Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vagal neurocircuitry and its influence on gastric motility

Key Points

  • Brainstem vagovagal neurocircuits modulate the functions of the upper gastrointestinal tract

  • Neuronal communications between vagal sensory (nucleus tractus solitarius, NTS) and motor (dorsal motor nucleus of the vagus, DMV) nuclei are highly specialized and probably specific for function and target organ

  • NTS–DMV synaptic contacts are not static but undergo plastic changes to ensure that vagally regulated gastrointestinal functions respond appropriately to ever-changing physiological conditions or derangements

  • Gastrointestinal peptides influence vagovagal circuits via actions on both vagal afferent fibres and brainstem nuclei

  • Neurodegenerative alterations of the vagal neurocircuitry induce marked impairments of gastrointestinal functions

Abstract

A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Anatomical organization of the nucleus tractus solitarius and the dorsal motor nucleus of the vagus.
Figure 2: The brainstem neurocircuit comprising vagovagal reflexes.
Figure 3: Neurocircuits activated by gastrointestinal peptides.
Figure 4: Oxytocin receptor trafficking in the dorsal vagal complex and changes in gastric motility.

References

  1. 1

    Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859–907 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex — linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Babic, T. & Travagli, R. A. Role of metabotropic glutamate receptors in the regulation of pancreatic functions. Biochem. Pharmacol. 87, 535–542 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Kentish, S. J. & Page, A. J. Plasticity of gastro-intestinal vagal afferent endings. Physiol. Behav. 136, 170–178 (2014).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Doheny, K. K. et al. Diminished vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm infants. Neurogastroenterol. Motil. 26, 832–840 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065 (1996).

  11. 11

    Souza, G. G. et al. Resilience and vagal tone predict cardiac recovery from acute social stress. Stress 10, 368–374 (2007).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Andresen, M. C. & Kunze, D. L. Nucleus tractus solitarius — gateway to neural circulatory control. Annu. Rev. Physiol. 56, 93–116 (1994).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Jean, A. Brainstem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969 (2001).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Bradley, R. M., King, M. S., Wang, L. & Shu, W. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem. Senses 21, 377–385 (1996).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Brookes, S. J., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil. 16 (Suppl. 1), 28–33 (2004).

    Article  PubMed  Google Scholar 

  17. 17

    Kalia, M. & Sullivan, J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–264 (1982).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Kalia, M., Fuxe, K. & Goldstein, M. Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J. Comp. Neurol. 233, 308–332 (1985).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Altschuler, S. M., Bao, X., Bieger, D., Hopkins, D. A. & Miselis, R. R. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J. Comp. Neurol. 283, 248–268 (1989).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Barraco, R., El-Ridi, M., Parizon, M. & Bradley, D. An atlas of the rat subpostremal nucleus tractus solitarius. Brain Res. Bull. 29, 703–765 (1992).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Zhang, X., Fogel, R. & Renehan, W. E. Relationships between the morphology and function of gastric- and intestine-sensitive neurons in the nucleus of the solitary tract. J. Comp. Neurol. 363, 37–52 (1995).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Kubota, Y. et al. The distribution of cholecystokinin octapeptide-like structures in the lower brain stem of the rat: an immunohistochemical analysis. Neuroscience 9, 587–604 (1983).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Maley, B. E. Immunohistochemical localization of neuropeptides and neurotransmitters in the nucleus solitarius. Chem. Senses 21, 367–376 (1996).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Lin, L. H. & Talman, W. T. Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J. Chem. Neuroanat. 29, 179–191 (2005).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon- derived peptides in the rat hypothalamus and brainstem. Neurosci. 77, 257–270 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Kessler, J. P. & Baude, A. Distribution of AMPA receptor subunits GluR1-4 in the dorsal vagal complex of the rat: a light and electron microscope immunocytochemical study. Synapse 34, 55–67 (1999).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Glass, M. J., Huang, J., Speth, R. C., Iadecola, C. & Pickel, V. M. Angiotensin, I. I. AT-1A receptor immunolabeling in rat medial nucleus tractus solitarius neurons: subcellular targeting and relationships with catecholamines. Neuroscience 130, 713–723 (2005).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Fong, A. Y., Stornetta, R. L., Foley, C. M. & Potts, J. T. Immunohistochemical localization of GAD67-expressing neurons and processes in the rat brainstem: subregional distribution in the nucleus tractus solitarius. J. Comp. Neurol. 493, 274–290 (2005).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Gross, P. M., Wall, K. M., Pang, J. J., Shaver, S. W. & Wainman, D. S. Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am. J. Physiol. 259, R1131–R1138 (1990).

    CAS  PubMed  Google Scholar 

  30. 30

    Smith, B. N., Dou, P., Barber, W. D. & Dudek, F. E. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation. J. Physiol. 512, 149–162 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Rinaman, L., Roesch, M. R. & Card, J. P. Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Brain Res. Rev. Brain Res. 114, 207–216 (2000).

    Article  Google Scholar 

  32. 32

    Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas; a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431, 405–423 (2001).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Goyal, R. K. & Chaudhury, A. Physiology of normal esophageal motility. J. Clin. Gastroenterol. 42, 610–619 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Mittal, R. K. Motor Function of the Pharynx, Esophagus, and its Sphincters (Colloquium Life Science, 2011).

    Google Scholar 

  36. 36

    Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am. J. Physiol. 260, R200–R207 (1991).

    CAS  PubMed  Google Scholar 

  37. 37

    Fox, E. A. & Powley, T. L. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 341, 269–282 (1985).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Shapiro, R. E. & Miselis, R. R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 238, 473–488 (1985).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Huang, X., Tork, I. & Paxinos, G. Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J. Comp. Neurol. 330, 158–182 (1993).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Browning, K. N., Renehan, W. E. & Travagli, R. A. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J. Physiol. 517, 521–532 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Fogel, R., Zhang, X. & Renehan, W. E. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 364, 78–91 (1996).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Gao, H. et al. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res. 1291, 40–52 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Browning, K. N., Coleman, F. H. & Travagli, R. A. Characterization of pancreas-projecting rat dorsal motor nucleus of the vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G950–G955 (2005).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Travagli, R. A., Gillis, R. A., Rossiter, C. D. & Vicini, S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 260, G531–G536 (1991).

    CAS  PubMed  Google Scholar 

  45. 45

    Babic, T., Browning, K. N. & Travagli, R. A. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G21–G32 (2011).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Sivarao, D. V., Krowicki, Z. K. & Hornby, P. J. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterol. Motil. 10, 305–313 (1998).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Browning, K. N., Coleman, F. H. & Travagli, R. A. Effects of pancreatic polypeptide on pancreas-projecting rat dorsal motor nucleus of the vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G209–G219 (2005).

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Hornby, P. J. et al. Medullary raphe: a new site for vagally mediated stimulation of gastric motility in cats. Am. J. Physiol. 258, G637–G647 (1990).

    CAS  PubMed  Google Scholar 

  49. 49

    Armstrong, D. M., Manley, L., Haycock, J. W. & Hersh, L. B. Co-localization of choline acetyltransferase and tyrosine hydroxylase within neurons of the dorsal motor nucleus of the vagus. J. Chem. Neuroanat. 3, 133–140 (1990).

    CAS  PubMed  Google Scholar 

  50. 50

    Schemann, M. & Grundy, D. Electrophysiological identification of vagally innervated enteric neurons in guinea pig stomach. Am. J. Physiol. 263, G709–G718 (1992).

    CAS  PubMed  Google Scholar 

  51. 51

    Guo, J. J., Browning, K. N., Rogers, R. C. & Travagli, R. A. Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G361–G367 (2001).

    CAS  Article  PubMed  Google Scholar 

  52. 52

    Krowicki, Z. K., Sharkey, K. A., Serron, S. C., Nathan, N. A. & Hornby, P. J. Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of NO compounds upon gastric motor function. J. Comp. Neurol. 377, 49–69 (1997).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Chang, H. Y., Mashimo, H. & Goyal, R. K. Musings on the wanderer: what's new in our understanding of vago-vagal reflex?: IV. Current concepts of vagal efferent projections to the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G357–G366 (2003).

    CAS  Article  PubMed  Google Scholar 

  54. 54

    Cannon, W. B. & Leib, C. W. The receptive relaxation of the stomach. Am. J. Physiol. 29, 267–273 (1911).

    Article  Google Scholar 

  55. 55

    Langley, J. N. On inhibitory fibres in the vagus for the end of the oesophagus and the stomach. J. Physiol. 23, 407–414 (1898).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Rogers, R. C., Hermann, G. E. & Travagli, R. A. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J. Physiol. 514, 369–383 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Abrahamsson, H. Studies on the inhibitory nervous control of gastric motility. Acta Physiol. Scand. 390 (Suppl.), 1–38 (1973).

    CAS  Google Scholar 

  58. 58

    Desai, K. M., Sessa, W. C. & Vane, J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351, 477–479 (1991).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Tack, J., Caenepeel, P., Piessevaux, H., Cuomo, R. & Janssens, J. Assessment of meal induced gastric accommodation by a satiety drinking test in health and in severe functional dyspepsia. Gut 52, 1271–1277 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Delgado-Aros, S. et al. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology 127, 1685–1694 (2004).

    Article  PubMed  Google Scholar 

  61. 61

    Troncon, L. E., Thompson, D. G., Ahluwalia, N. K., Barlow, J. & Heggie, L. Relations between upper abdominal symptoms and gastric distension abnormalities in dysmotility like functional dyspepsia and after vagotomy. Gut 37, 17–22 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Holtmann, G., Goebell, H., Jockenhoevel, F. & Talley, N. J. Altered vagal and intestinal mechanosensory function in chronic unexplained dyspepsia. Gut 42, 501–506 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Liu, L. S. et al. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology 134, 2070–2079 (2008).

    Article  PubMed  Google Scholar 

  64. 64

    Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9, 1985–1996 (1989).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Blackshaw, L. A., Page, A. J. & Young, R. L. Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci. 5, 40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Hallock, R. M., Martyniuk, C. J. & Finger, T. E. Group III metabotropic glutamate receptors (mGluRs) modulate transmission of gustatory inputs in the brainstem. J. Neurophysiol. 102, 192–202 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Young, R. L., Cooper, N. J. & Blackshaw, L. A. Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology 54, 965–975 (2008).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Browning, K. N., Zheng, Z., Gettys, T. W. & Travagli, R. A. Vagal afferent control of opioidergic effects in rat brainstem circuits. J. Physiol. 575, 761–776 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69

    Page, A. J. et al. Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128, 402–410 (2005).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Jin, Y. H., Bailey, T. W. & Andresen, M. C. Cranial afferent glutamate heterosynaptically modulates GABA release onto second-order neurons via distinctly segregated metabotropic glutamate receptors. J. Neurosci. 24, 9332–9340 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71

    Gerber, U., Gee, C. E. & Benquet, P. Metabotropic glutamate receptors: intracellular signaling pathways. Curr. Opin. Pharmacol. 7, 56–61 (2007).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Browning, K. N. & Travagli, R. A. Functional organization of presynaptic metabotropic glutamate receptors in vagal brainstem circuits. J. Neurosci. 27, 8979–8988 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Berthoud, H. R., Sutton, G. M., Townsend, R. L., Patterson, L. M. & Zheng, H. Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol. Behav. 89, 517–524 (2006).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847 (2006).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Banks, W. A. The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol. Behav. 89, 472–476 (2006).

    CAS  Article  PubMed  Google Scholar 

  78. 78

    Kastin, A. J., Akerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Orts-Del'immagine, A. et al. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J. Physiol. 590, 3719–3741 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Noble, F. et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol. Rev. 51, 745–781 (1999).

    CAS  PubMed  Google Scholar 

  81. 81

    Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Browning, K. N. & Travagli, R. A. The peptide TRH uncovers the presence of presynaptic 5-HT1A receptors via activation of a second messenger pathway in the rat dorsal vagal complex. J. Physiol. 531, 425–435 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Browning, K. N., Kalyuzhny, A. E. & Travagli, R. A. Mu-opioid receptor trafficking on inhibitory synapses in the rat brainstem. J. Neurosci. 24, 9344–9352 (2004).

    Article  CAS  Google Scholar 

  84. 84

    Browning, K. N. & Travagli, R. A. Modulation of inhibitory neurotransmission in brainstem vagal circuits by NPY and PYY is controlled by cAMP levels. Neurogastroenterol. Motil. 21, 1309–e1126 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Browning, K. N., Kalyuzhny, A. E. & Travagli, R. A. Opioid peptides inhibit excitatory but not inhibitory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Neurosci. 22, 2998–3004 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Browning, K. N. & Travagli, R. A. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Physiol. 549, 775–785 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87

    Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20 (Suppl. 1), 64–72 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88

    Raybould, H. E. & Tache, Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am. J. Physiol. 255, G242–G246 (1988).

    CAS  PubMed  Google Scholar 

  89. 89

    Woods, S. C. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G7–G13 (2004).

    CAS  Article  PubMed  Google Scholar 

  90. 90

    Owyang, C. & Logsdon, C. D. New insights into neurohormonal regulation of pancreatic secretion. Gastroenterology 127, 957–969 (2004).

    CAS  Article  PubMed  Google Scholar 

  91. 91

    Andrews, P. L. & Sanger, G. J. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr. Opin. Pharmacol. 2, 650–656 (2002).

    CAS  Article  PubMed  Google Scholar 

  92. 92

    Imeryuz, N. et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. 273, G920–G927 (1997).

    CAS  PubMed  Google Scholar 

  93. 93

    Grill, H. J. Leptin and the systems neuroscience of meal size control. Front. Neuroendocrinol. 31, 61–78 (2010).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Owyang, C. & Heldsinger, A. Vagal control of satiety and hormonal regulation of appetite. J. Neurogastroenterol. Motil. 17, 338–348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    Czaja, K., Burns, G. A. & Ritter, R. C. Capsaicin-induced neuronal death and proliferation of the primary sensory neurons located in the nodose ganglia of adult rats. Neuroscience 154, 621–630 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Holzer, P. Capsaicin-sensitive afferent neurones and gastrointestinal propulsion in the rat. Arch. Pharmacol. 332, 62–65 (1986).

    CAS  Article  Google Scholar 

  97. 97

    South, E. H. & Ritter, R. C. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides 9, 601–612 (1988).

    CAS  Article  PubMed  Google Scholar 

  98. 98

    Holzer, H. H., Turkelson, C. M., Solomon, T. E. & Raybould, H. E. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats. Am. J. Physiol. 267, G625–G629 (1994).

    CAS  PubMed  Google Scholar 

  99. 99

    Blackshaw, L. A., Page, A. J. & Partosoedarso, E. R. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 96, 407–416 (2000).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Li, Y. & Owyang, C. Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107, 525–531 (1994).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–202 (1990).

    CAS  Article  PubMed  Google Scholar 

  102. 102

    Zittel, T. T., Rothenhofer, I., Meyer, J. H. & Raybould, H. E. Small intestinal capsaicin-sensitive afferents mediate feedback inhibition of gastric emptying in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 267, G1142–G1145 (1994).

    CAS  Article  Google Scholar 

  103. 103

    Lloyd, K. C., Holzer, H. H., Zittel, T. T. & Raybould, H. E. Duodenal lipid inhibits gastric acid secretion by vagal, capsaicin-sensitive afferent pathways in rats. Am. J. Physiol. 264, G659–G663 (1993).

    CAS  PubMed  Google Scholar 

  104. 104

    Moran, T. H. Gut peptide signaling in the controls of food intake. Obesity (Silver Spring) 14, 250S–253S (2006).

    CAS  Article  Google Scholar 

  105. 105

    Browning, K. N., Babic, T., Holmes, G. M., Swartz, E. M. & Travagli, R. A. A critical re-evaluation of the specificity of action of perivagal capsaicin. J. Physiol. 591, 1563–1580 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106

    Szolcsanyi, J., Joo, F. & Jancso-Gabor, A. Mitochondrial changes in preoptic neurons after capsaicin desensitization of the hypothalamic thermodetectors in rats. Nature 229, 116–117 (1971).

    CAS  Article  PubMed  Google Scholar 

  107. 107

    Ritter, S. & Dinh, T. T. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J. Comp. Neurol. 296, 447–461 (1990).

    CAS  Article  PubMed  Google Scholar 

  108. 108

    Ritter, S. & Dinh, T. T. Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat. J. Comp. Neurol. 271, 79–90 (1988).

    CAS  Article  PubMed  Google Scholar 

  109. 109

    Holzer, P. Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve. Am. J. Physiol. 275, G8–G13 (1998).

    CAS  PubMed  Google Scholar 

  110. 110

    Kim, S. R. et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J. Neurosci. 25, 662–671 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111

    Jancso-Gabor, A., Szolcsanyi, J. & Jancso, N. Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. J. Physiol. 208, 449–459 (1970).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112

    Hajos, M., Obal, F. Jr., Jancso, G. & Obal, F. Capsaicin impairs preoptic serotonin-sensitive structures mediating hypothermia in rats. Neurosci. Lett. 54, 97–102 (1985).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Evangelista, S., Santicioli, P., Maggi, C. A. & Meli, A. Increase in gastric secretion induced by 2-deoxy-d-glucose is impaired in capsaicin pretreated rats. Br. J. Pharmacol. 98, 35–37 (1989).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114

    Raybould, H. E., Holzer, P., Reddy, S. N., Yang, H. & Tache, Y. Capsaicin-sensitive vagal afferents contribute to gastric acid and vascular responses to intracisternal TRH analog. Peptides 11, 789–795 (1990).

    CAS  Article  PubMed  Google Scholar 

  115. 115

    Baptista, V., Browning, K. N. & Travagli, R. A. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1092–R1100 (2007).

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Sayegh, A. I. & Ritter, R. C. Vagus nerve participates in CCK-induced Fos expression in hind brain but not myenteric plexus. Brain Res. 878, 155–162 (2000).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    van de Wall, E. H., Duffy, P. & Ritter, R. C. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R695–R703 (2005).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Viard, E., Zheng, Z., Wan, S. & Travagli, R. A. Vagally-mediated, non paracrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G494–G500 (2007).

    Article  CAS  Google Scholar 

  119. 119

    Branchereau, P., Champagnat, J. & Denavit-Saubie, M. Cholecystokinin-gated currents in neurons of the rat solitary complex in vitro. J. Neurophysiol. 70, 2584–2595 (1993).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Baptista, V., Zheng, Z., Coleman, F. H., Rogers, R. C. & Travagli, R. A. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J. Neurophysiol. 94, 2763–2771 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121

    Appleyard, S. M. et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci. 25, 3578–3585 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122

    Browning, K. N., Wan, S., Baptista, V. & Travagli, R. A. Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R394–R401 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123

    Zheng, Z., Lewis, M. W. & Travagli, R. A. In vitro analysis of the effects of cholecystokinin (CCK) on rat brainstem motorneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1066–G1073 (2005).

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Plata-Salaman, C. R., Fukuda, A., Oomura, Y. & Minami, T. Effects of sulphated cholecystokinin octapeptide (CCK-8) on the dorsal motor nucleus of the vagus. Brain Res. Bull. 21, 839–842 (1988).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Wan, S., Coleman, F. H. & Travagli, R. A. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G484–G492 (2007).

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Simasko, S. M. & Ritter, R. C. Cholecystokinin activates both A- and C-type vagal afferent neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1204–G1213 (2003).

    CAS  Article  PubMed  Google Scholar 

  127. 127

    Derbenev, A. V., Monroe, M. J., Glatzer, N. R. & Smith, B. N. Vanilloid-mediated heterosynaptic facilitation of inhibitory synaptic input to neurons of the rat dorsal motor nucleus of the vagus. J. Neurosci. 26, 9666–9672 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128

    Peters, J. H., McDougall, S. J., Fawley, J. A., Smith, S. M. & Andresen, M. C. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65, 657–669 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129

    Evans, C., Baxi, S., Neff, R., Venkatesan, P. & Mendelowitz, D. Synaptic activation of cardiac vagal neurons by capsaicin sensitive and insensitive sensory neurons. Brain Res. 979, 210–215 (2003).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Roth, G. I. & Yamamoto, W. S. The microcirculation of the area postrema of the rat. J. Comp. Neurol. 133, 329–340 (1968).

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Dockray, G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264, 568–570 (1976).

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Takagi, H. et al. Fine structural studies of cholecystokinin-8-like immunoreactive neurons and axon terminals in the nucleus of tractus solitarius of the rat. J. Comp. Neurol. 227, 369–379 (1984).

    CAS  Article  PubMed  Google Scholar 

  133. 133

    Holmes, G. M., Tong, M. & Travagli, R. A. Effects of brainstem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G621–G631 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Stanley, S., Wynne, K., McGowan, B. & Bloom, S. Hormonal regulation of food intake. Physiol. Rev. 85, 1131–1158 (2005).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    CAS  Article  PubMed  Google Scholar 

  136. 136

    Holmes, G. M., Browning, K. N., Tong, M., Qualls-Creekmore, E. & Travagli, R. A. Vagally mediated effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. J. Physiol. 587, 4749–4759 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. 137

    Kakei, M., Yada, T., Nakagawa, A. & Nakabayashi, H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton. Neurosci. 102, 39–44 (2002).

    CAS  Article  PubMed  Google Scholar 

  138. 138

    Wan, S., Coleman, F. H. & Travagli, R. A. Glucagon-like peptide-1 (GLP-1) excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007).

    CAS  Article  PubMed  Google Scholar 

  139. 139

    Grabauskas, G. et al. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J. Physiol. 593, 3973–3989 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140

    Arnold, M., Mura, A., Langhans, W. & Geary, N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J. Neurosci. 26, 11052–11060 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141

    Fry, M. & Ferguson, A. V. Ghrelin modulates electrical activity of area postrema neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R485–R492 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. 142

    Li, Y., Wu, X., Zhao, Y., Chen, S. & Owyang, C. Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1350–G1358 (2006).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Holzer, P., Reichmann, F. & Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144

    Michel, M. C. et al. XVI. International union of pharmacology reccommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143–150 (1999).

    Google Scholar 

  145. 145

    Rozengurt, E. & Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 7, 557–562 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. 146

    Maljaars, P. W., Peters, H. P., Mela, D. J. & Masclee, A. A. Ileal brake: a sensible food target for appetite control. A review. Physiol. Behav. 95, 271–281 (2008).

    CAS  Article  PubMed  Google Scholar 

  147. 147

    Chen, C. H., Stephens, R. L. Jr. & Rogers, R. C. PYY and NPY control of gastric motility via action on Y1 and Y2 receptors in the DVC. Neurogastroenterol. Motil. 9, 109–116 (1997).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Chen, C. H. & Rogers, R. C. Central inhibitory action of peptide YY on gastric motility in rats. Am. J. Physiol. 269, R787–R792 (1995).

    CAS  PubMed  Google Scholar 

  149. 149

    Yang, H., Li, W. P., Reeve, J. R., Rivier, J. & Tache, Y. PYY-preferring receptor in the dorsal vagal complex and its involvement in PYY stimulation in gastric acid secretion in rats. Br. J. Pharmacol. 123, 1549–1554 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150

    Adrian, T. E. et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89, 494–499 (1985).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Yang, H. et al. Peripheral PYY inhibits intracisternal TRH-induced gastric acid secretion by acting in the brain. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G575–G581 (2000).

    CAS  Article  PubMed  Google Scholar 

  152. 152

    Schemann, M. & Tamura, K. Presynaptic inhibitory effects of the peptides NPY, PYY and PP on nicotinic EPSPs in guinea-pig gastric myenteric neurones. J. Physiol. 451, 79–89 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. 153

    Avau, B., Carbone, F., Tack, J. & Depoortere, I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol. Motil. 25, 720–732 (2013).

    CAS  Article  PubMed  Google Scholar 

  154. 154

    Latorre, R., Sternini, C. & De, G. R. & Greenwood-van, M. B. Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Stengel, A. & Tache, Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp. Biol. Med. (Maywood) 235, 1168–1178 (2010).

    CAS  Article  Google Scholar 

  156. 156

    Stengel, A. & Tache, Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu. Rev. Physiol. 71, 219–239 (2008).

    Article  CAS  Google Scholar 

  157. 157

    Fukudo, S. IBS: autonomic dysregulation in IBS. Nat. Rev. Gastroenterol. Hepatol. 10, 569–571 (2013).

    Article  PubMed  Google Scholar 

  158. 158

    Khoo, J., Rayner, C. K., Feinle-Bisset, C., Jones, K. L. & Horowitz, M. Gastrointestinal hormonal dysfunction in gastroparesis and functional dyspepsia. Neurogastroenterol. Motil. 22, 1270–1278 (2010).

    CAS  Article  PubMed  Google Scholar 

  159. 159

    Franklin, T. B., Saab, B. J. & Mansuy, I. M. Neural mechanisms of stress resilience and vulnerability. Neuron 75, 747–761 (2012).

    CAS  Article  PubMed  Google Scholar 

  160. 160

    Panksepp, J. & Panksepp, J. B. Toward a cross-species understanding of empathy. Trends Neurosci. 36, 489–496 (2013).

    CAS  Article  PubMed  Google Scholar 

  161. 161

    Kelly, A. M. & Goodson, J. L. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front. Neuroendocrinol. 35, 512–529 (2014).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. 163

    Churchland, P. S. & Winkielman, P. Modulating social behavior with oxytocin: how does it work? What does it mean? Horm. Behav. 61, 392–399 (2012).

    CAS  Article  PubMed  Google Scholar 

  164. 164

    Gordon, I., Martin, C., Feldman, R. & Leckman, J. F. Oxytocin and social motivation. Dev. Cogn. Neurosci. 1, 471–493 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165

    Zheng, J. et al. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G946–G953 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  166. 166

    Babygirija, R., Zheng, J., Ludwig, K. & Takahashi, T. Central oxytocin is involved in restoring impaired gastric motility following chronic repeated stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R157–R165 (2010).

    CAS  Article  PubMed  Google Scholar 

  167. 167

    Bulbul, M., Babygirija, R., Ludwig, K. & Takahashi, T. Central oxytocin attenuates augmented gastric postprandial motility induced by restraint stress in rats. Neurosci. Lett. 479, 302–306 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. 168

    Babygirija, R., Bulbul, M., Cerjak, D., Ludwig, K. & Takahashi, T. Sustained acceleration of colonic transit following chronic homotypic stress in oxytocin knockout mice. Neurosci. Lett. 495, 77–81 (2011).

    CAS  Article  PubMed  Google Scholar 

  169. 169

    Bulbul, M. et al. Hypothalamic oxytocin attenuates CRF expression via GABAA receptors in rats. Brain Res. 1387, 39–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. 170

    Murphy, D. et al. The hypothalamic–neurohypophyseal system: from genome to physiology. J. Neuroendocrinol. 24, 539–553 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. 171

    Richar, P., Moos, F. & Freund-Mercier, M.-J. Central effects of oxytocin. Physiol. Rev. 71, 331–370 (1991).

    Article  Google Scholar 

  172. 172

    Herman, J. P., Flak, J. & Jankord, R. Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog. Brain Res. 170, 353–364 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. 173

    Raggenbass, M., Dubois-Dauphin, M., Charpak, S. & Dreifuss, J. J. Neurons in the dorsal motor nucleus of the vagus nerve are excited by oxytocin in the rat but not in the guinea pig. Proc. Natl Acad. Sci. USA 84, 3926–3930 (1987).

    CAS  Article  PubMed  Google Scholar 

  174. 174

    Raggenbass, M. & Dreifuss, J. J. Mechanism of action of oxytocin in rat vagal neurones: induction of a sustained sodium-dependent current. J. Physiol. 457, 131–142 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. 175

    Flanagan, L. M., Olson, B. R., Sved, A. F., Verbalis, J. G. & Stricker, E. M. Gastric motility in conscious rats given oxytocin and an oxytocin antagonist centrally. Brain Res. 578, 256–260 (1992).

    CAS  Article  PubMed  Google Scholar 

  176. 176

    Fujimiya, M. & Inui, A. Peptidergic regulation of gastrointestinal motility in rodents. Peptides 21, 1565–1582 (2001).

    Article  Google Scholar 

  177. 177

    Holmes, G. M. et al. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone. J. Physiol. 591, 3081–3100 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    Babygirija, R., Bulbul, M., Yoshimoto, S., Ludwig, K. & Takahashi, T. Central and peripheral release of oxytocin following chronic homotypic stress in rats. Auton. Neurosci. 167, 56–60 (2012).

    CAS  Article  PubMed  Google Scholar 

  179. 179

    Lewis, M. W., Hermann, G. E., Rogers, R. C. & Travagli, R. A. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex. J. Physiol. 543, 135–146 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180

    Browning, K. N. et al. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J. Physiol. 592, 4591–4605 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. 181

    Blake, C. B. & Smith, B. N. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R711–R720 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. 182

    Shuster, S. J., Riedl, M., Li, X., Vulchanova, L. & Elde, R. Stimulus-dependent translocation of κ opioid receptors to the plasma membrane. J. Neurosci. 19, 2658–2664 (1999).

    CAS  Article  PubMed  Google Scholar 

  183. 183

    Baltadzhieva, R., Gurevich, T. & Korczyn, A. D. Autonomic impairment in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 18, 487–493 (2005).

    Article  PubMed  Google Scholar 

  184. 184

    Slim, M., Calandre, E. P. & Rico-Villademoros, F. An insight into the gastrointestinal component of fibromyalgia: clinical manifestations and potential underlying mechanisms. Rheumatol. Int. 35, 433–444 (2015).

    CAS  Article  PubMed  Google Scholar 

  185. 185

    Aziz, N. A. et al. Weight loss in neurodegenerative disorders. J. Neurol. 255, 1872–1880 (2008).

    CAS  Article  PubMed  Google Scholar 

  186. 186

    Heemskerk, A. W. & Roos, R. A. Dysphagia in Huntington's disease: a review. Dysphagia 26, 62–66 (2011).

    Article  PubMed  Google Scholar 

  187. 187

    Fasano, A., Visanji, N. P., Liu, L. W., Lang, A. E. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14, 625–639 (2015).

    CAS  Article  PubMed  Google Scholar 

  188. 188

    Pfeiffer, R. F. Gastrointestinal involvement in Parkinson's disease: the horse or the cart. Acta Physiol. (Oxf.) 211, 271–272 (2014).

    CAS  Article  Google Scholar 

  189. 189

    Natale, G., Pasquali, L., Ruggieri, S., Paparelli, A. & Fornai, F. Parkinson's disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol. Motil. 20, 741–749 (2008).

    CAS  Article  PubMed  Google Scholar 

  190. 190

    Wedel, T. et al. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology 123, 1459–1467 (2002).

    Article  PubMed  Google Scholar 

  191. 191

    Lebouvier, T. et al. Pathological lesions in colonic biopsies during Parkinson's disease. Gut 57, 1741–1743 (2008).

    CAS  Article  PubMed  Google Scholar 

  192. 192

    Edwards, L. L., Quigley, E. M., Harned, R. K., Hofman, R. & Pfeiffer, R. F. Characterization of swallowing and defecation in Parkinson's disease. Am. J. Gastroenterol. 89, 15–25 (1994).

    CAS  PubMed  Google Scholar 

  193. 193

    Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2, 107–116 (2003).

    Article  PubMed  Google Scholar 

  194. 194

    Hardoff, R. et al. Gastric emptying time and gastric motility in patients with Parkinson's disease. Mov. Disord. 16, 1041–1047 (2001).

    CAS  Article  PubMed  Google Scholar 

  195. 195

    McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson's disease. Neurobiol. Dis. 46, 597–606 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  196. 196

    Kuo, Y. M. et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet. 19, 1633–1650 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. 197

    Blandini, F. et al. Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson's disease. Neurosci. Lett. 467, 203–207 (2009).

    CAS  Article  PubMed  Google Scholar 

  198. 198

    Colucci, M. et al. Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model. Auton. Neurosci. 169, 77–86 (2012).

    CAS  Article  PubMed  Google Scholar 

  199. 199

    Derkinderen, P. et al. Parkinson disease: the enteric nervous system spills its guts. Neurology 77, 1761–1767 (2011).

    CAS  Article  PubMed  Google Scholar 

  200. 200

    Zheng, L. F. et al. Alterations in TH- and ChAT-immunoreactive neurons in the DMV and gastric dysmotility in an LPS-induced PD rat model. Auton. Neurosci. 177, 194–198 (2013).

    CAS  Article  PubMed  Google Scholar 

  201. 201

    Stott, S. R. & Barker, R. A. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur. J. Neurosci. 39, 1042–1056 (2014).

    Article  PubMed  Google Scholar 

  202. 202

    Zhu, H. C., Zhao, J., Luo, C. Y. & Li, Q. Q. Gastrointestinal dysfunction in a Parkinson's disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J. Mol. Neurosci. 47, 15–25 (2012).

    CAS  Article  PubMed  Google Scholar 

  203. 203

    Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  204. 204

    Toti, L. & Travagli, R. A. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain–gut axis. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G1013–G1023 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  205. 205

    Goedert, M., Spillantini, M. G., Del, T. K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  Article  PubMed  Google Scholar 

  206. 206

    George, J. M. The synucleins. Genome Biol. 3, 3002.1–3002.6 (2002).

    Google Scholar 

  207. 207

    Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).

    CAS  Article  PubMed  Google Scholar 

  208. 208

    Braak, H., De Vos, R. A., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    CAS  Article  PubMed  Google Scholar 

  209. 209

    Hawkes, C. H., Del, T. K. & Braak, H. A timeline for Parkinson's disease. Parkinsonism Relat. Disord. 16, 79–84 (2010).

    Article  PubMed  Google Scholar 

  210. 210

    Visanji, N. P., Brooks, P. L., Hazrati, L. N. & Lang, A. E. The prion hypothesis in Parkinson's disease: Braak to the future. Acta Neuropathol. Commun. 1, 2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  211. 211

    Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    CAS  Article  PubMed  Google Scholar 

  212. 212

    Zheng, L. F. et al. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol. (Oxf.) 211, 434–446 (2014).

    CAS  Article  Google Scholar 

  213. 213

    Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  214. 214

    Greene, J. G. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid. Redox Signal. 21, 649–667 (2014).

    CAS  Article  PubMed  Google Scholar 

  215. 215

    Burke, R. E., Dauer, W. T. & Vonsattel, J. P. A critical evaluation of the Braak staging scheme for Parkinson's disease. Ann. Neurol. 64, 485–491 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  216. 216

    Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    CAS  Article  PubMed  Google Scholar 

  217. 217

    Brettschneider, J., Del, T. K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  218. 218

    Hawkes, C. H., Del, T. K. & Braak, H. Parkinson's disease: the dual hit theory revisited. Ann. NY Acad. Sci. 1170, 615–622 (2009).

    Article  PubMed  Google Scholar 

  219. 219

    Buckinx, R., Adriaensen, D., Nassauw, L. V. & Timmermans, J. P. Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front. Neurosci. 5, 54 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  220. 220

    Bale, T. L. & Vale, W. W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 44, 525–557 (2004).

    CAS  Article  PubMed  Google Scholar 

  221. 221

    Valentino, R. J., Pavcovich, L. A. & Hirata, H. Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat. J. Comp. Neurol. 363, 402–422 (1995).

    CAS  Article  PubMed  Google Scholar 

  222. 222

    Tache, Y. & Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest. 117, 33–40 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  223. 223

    Lenz, H. J., Raedler, A., Greten, H., Vale, W. W. & Rivier, J. E. Stress-induced gastrointestinal secretory and motor responses in rats are mediated by endogenous corticotropin-releasing factor. Gastroenterology 95, 1510–1517 (1988).

    CAS  Article  PubMed  Google Scholar 

  224. 224

    Martinez, V., Rivier, J., Wang, L. & Tache, Y. Central injecton of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function. J. Pharmacol. Exp. Ther. 280, 754–760 (1997).

    CAS  PubMed  Google Scholar 

  225. 225

    Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  Article  PubMed  Google Scholar 

  226. 226

    Goedert, M., Falcon, B., Clavaguera, F. & Tolnay, M. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr. Neurol. Neurosci. Rep. 14, 495 (2014).

    Article  CAS  PubMed  Google Scholar 

  227. 227

    Goedert, M. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).

    Article  CAS  PubMed  Google Scholar 

  228. 228

    Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    CAS  Article  PubMed  Google Scholar 

  229. 229

    Olanow, C. W. & Brundin, P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).

    CAS  Article  PubMed  Google Scholar 

  230. 230

    Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  231. 231

    Lee, H. J. et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262–9272 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank NIH grants DK 55530, DK 78364 and DK 99350 and the Michael J. Fox Foundation for Parkinson's Disease for their support; we are also very grateful to K. N. Browning for critical comments on previous versions of the manuscript and for checking the grammar (because we do not want to “write as we speak”). We also thank C. M. Travagli and Z. Travagli for support and encouragement.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to R. Alberto Travagli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Travagli, R., Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 13, 389–401 (2016). https://doi.org/10.1038/nrgastro.2016.76

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing