phase I and phase II metabolism. Physiol. Genom. 31, 281–294 (2007).

    CAS  Google Scholar 

  76. Takahashi, Y. & Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 20, 15539–15548 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Mazzoccoli, G., Vinciguerra, M., Oben, J., Tarquini, R. & De Cosmo, S. Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int. 34, 1133–1152 (2014).

    CAS  PubMed  Google Scholar 

  78. Bandin, C. et al. Differences in circadian rhythmicity in CLOCK 3111T/C genetic variants in moderate obese women as assessed by thermometry, actimetry and body position. Int. J. Obes. (Lond.) 37, 1044–1050 (2013).

    CAS  Google Scholar 

  79. Abdelmegeed, M. A. et al. PPARα expression protects male mice from high fat-induced nonalcoholic fatty liver. J. Nutr. 141, 603–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shimba, S. et al. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS ONE 6, e25231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shen, L. et al. Hepatic differentiated embryo-chondrocyte-expressed gene 1 (Dec1) inhibits sterol regulatory element-binding protein-1c (Srebp-1c) expression and alleviates fatty liver phenotype. J. Biol. Chem. 289, 23332–23342 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishiyama, Y. et al. HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J. Hepatol. 56, 441–447 (2012).

    CAS  PubMed  Google Scholar 

  83. Green, C. B. et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl Acad. Sci. USA 104, 9888–9893 (2007).

    CAS  PubMed  Google Scholar 

  84. Douris, N. et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes. Curr. Biol. 21, 1347–1355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pathak, P., Li, T. & Chiang, J. Y. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis. J. Biol. Chem. 288, 37154–37165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ando, H. et al. The hepatic circadian clock is preserved in a lipid-induced mouse model of non-alcoholic steatohepatitis. Biochem. Biophys. Res. Commun. 380, 684–688 (2009).

    CAS  PubMed  Google Scholar 

  87. Kudo, T., Tamagawa, T. & Shibata, S. Effect of chronic ethanol exposure on the liver of Clock-mutant mice. J. Circadian Rhythms 7, 4 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Summa, K. C. et al. Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS ONE 8, e67102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, T. et al. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice. Toxicology 314, 193–201 (2013).

    CAS  PubMed  Google Scholar 

  90. Zhou, P., Ross, R. A., Pywell, C. M., Liangpunsakul, S. & Duffield, G. E. Disturbances in the murine hepatic circadian clock in alcohol-induced hepatic steatosis. Sci. Rep. 4, 3725 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Sookoian, S., Castano, G., Gemma, C., Gianotti, T. F. & Pirola, C. J. Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease. World J. Gastroenterol. 13, 4242–4248 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Comasco, E. et al. The clock gene PER2 and sleep problems: association with alcohol consumption among Swedish adolescents. Ups. J. Med. Sci. 115, 41–48 (2010).

    PubMed  PubMed Central  Google Scholar 

  93. Montagnese, S. et al. Sleep-wake abnormalities in patients with cirrhosis. Hepatology 59, 705–712 (2014).

    PubMed  Google Scholar 

  94. De Cruz, S., Espiritu, J. R., Zeidler, M. & Wang, T. S. Sleep disorders in chronic liver disease. Semin. Respir. Crit. Care Med. 33, 26–35 (2012).

    PubMed  Google Scholar 

  95. Chen, P., Kakan, X. & Zhang, J. Altered circadian rhythm of the clock genes in fibrotic livers induced by carbon tetrachloride. FEBS Lett. 584, 1597–1601 (2010).

    CAS  PubMed  Google Scholar 

  96. Chen, P. et al. Loss of clock gene mPer2 promotes liver fibrosis induced by carbon tetrachloride. Hepatol. Res. 40, 1117–1127 (2010).

    CAS  PubMed  Google Scholar 

  97. Li, T. et al. Novel role of nuclear receptor Rev-erbα in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology 59, 2383–2396 (2014).

    CAS  PubMed  Google Scholar 

  98. Chen, P. et al. Deletion of clock gene Per2 exacerbates cholestatic liver injury and fibrosis in mice. Exp. Toxicol. Pathol. 65, 427–432 (2013).

    CAS  PubMed  Google Scholar 

  99. Han, Y. et al. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G894–G904 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Benegiamo, G. et al. Mutual antagonism between circadian protein period 2 and hepatitis C virus replication in hepatocytes. PLoS ONE 8, e60527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, S. L. et al. Hepatitis B virus X protein disrupts the balance of the expression of circadian rhythm genes in hepatocellular carcinoma. Oncol. Lett. 8, 2715–2720 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Feillet, C., van der Horst, G. T., Levi, F., Rand, D. A. & Delaunay, F. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth. Front. Neurol. 6, 96 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Kelleher, F. C., Rao, A. & Maguire, A. Circadian molecular clocks and cancer. Cancer Lett. 342, 9–18 (2014).

    CAS  PubMed  Google Scholar 

  104. Lee, S., Donehower, L. A., Herron, A. J., Moore, D. D. & Fu, L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 5, e10995 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Fu, L., Pelicano, H., Liu, J., Huang, P. & Lee, C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002).

    CAS  PubMed  Google Scholar 

  106. Filipski, E. et al. Circadian disruption accelerates liver carcinogenesis in mice. Mutat. Res. 680, 95–105 (2009).

    CAS  PubMed  Google Scholar 

  107. Lin, Y. M. et al. Disturbance of circadian gene expression in hepatocellular carcinoma. Mol. Carcinog. 47, 925–933 (2008).

    CAS  PubMed  Google Scholar 

  108. Yu, C. et al. Hypoxia disrupts the expression levels of circadian rhythm genes in hepatocellular carcinoma. Mol. Med. Rep. 11, 4002–4008 (2015).

    CAS  PubMed  Google Scholar 

  109. Cui, M. et al. A long noncoding RNA perturbs the circadian rhythm of hepatoma cells to facilitate hepatocarcinogenesis. Neoplasia 17, 79–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Huisman, S. A. et al. Colorectal liver metastases with a disrupted circadian rhythm phase shift the peripheral clock in liver and kidney. Int. J. Cancer 136, 1024–1032 (2015).

    CAS  PubMed  Google Scholar 

  111. Davidson, A. J., Straume, M., Block, G. D. & Menaker, M. Daily timed meals dissociate circadian rhythms in hepatoma and healthy host liver. Int. J. Cancer 118, 1623–1627 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhao, B. et al. A functional polymorphism in PER3 gene is associated with prognosis in hepatocellular carcinoma. Liver Int. 32, 1451–1459 (2012).

    CAS  PubMed  Google Scholar 

  113. Feillet, C. et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl Acad. Sci. USA 111, 9828–9833 (2014).

    CAS  PubMed  Google Scholar 

  114. Hara, R. et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6, 269–278 (2001).

    CAS  PubMed  Google Scholar 

  115. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A. & Shibata, S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erb α with shifts in the liver clock. J. Biol. Rhythms 26, 230–240 (2011).

    CAS  PubMed  Google Scholar 

  117. Yamajuku, D. et al. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci. Rep. 2, 439 (2012).

    PubMed  PubMed Central  Google Scholar 

  118. Sato, M., Murakami, M., Node, K., Matsumura, R. & Akashi, M. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep. 8, 393–401 (2014).

    CAS  PubMed  Google Scholar 

  119. Landgraf, D. et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLIFE 4, e06253 (2015).

    PubMed  PubMed Central  Google Scholar 

  120. Hirao, A., Tahara, Y., Kimura, I. & Shibata, S. A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS ONE 4, e6909 (2009).

    PubMed  PubMed Central  Google Scholar 

  121. Itokawa, M. et al. Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2::LUCIFERASE knock-in mice. Nutr. Res. 33, 109–119 (2013).

    CAS  PubMed  Google Scholar 

  122. Furutani, A. et al. Fish oil accelerates diet-induced entrainment of the mouse peripheral clock via GPR120. PLoS ONE 10, e0132472 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Hirao, A. et al. Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2::Luc knock-in mice under two meals per day feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1045–G1053 (2010).

    CAS  PubMed  Google Scholar 

  124. Kuroda, H. et al. Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci. Rep. 2, 711 (2012).

    PubMed  PubMed Central  Google Scholar 

  125. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. USA 106, 21453–21458 (2009).

    CAS  PubMed  Google Scholar 

  126. Everett, L. J. et al. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics 14, 337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Oike, H., Kobori, M., Suzuki, T. & Ishida, N. Caffeine lengthens circadian rhythms in mice. Biochem. Biophys. Res. Commun. 410, 654–658 (2011).

    CAS  PubMed  Google Scholar 

  128. Narishige, S. et al. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice. Br. J. Pharmacol. 171, 5858–5869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Burke, T. M. et al. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci. Transl. Med. 7, 305ra146 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chaix, A., Zarrinpar, A., Miu, P. & Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab. 20, 991–1005 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Barclay, J. L. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS ONE 7, e37150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Li, X. M. et al. Cancer inhibition through circadian reprogramming of tumor transcriptome with meal timing. Cancer Res. 70, 3351–3360 (2010).

    CAS  PubMed  Google Scholar 

  134. Gill, S., Le, H. D., Melkani, G. C. & Panda, S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347, 1265–1269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Maywood, E. S. et al. Disruption of peripheral circadian timekeeping in a mouse model of Huntington's disease and its restoration by temporally scheduled feeding. J. Neurosci. 30, 10199–10204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Akashi, M. et al. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc. Natl Acad. Sci. USA 107, 15643–15648 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Feillet (Université Nice Sophia Antipolis, France) for providing many helpful suggestions during the writing of this manuscript. The authors are partially supported by the Council for Science, Technology, and Innovation (CSTI); the Cross-ministerial Strategic Innovation Promotion Program (SIP); and Technologies for Creating Next-generation Agriculture, Forestry, and Fisheries (funding agency: Bio-oriented Technology Research Advancement Institution), NARO (National Agriculture and Food Research Organization), and a Grant-in-Aid for Scientific Research (S) (26220201) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and S.S researched data for the article, made substantial contributions to the discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Shigenobu Shibata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahara, Y., Shibata, S. Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat Rev Gastroenterol Hepatol 13, 217–226 (2016). https://doi.org/10.1038/nrgastro.2016.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing