Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global strategies are required to cure and eliminate HBV infection

This article has been updated

Abstract

Chronic HBV infection results in >1 million deaths per year from cirrhosis and liver cancer. No known cure for chronic HBV exists, due in part to the continued presence of transcriptionally active DNA in the nucleus that is not directly targeted by current antiviral therapies. A coordinated approach is urgently needed to advance an HBV cure worldwide, such as those established in the HIV field. We propose the establishment of an International Coalition to Eliminate Hepatitis B Virus (ICE-HBV) to facilitate the formation of international working groups on HBV virology, immunology, innovative tools and clinical trials: to promote awareness and education as well as to drive changes in government policy and ensure funds are channelled to HBV cure research and drug development. With the ICE-HBV in place, it should be possible to enable a HBV cure within the next decade.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The structure of ICE-HBV and associated working parties.
Figure 2: The main features of the HBV life cycle and potential antiviral targets30,32,97,98.
Figure 3: Immune modulation in the liver microenvironment81,82,114.

Change history

  • 17 March 2016

    In the version of this article originally published online, the affiliation address for Peter Revill and Stephen Locarnini was incorrect and should have read: Victorian Infectious Disease Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3010, Australia. This error has now been corrected for the print, HTML and PDF versions of the article.

References

  1. 1

    Ott, J. J., Stevens, G. A., Groeger, J. & Wiersma, S. T. Global epidemiology of hepatitis B virus infection: new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 30, 2212–2219 (2012).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Zeisel, M. B. et al. Towards an HBV cure: state-of-the-art and unresolved questions — report of the ANRS workshop on HBV cure. Gut 64, 1314–1326 (2015).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Deeks, S. G. et al. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Anderson, J. L., Fromentin, R., Corbelli, G. M., Ostergaard, L. & Ross, A. L. Progress towards an HIV cure: update from the 2014 International AIDS Society Symposium. AIDS Res. Hum. Retroviruses 31, 36–44 (2014).

    Article  Google Scholar 

  5. 5

    Lo, S. Sharon Lewin: guiding us towards a cure for HIV. Lancet 384, 223 (2014).

    Article  PubMed  Google Scholar 

  6. 6

    Lewin, S. R., Deeks, S. G. & Barre-Sinoussi, F. Towards a cure for HIV — are we making progress? Lancet 384, 209–211 (2014).

    Article  PubMed  Google Scholar 

  7. 7

    Purcell, D. F., Elliott, J. H., Ross, A. L. & Frater, J. Towards an HIV cure: science and debate from the International AIDS Society 2013 symposium. Retrovirology 10, 134 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Deeks, S. G. & Barre-Sinoussi, F. Public health: towards a cure for HIV. Nature 487, 293–294 (2012).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Jefferys, R. J. Workshop report: towards a cure: HIV reservoirs and strategies to control them. J. Int. AIDS Soc. 13 (Suppl. 3), I1 (2010).

    Article  PubMed Central  Google Scholar 

  10. 10

    Gish, R., Jia, J. D., Locarnini, S. & Zoulim, F. Selection of chronic hepatitis B therapy with high barrier to resistance. Lancet Infect. Dis. 12, 341–353 (2012).

    Article  PubMed  Google Scholar 

  11. 11

    Belloni, L. et al. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J. Clin. Invest. 122, 529–537 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Maini, M. K. & Peppa, D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Front. Immunol. 4, 57 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343, 1221–1228 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kim, B. K., Revill, P. A. & Ahn, S. H. HBV genotypes: relevance to natural history, pathogenesis and treatment of chronic hepatitis B. Antivir. Ther. 16, 1169–1186 (2011).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Lampertico, P. & Liaw, Y. F. New perspectives in the therapy of chronic hepatitis B. Gut 61 (Suppl. 1), i18–i24 (2012).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Sung, J. J., Tsoi, K. K., Wong, V. W., Li, K. C. & Chan, H. L. Meta-analysis: treatment of hepatitis B infection reduces risk of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 28, 1067–1077 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Seto, W. K. et al. Reduction of hepatitis B surface antigen levels and hepatitis B surface antigen seroclearance in chronic hepatitis B patients receiving 10 years of nucleoside analogue therapy. Hepatology 58, 923–931 (2013).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Marcellin, P. et al. Kinetics of hepatitis B surface antigen loss in patients with HBeAg-positive chronic hepatitis B treated with tenofovir disoproxil fumarate. J. Hepatol. 61, 1228–1237 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lai, C. L. & Yuen, M. F. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral therapy. Hepatology 57, 399–408 (2013).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Arends, P. et al. Entecavir treatment does not eliminate the risk of hepatocellular carcinoma in chronic hepatitis B: limited role for risk scores in Caucasians. Gut 64, 1289–1295 (2015).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Hosaka, T. et al. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology 58, 98–107 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Kim, W. R. et al. Impact of long-term tenofovir disoproxil fumarate on incidence of hepatocellular carcinoma in patients with chronic hepatitis B. Cancer 121, 3631–3638 (2015).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Mozessohn, L., Chan, K. K., Feld, J. J. & Hicks, L. K. Hepatitis B reactivation in HBsAg-negative/HBcAb-positive patients receiving rituximab for lymphoma: a meta-analysis. J. Viral Hepat. 22, 842–849 (2015).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Chen, G. D., Gu, J. L., Qiu, J. & Chen, L. Z. Outcomes and risk factors for hepatitis B virus (HBV) reactivation after kidney transplantation in occult HBV carriers. Transpl. Infect. Dis. 15, 300–305 (2013).

    Article  PubMed  Google Scholar 

  25. 25

    Seto, W. K. et al. Hepatitis B reactivation in patients with previous hepatitis B virus exposure undergoing rituximab-containing chemotherapy for lymphoma: a prospective study. J. Clin. Oncol. 32, 3736–3743 (2014).

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Kusumoto, S. et al. Monitoring of hepatitis B virus (HBV) DNA and risk of HBV reactivation in B-cell lymphoma: a prospective observational study. Clin. Infect. Dis. 61, 719–729 (2015).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Tseng, T. C. et al. High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load. Gastroenterology 142, 1140–1149. e3; quiz e13–e14 (2012).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Lu, H. K. et al. Ex vivo response to histone deacetylase (HDAC) inhibitors of the HIV long terminal repeat (LTR) derived from HIV-infected patients on antiretroviral therapy. PLoS ONE 9, e113341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Elliott, J. H. et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 10, e1004473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Koniger, C. et al. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc. Natl Acad. Sci. USA 111, E4244–E4253 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Blumberg, B. S., Alter, H. J. & Visnich, S. A 'new' antigen in leukemia sera. JAMA 191, 541–546 (1965).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Urban, S., Bartenschlager, R., Kubitz, R. & Zoulim, F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 147, 48–64 (2014).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Volz, T. et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. J. Hepatol. 58, 861–867 (2013).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Watashi, K. et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology 59, 1726–1737 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kaneko, M. et al. A novel tricyclic polyketide, vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide. J. Virol. 89, 11945–11953 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Levrero, M. et al. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 51, 581–592 (2009).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Pollicino, T. et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130, 823–837 (2006).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Benhenda, S. et al. Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J. Virol. 87, 4360–4371 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Belloni, L. et al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA 106, 19975–19979 (2009).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Liu, F. et al. Alpha-interferon suppresses hepadnavirus transcription by altering epigenetic modification of cccDNA minichromosomes. PLoS Pathog. 9, e1003613 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Topberger, P. et al. Mapping of histone modifications in episomal HBV cccDNA uncovers unusual chromatic organization amenable to epigenetic manipulation. Proc. Natl Acad. Sci. USA 112, E5715–E5724 (2013).

    Article  CAS  Google Scholar 

  42. 42

    Zoulim, F. & Mason, W. S. Reasons to consider earlier treatment of chronic HBV infections. Gut 61, 333–336 (2012).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Bourne, C. et al. Small-molecule effectors of hepatitis B virus capsid assembly give insight into virus life cycle. J. Virol. 82, 10262–10270 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Belloni, L. et al. HAPS hepatitis B virus (HBV) capsid inhibitors prevent HBC interaction with the viral minichromosome and selected host cells to inhibit transcription and affect cccDNA stability. Dig. Liver Dis. 46, e9 (2014).

    Article  Google Scholar 

  45. 45

    Wynne, S. A., Crowther, R. A. & Leslie, A. G. The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3, 771–780 (1999).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Katen, S. P., Tan, Z., Chirapu, S. R., Finn, M. G. & Zlotnick, A. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure 21, 1406–1416 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Billioud, G., Pichoud, C., Puerstinger, G., Neyts, J. & Zoulim, F. The main hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication. Antiviral Res. 92, 271–276 (2011).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Delaney, W. E. 4th et al. Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro. Antimicrob. Agents Chemother. 46, 3057–3060 (2002).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Deres, K. et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 299, 893–896 (2003).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    King, R. W. et al. Inhibition of human hepatitis B virus replication by AT-61, a phenylpropenamide derivative, alone and in combination with (–)β-l-2′,3′-dideoxy-3′-thiacytidine. Antimicrob. Agents Chemother. 42, 3179–3186 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Leupin, O., Bontron, S., Schaeffer, C. & Strubin, M. Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J. Virol. 79, 4238–4245 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Decorsière, A. et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature http://dx.doi.org/.10.1038/nature17170 (2016).

  53. 53

    Wooddell, C. I. et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther. 21, 973–985 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Yuen, M. F. et al. Phase II, dose ranging study of ARC-520, a siRNA-based therapeutic, in patients with chronic hepatitis B infection. Hepatology 60 (Suppl. 1), 1280A (2014).

    Google Scholar 

  55. 55

    Bloom, K., Ely, A., Mussolino, C., Cathomen, T. & Arbuthnot, P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol. Ther. 21, 1889–1897 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Seeger, C. & Sohn, J. A. Targeting hepatitis B virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids 3, e216 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Lin, S. R. et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3, e186 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Zoulim, F. & Locarnini, S. Optimal management of chronic hepatitis B patients with treatment failure and antiviral drug resistance. Liver Int. 33 (Suppl. 1), 116–124 (2013).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Zoutendijk, R., Hansen, B. E., van Vuuren, A. J., Boucher, C. A. & Janssen, H. L. Serum HBsAg decline during long-term potent nucleos(t)ide analogue therapy for chronic hepatitis B and prediction of HBsAg loss. J. Infect. Dis. 204, 415–418 (2011).

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Chevaliez, S., Hezode, C., Bahrami, S., Grare, M. & Pawlotsky, J. M. Long-term hepatitis B surface antigen (HBsAg) kinetics during nucleoside/nucleotide analogue therapy: finite treatment duration unlikely. J. Hepatol. 58, 676–683 (2013).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Hadziyannis, S. J., Sevastianos, V., Rapti, I., Vassilopoulos, D. & Hadziyannis, E. Sustained responses and loss of HBsAg in HBeAg-negative patients with chronic hepatitis B who stop long-term treatment with adefovir. Gastroenterology 143, 629–636. e1 (2012).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Fisicaro, P. et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58, 974–982 (2009).

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Hosel, M. et al. Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection. Hepatology 50, 1773–1782 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Lucifora, J. et al. Control of hepatitis B virus replication by innate response of HepaRG cells. Hepatology 51, 63–72 (2010).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Luangsay, S. et al. Expression and Functionality of Toll- and RIG-like receptors in HepaRG Cells. J. Hepatol. 63, 1077–1085 (2015).

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Luangsay, S. et al. Early inhibition of hepatocyte innate responses by hepatitis B virus. J. Hepatol. 63, 1314–1322 (2015).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Lang, T. et al. The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway. J. Hepatol. 55, 762–769 (2011).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Visvanathan, K. et al. Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein. Hepatology 45, 102–110 (2007).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Wilson, R. et al. The hepatitis B e antigen suppresses IL-1β-mediated NF-κB activation in hepatocytes. J. Viral Hepat. 18, e499–e507 (2011).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Jegaskanda, S. et al. Down-regulation of IL-18 mediated cell signalling and IFN-gamma expression by the hepatitis B virus e antigen. J. Virol. 88, 10412–10420 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Visvanathan, K. et al. Impaired Toll-like receptor expression in chronic hepatits B: implications for pathogenesis and therapy. Hepatology 38, 138A (2004).

    Google Scholar 

  73. 73

    Xia, Y. et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 150, 194–205 (2016).

    CAS  Article  PubMed  Google Scholar 

  74. 74

    Fosdick, A. et al. Pharmacokinetic and pharmacodynamic properties of GS-9620, a novel Toll-like receptor 7 agonist, demonstrate interferon-stimulated gene induction without detectable serum interferon at low oral doses. J. Pharmacol. Exp. Ther. 348, 96–105 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Menne, S. et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the woodchuck model of chronic hepatitis B. J. Hepatol. 62, 1237–1247 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Wang, Y. et al. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice. Int. J. Infect. Dis. 29, 31–36 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    US National Library of Medicine. ClinicalTrials.gov [online], (2015)

  78. 78

    US National Library of Medicine. ClinicalTrials.gov [online], (2012)

  79. 79

    US National Library of Medicine. ClinicalTrials.gov [online], (2015)

  80. 80

    Huang, L. R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Bertoletti, A. & Gehring, A. J. Immune therapeutic strategies in chronic hepatitis B virus infection: virus or inflammation control? PLoS Pathog. 9, e1003784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Milich, D. R. et al. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc. Natl Acad. Sci. USA 87, 6599–6603 (1990).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Hong, M. et al. Trained immunity in newborn infants of HBV-infected mothers. Nat. Commun. 6, 6588 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Kennedy, P. T. et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology 143, 637–645 (2012).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Maini, M. K. & Schurich, A. The molecular basis of the failed immune response in chronic HBV: therapeutic implications. J. Hepatol. 52, 616–619 (2010).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Fontaine, H. et al. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: a randomised trial — ANRS HB02 VAC-ADN. Gut 64, 139–147 (2015).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Seto, W. K. et al. Linearized hepatitis B surface antigen and hepatitis B core-related antigen in the natural history of chronic hepatitis B. Clin. Microbiol. Infect. 20, 1173–1180 (2014).

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Wong, D. K. et al. Hepatitis B virus core-related antigens as markers for monitoring chronic hepatitis B infection. J. Clin. Microbiol. 45, 3942–3947 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Tu, T. et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J. Viral Hepat. 22, 737–753 (2015).

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Mason, W. S., Liu, C., Aldrich, C. E., Litwin, S. & Yeh, M. M. Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J. Virol. 84, 8308–8315 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93

    Hughes, S. A., Wedemeyer, H. & Harrison, P. M. Hepatitis delta virus. Lancet 378, 73–85 (2011).

    Article  PubMed  Google Scholar 

  94. 94

    Fattovich, G. et al. Influence of hepatitis delta virus infection on morbidity and mortality in compensated cirrhosis type B. Gut 46, 420–426 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Alvarado-Mora, M. V., Locarnini, S., Rizzetto, M. & Pinho, J. R. An update on HDV: virology, pathogenesis and treatment. Antivir. Ther. 18, 541–548 (2013).

    Article  PubMed  Google Scholar 

  96. 96

    Lampertico, P., Maini, M. & Papatheodoridis, G. Optimal management of hepatitis B virus infection — EASL Special Conference. J. Hepatol. 63, 1238–1253 (2015).

    Article  PubMed  Google Scholar 

  97. 97

    Gunsar, F. Treatment of delta hepatitis. Expert Rev. Anti Infect. Ther. 11, 489–498 (2013).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Heidrich, B. et al. Late HDV RNA relapse after peginterferon alpha-based therapy of chronic hepatitis delta. Hepatology 60, 87–97 (2014).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Scholtes, C., Kumar, R. & Zoulim, F. Can we predict sustained virologic response to interferon α therapy in patients with chronic hepatitis delta virus infection? Clin. Gastroenterol. Hepatol. 13, 2350–2352 (2015).

    Article  PubMed  Google Scholar 

  100. 100

    Wedemeyer, H. et al. Peginterferon plus adefovir versus either drug alone for hepatitis delta. N. Engl. J. Med. 364, 322–331 (2011).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Bogomolov, P., Voronkova, N., Allweiss, L. 3rd & Urban, S. A proof-of-concept Phase 2a clinical trial with HBV/HDV entry inhibitor Myrcludex B. Hepatology 60, 1267A–1290A (2014).

    Article  Google Scholar 

  102. 102

    Bordier, B. B. et al. In vivo antiviral efficacy of prenylation inhibitors against hepatitis delta virus. J. Clin. Invest. 112, 407–414 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103

    Bordier, B. B. et al. A prenylation inhibitor prevents production of infectious hepatitis delta virus particles. J. Virol. 76, 10465–10472 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Koh, C. et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis. 15, 1167–1174 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105

    Hepatitis B Foundation. 2015 International meeting molecular biology of hepatitis B viruses [online], (2015).

  106. 106

    Lucifora, J. et al. Hepatitis B virus X protein is essential to initiate and maintain virus replication after infection. J. Hepatol. 55, 996–1003 (2011).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Werle-Lapostolle, B. et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 126, 1750–1758 (2004).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Wong, D. K. et al. Reduction of hepatitis B surface antigen and covalently closed circular DNA by nucleos(t)ide analogues of different potency. Clin. Gastroenterol. Hepatol. 11, 1004–1010. e1 (2013).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693. e4 (2010).

    CAS  Article  PubMed  Google Scholar 

  110. 110

    Fried, M. W. et al. HBeAg and hepatitis B virus DNA as outcome predictors during therapy with peginterferon alfa-2a for HBeAg-positive chronic hepatitis B. Hepatology 47, 428–434 (2008).

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Lim, L. Y. et al. Mapping the HBsAg immune phenotype to predict HBsAg loss or decline in chronic hepatitis B in patients receiving nucleot(s)ide analogue therapy. Hepatology 60 (Suppl. 1), 980A (2014).

    Google Scholar 

  112. 112

    Ganes, E. J. et al. Nucleotide polymerase inhibitor sofosbuvir plus ribavirin for hepatitis C. N. Engl. J. Med. 368, 34–44 (2013).

    Article  CAS  Google Scholar 

  113. 113

    Bertoletti, A. & Kennedy, P. T. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell. Mol. Immunol. 12, 258–263 (2015).

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Knolle, P. A. & Thimme, R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 146, 1193–1207 (2014).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Fabien Zoulim.

Ethics declarations

Competing interests

P.R. received research funding from Gilead Sciences. B.T. declares no competing interests. S.L. received research funding from Arrowhead and Gilead Sciences and consultancies from Arrowhead, Gilead Sciences and Janssen. F.Z. received research grants from Assembly Bioscience, Gilead Sciences, Janssen, Novira and Roche, and consultancies from Bristol Myers Squibb, Gilead Sciences, Janssen, Medimmune, Novira, Roche and Tekmira.

Related links

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Revill, P., Testoni, B., Locarnini, S. et al. Global strategies are required to cure and eliminate HBV infection. Nat Rev Gastroenterol Hepatol 13, 239–248 (2016). https://doi.org/10.1038/nrgastro.2016.7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing