Key Points
-
Brainstem vagovagal neurocircuits modulate the functions of the upper gastrointestinal tract
-
Neuronal communications between vagal sensory (nucleus tractus solitarius, NTS) and motor (dorsal motor nucleus of the vagus, DMV) nuclei are highly specialized and probably specific for function and target organ
-
NTS–DMV synaptic contacts are not static but undergo plastic changes to ensure that vagally regulated gastrointestinal functions respond appropriately to ever-changing physiological conditions or derangements
-
Gastrointestinal peptides influence vagovagal circuits via actions on both vagal afferent fibres and brainstem nuclei
-
Neurodegenerative alterations of the vagal neurocircuitry induce marked impairments of gastrointestinal functions
Abstract
A large body of research has been dedicated to the effects of gastrointestinal peptides on vagal afferent fibres, yet multiple lines of evidence indicate that gastrointestinal peptides also modulate brainstem vagal neurocircuitry, and that this modulation has a fundamental role in the physiology and pathophysiology of the upper gastrointestinal tract. In fact, brainstem vagovagal neurocircuits comprise highly plastic neurons and synapses connecting afferent vagal fibres, second order neurons of the nucleus tractus solitarius (NTS), and efferent fibres originating in the dorsal motor nucleus of the vagus (DMV). Neuronal communication between the NTS and DMV is regulated by the presence of a variety of inputs, both from within the brainstem itself as well as from higher centres, which utilize an array of neurotransmitters and neuromodulators. Because of the circumventricular nature of these brainstem areas, circulating hormones can also modulate the vagal output to the upper gastrointestinal tract. This Review summarizes the organization and function of vagovagal reflex control of the upper gastrointestinal tract, presents data on the plasticity within these neurocircuits after stress, and discusses the gastrointestinal dysfunctions observed in Parkinson disease as examples of physiological adjustment and maladaptation of these reflexes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sanders, K. M., Ward, S. M. & Koh, S. D. Interstitial cells: regulators of smooth muscle function. Physiol. Rev. 94, 859–907 (2014).
Sharkey, K. A. Emerging roles for enteric glia in gastrointestinal disorders. J. Clin. Invest. 125, 918–925 (2015).
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).
Travagli, R. A., Hermann, G. E., Browning, K. N. & Rogers, R. C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).
Browning, K. N. & Travagli, R. A. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4, 1339–1368 (2014).
Pavlov, V. A. & Tracey, K. J. The vagus nerve and the inflammatory reflex — linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).
Babic, T. & Travagli, R. A. Role of metabotropic glutamate receptors in the regulation of pancreatic functions. Biochem. Pharmacol. 87, 535–542 (2014).
Kentish, S. J. & Page, A. J. Plasticity of gastro-intestinal vagal afferent endings. Physiol. Behav. 136, 170–178 (2014).
Doheny, K. K. et al. Diminished vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm infants. Neurogastroenterol. Motil. 26, 832–840 (2014).
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93, 1043–1065 (1996).
Souza, G. G. et al. Resilience and vagal tone predict cardiac recovery from acute social stress. Stress 10, 368–374 (2007).
Andresen, M. C. & Kunze, D. L. Nucleus tractus solitarius — gateway to neural circulatory control. Annu. Rev. Physiol. 56, 93–116 (1994).
Jean, A. Brainstem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969 (2001).
Bradley, R. M., King, M. S., Wang, L. & Shu, W. Neurotransmitter and neuromodulator activity in the gustatory zone of the nucleus tractus solitarius. Chem. Senses 21, 377–385 (1996).
Brookes, S. J., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).
Berthoud, H. R., Blackshaw, L. A., Brookes, S. J. & Grundy, D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil. 16 (Suppl. 1), 28–33 (2004).
Kalia, M. & Sullivan, J. M. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–264 (1982).
Kalia, M., Fuxe, K. & Goldstein, M. Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J. Comp. Neurol. 233, 308–332 (1985).
Altschuler, S. M., Bao, X., Bieger, D., Hopkins, D. A. & Miselis, R. R. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J. Comp. Neurol. 283, 248–268 (1989).
Barraco, R., El-Ridi, M., Parizon, M. & Bradley, D. An atlas of the rat subpostremal nucleus tractus solitarius. Brain Res. Bull. 29, 703–765 (1992).
Zhang, X., Fogel, R. & Renehan, W. E. Relationships between the morphology and function of gastric- and intestine-sensitive neurons in the nucleus of the solitary tract. J. Comp. Neurol. 363, 37–52 (1995).
Kubota, Y. et al. The distribution of cholecystokinin octapeptide-like structures in the lower brain stem of the rat: an immunohistochemical analysis. Neuroscience 9, 587–604 (1983).
Maley, B. E. Immunohistochemical localization of neuropeptides and neurotransmitters in the nucleus solitarius. Chem. Senses 21, 367–376 (1996).
Lin, L. H. & Talman, W. T. Nitroxidergic neurons in rat nucleus tractus solitarii express vesicular glutamate transporter 3. J. Chem. Neuroanat. 29, 179–191 (2005).
Larsen, P. J., Tang-Christensen, M., Holst, J. J. & Orskov, C. Distribution of glucagon-like peptide-1 and other preproglucagon- derived peptides in the rat hypothalamus and brainstem. Neurosci. 77, 257–270 (1997).
Kessler, J. P. & Baude, A. Distribution of AMPA receptor subunits GluR1-4 in the dorsal vagal complex of the rat: a light and electron microscope immunocytochemical study. Synapse 34, 55–67 (1999).
Glass, M. J., Huang, J., Speth, R. C., Iadecola, C. & Pickel, V. M. Angiotensin, I. I. AT-1A receptor immunolabeling in rat medial nucleus tractus solitarius neurons: subcellular targeting and relationships with catecholamines. Neuroscience 130, 713–723 (2005).
Fong, A. Y., Stornetta, R. L., Foley, C. M. & Potts, J. T. Immunohistochemical localization of GAD67-expressing neurons and processes in the rat brainstem: subregional distribution in the nucleus tractus solitarius. J. Comp. Neurol. 493, 274–290 (2005).
Gross, P. M., Wall, K. M., Pang, J. J., Shaver, S. W. & Wainman, D. S. Microvascular specializations promoting rapid interstitial solute dispersion in nucleus tractus solitarius. Am. J. Physiol. 259, R1131–R1138 (1990).
Smith, B. N., Dou, P., Barber, W. D. & Dudek, F. E. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation. J. Physiol. 512, 149–162 (1998).
Rinaman, L., Roesch, M. R. & Card, J. P. Retrograde transynaptic pseudorabies virus infection of central autonomic circuits in neonatal rats. Brain Res. Rev. Brain Res. 114, 207–216 (2000).
Buijs, R. M., Chun, S. J., Niijima, A., Romijn, H. J. & Nagai, K. Parasympathetic and sympathetic control of the pancreas; a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J. Comp. Neurol. 431, 405–423 (2001).
Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).
Goyal, R. K. & Chaudhury, A. Physiology of normal esophageal motility. J. Clin. Gastroenterol. 42, 610–619 (2008).
Mittal, R. K. Motor Function of the Pharynx, Esophagus, and its Sphincters (Colloquium Life Science, 2011).
Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am. J. Physiol. 260, R200–R207 (1991).
Fox, E. A. & Powley, T. L. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 341, 269–282 (1985).
Shapiro, R. E. & Miselis, R. R. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 238, 473–488 (1985).
Huang, X., Tork, I. & Paxinos, G. Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. J. Comp. Neurol. 330, 158–182 (1993).
Browning, K. N., Renehan, W. E. & Travagli, R. A. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J. Physiol. 517, 521–532 (1999).
Fogel, R., Zhang, X. & Renehan, W. E. Relationships between the morphology and function of gastric and intestinal distention-sensitive neurons in the dorsal motor nucleus of the vagus. J. Comp. Neurol. 364, 78–91 (1996).
Gao, H. et al. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res. 1291, 40–52 (2009).
Browning, K. N., Coleman, F. H. & Travagli, R. A. Characterization of pancreas-projecting rat dorsal motor nucleus of the vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G950–G955 (2005).
Travagli, R. A., Gillis, R. A., Rossiter, C. D. & Vicini, S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 260, G531–G536 (1991).
Babic, T., Browning, K. N. & Travagli, R. A. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G21–G32 (2011).
Sivarao, D. V., Krowicki, Z. K. & Hornby, P. J. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function. Neurogastroenterol. Motil. 10, 305–313 (1998).
Browning, K. N., Coleman, F. H. & Travagli, R. A. Effects of pancreatic polypeptide on pancreas-projecting rat dorsal motor nucleus of the vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G209–G219 (2005).
Hornby, P. J. et al. Medullary raphe: a new site for vagally mediated stimulation of gastric motility in cats. Am. J. Physiol. 258, G637–G647 (1990).
Armstrong, D. M., Manley, L., Haycock, J. W. & Hersh, L. B. Co-localization of choline acetyltransferase and tyrosine hydroxylase within neurons of the dorsal motor nucleus of the vagus. J. Chem. Neuroanat. 3, 133–140 (1990).
Schemann, M. & Grundy, D. Electrophysiological identification of vagally innervated enteric neurons in guinea pig stomach. Am. J. Physiol. 263, G709–G718 (1992).
Guo, J. J., Browning, K. N., Rogers, R. C. & Travagli, R. A. Catecholaminergic neurons in rat dorsal motor nucleus of vagus project selectively to gastric corpus. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G361–G367 (2001).
Krowicki, Z. K., Sharkey, K. A., Serron, S. C., Nathan, N. A. & Hornby, P. J. Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of NO compounds upon gastric motor function. J. Comp. Neurol. 377, 49–69 (1997).
Chang, H. Y., Mashimo, H. & Goyal, R. K. Musings on the wanderer: what's new in our understanding of vago-vagal reflex?: IV. Current concepts of vagal efferent projections to the gut. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G357–G366 (2003).
Cannon, W. B. & Leib, C. W. The receptive relaxation of the stomach. Am. J. Physiol. 29, 267–273 (1911).
Langley, J. N. On inhibitory fibres in the vagus for the end of the oesophagus and the stomach. J. Physiol. 23, 407–414 (1898).
Rogers, R. C., Hermann, G. E. & Travagli, R. A. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J. Physiol. 514, 369–383 (1999).
Abrahamsson, H. Studies on the inhibitory nervous control of gastric motility. Acta Physiol. Scand. 390 (Suppl.), 1–38 (1973).
Desai, K. M., Sessa, W. C. & Vane, J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351, 477–479 (1991).
Tack, J., Caenepeel, P., Piessevaux, H., Cuomo, R. & Janssens, J. Assessment of meal induced gastric accommodation by a satiety drinking test in health and in severe functional dyspepsia. Gut 52, 1271–1277 (2003).
Delgado-Aros, S. et al. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology 127, 1685–1694 (2004).
Troncon, L. E., Thompson, D. G., Ahluwalia, N. K., Barlow, J. & Heggie, L. Relations between upper abdominal symptoms and gastric distension abnormalities in dysmotility like functional dyspepsia and after vagotomy. Gut 37, 17–22 (1995).
Holtmann, G., Goebell, H., Jockenhoevel, F. & Talley, N. J. Altered vagal and intestinal mechanosensory function in chronic unexplained dyspepsia. Gut 42, 501–506 (1998).
Liu, L. S. et al. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology 134, 2070–2079 (2008).
Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9, 1985–1996 (1989).
Blackshaw, L. A., Page, A. J. & Young, R. L. Metabotropic glutamate receptors as novel therapeutic targets on visceral sensory pathways. Front. Neurosci. 5, 40 (2011).
Hallock, R. M., Martyniuk, C. J. & Finger, T. E. Group III metabotropic glutamate receptors (mGluRs) modulate transmission of gustatory inputs in the brainstem. J. Neurophysiol. 102, 192–202 (2009).
Young, R. L., Cooper, N. J. & Blackshaw, L. A. Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology 54, 965–975 (2008).
Browning, K. N., Zheng, Z., Gettys, T. W. & Travagli, R. A. Vagal afferent control of opioidergic effects in rat brainstem circuits. J. Physiol. 575, 761–776 (2006).
Page, A. J. et al. Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128, 402–410 (2005).
Jin, Y. H., Bailey, T. W. & Andresen, M. C. Cranial afferent glutamate heterosynaptically modulates GABA release onto second-order neurons via distinctly segregated metabotropic glutamate receptors. J. Neurosci. 24, 9332–9340 (2004).
Gerber, U., Gee, C. E. & Benquet, P. Metabotropic glutamate receptors: intracellular signaling pathways. Curr. Opin. Pharmacol. 7, 56–61 (2007).
Niswender, C. M. & Conn, P. J. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 50, 295–322 (2010).
Browning, K. N. & Travagli, R. A. Functional organization of presynaptic metabotropic glutamate receptors in vagal brainstem circuits. J. Neurosci. 27, 8979–8988 (2007).
Berthoud, H. R., Sutton, G. M., Townsend, R. L., Patterson, L. M. & Zheng, H. Brainstem mechanisms integrating gut-derived satiety signals and descending forebrain information in the control of meal size. Physiol. Behav. 89, 517–524 (2006).
Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).
Dufresne, M., Seva, C. & Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847 (2006).
Banks, W. A. The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol. Behav. 89, 472–476 (2006).
Kastin, A. J., Akerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).
Orts-Del'immagine, A. et al. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J. Physiol. 590, 3719–3741 (2012).
Noble, F. et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol. Rev. 51, 745–781 (1999).
Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).
Browning, K. N. & Travagli, R. A. The peptide TRH uncovers the presence of presynaptic 5-HT1A receptors via activation of a second messenger pathway in the rat dorsal vagal complex. J. Physiol. 531, 425–435 (2001).
Browning, K. N., Kalyuzhny, A. E. & Travagli, R. A. Mu-opioid receptor trafficking on inhibitory synapses in the rat brainstem. J. Neurosci. 24, 9344–9352 (2004).
Browning, K. N. & Travagli, R. A. Modulation of inhibitory neurotransmission in brainstem vagal circuits by NPY and PYY is controlled by cAMP levels. Neurogastroenterol. Motil. 21, 1309–e1126 (2009).
Browning, K. N., Kalyuzhny, A. E. & Travagli, R. A. Opioid peptides inhibit excitatory but not inhibitory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Neurosci. 22, 2998–3004 (2002).
Browning, K. N. & Travagli, R. A. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus. J. Physiol. 549, 775–785 (2003).
Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20 (Suppl. 1), 64–72 (2008).
Raybould, H. E. & Tache, Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am. J. Physiol. 255, G242–G246 (1988).
Woods, S. C. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G7–G13 (2004).
Owyang, C. & Logsdon, C. D. New insights into neurohormonal regulation of pancreatic secretion. Gastroenterology 127, 957–969 (2004).
Andrews, P. L. & Sanger, G. J. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Curr. Opin. Pharmacol. 2, 650–656 (2002).
Imeryuz, N. et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. 273, G920–G927 (1997).
Grill, H. J. Leptin and the systems neuroscience of meal size control. Front. Neuroendocrinol. 31, 61–78 (2010).
Owyang, C. & Heldsinger, A. Vagal control of satiety and hormonal regulation of appetite. J. Neurogastroenterol. Motil. 17, 338–348 (2011).
Czaja, K., Burns, G. A. & Ritter, R. C. Capsaicin-induced neuronal death and proliferation of the primary sensory neurons located in the nodose ganglia of adult rats. Neuroscience 154, 621–630 (2008).
Holzer, P. Capsaicin-sensitive afferent neurones and gastrointestinal propulsion in the rat. Arch. Pharmacol. 332, 62–65 (1986).
South, E. H. & Ritter, R. C. Capsaicin application to central or peripheral vagal fibers attenuates CCK satiety. Peptides 9, 601–612 (1988).
Holzer, H. H., Turkelson, C. M., Solomon, T. E. & Raybould, H. E. Intestinal lipid inhibits gastric emptying via CCK and a vagal capsaicin-sensitive afferent pathway in rats. Am. J. Physiol. 267, G625–G629 (1994).
Blackshaw, L. A., Page, A. J. & Partosoedarso, E. R. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience 96, 407–416 (2000).
Li, Y. & Owyang, C. Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107, 525–531 (1994).
Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–202 (1990).
Zittel, T. T., Rothenhofer, I., Meyer, J. H. & Raybould, H. E. Small intestinal capsaicin-sensitive afferents mediate feedback inhibition of gastric emptying in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 267, G1142–G1145 (1994).
Lloyd, K. C., Holzer, H. H., Zittel, T. T. & Raybould, H. E. Duodenal lipid inhibits gastric acid secretion by vagal, capsaicin-sensitive afferent pathways in rats. Am. J. Physiol. 264, G659–G663 (1993).
Moran, T. H. Gut peptide signaling in the controls of food intake. Obesity (Silver Spring) 14, 250S–253S (2006).
Browning, K. N., Babic, T., Holmes, G. M., Swartz, E. M. & Travagli, R. A. A critical re-evaluation of the specificity of action of perivagal capsaicin. J. Physiol. 591, 1563–1580 (2013).
Szolcsanyi, J., Joo, F. & Jancso-Gabor, A. Mitochondrial changes in preoptic neurons after capsaicin desensitization of the hypothalamic thermodetectors in rats. Nature 229, 116–117 (1971).
Ritter, S. & Dinh, T. T. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J. Comp. Neurol. 296, 447–461 (1990).
Ritter, S. & Dinh, T. T. Capsaicin-induced neuronal degeneration: silver impregnation of cell bodies, axons, and terminals in the central nervous system of the adult rat. J. Comp. Neurol. 271, 79–90 (1988).
Holzer, P. Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve. Am. J. Physiol. 275, G8–G13 (1998).
Kim, S. R. et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J. Neurosci. 25, 662–671 (2005).
Jancso-Gabor, A., Szolcsanyi, J. & Jancso, N. Stimulation and desensitization of the hypothalamic heat-sensitive structures by capsaicin in rats. J. Physiol. 208, 449–459 (1970).
Hajos, M., Obal, F. Jr., Jancso, G. & Obal, F. Capsaicin impairs preoptic serotonin-sensitive structures mediating hypothermia in rats. Neurosci. Lett. 54, 97–102 (1985).
Evangelista, S., Santicioli, P., Maggi, C. A. & Meli, A. Increase in gastric secretion induced by 2-deoxy-d-glucose is impaired in capsaicin pretreated rats. Br. J. Pharmacol. 98, 35–37 (1989).
Raybould, H. E., Holzer, P., Reddy, S. N., Yang, H. & Tache, Y. Capsaicin-sensitive vagal afferents contribute to gastric acid and vascular responses to intracisternal TRH analog. Peptides 11, 789–795 (1990).
Baptista, V., Browning, K. N. & Travagli, R. A. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1092–R1100 (2007).
Sayegh, A. I. & Ritter, R. C. Vagus nerve participates in CCK-induced Fos expression in hind brain but not myenteric plexus. Brain Res. 878, 155–162 (2000).
van de Wall, E. H., Duffy, P. & Ritter, R. C. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R695–R703 (2005).
Viard, E., Zheng, Z., Wan, S. & Travagli, R. A. Vagally-mediated, non paracrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G494–G500 (2007).
Branchereau, P., Champagnat, J. & Denavit-Saubie, M. Cholecystokinin-gated currents in neurons of the rat solitary complex in vitro. J. Neurophysiol. 70, 2584–2595 (1993).
Baptista, V., Zheng, Z., Coleman, F. H., Rogers, R. C. & Travagli, R. A. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J. Neurophysiol. 94, 2763–2771 (2005).
Appleyard, S. M. et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci. 25, 3578–3585 (2005).
Browning, K. N., Wan, S., Baptista, V. & Travagli, R. A. Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R394–R401 (2011).
Zheng, Z., Lewis, M. W. & Travagli, R. A. In vitro analysis of the effects of cholecystokinin (CCK) on rat brainstem motorneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1066–G1073 (2005).
Plata-Salaman, C. R., Fukuda, A., Oomura, Y. & Minami, T. Effects of sulphated cholecystokinin octapeptide (CCK-8) on the dorsal motor nucleus of the vagus. Brain Res. Bull. 21, 839–842 (1988).
Wan, S., Coleman, F. H. & Travagli, R. A. Cholecystokinin-8s excites identified rat pancreatic-projecting vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G484–G492 (2007).
Simasko, S. M. & Ritter, R. C. Cholecystokinin activates both A- and C-type vagal afferent neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1204–G1213 (2003).
Derbenev, A. V., Monroe, M. J., Glatzer, N. R. & Smith, B. N. Vanilloid-mediated heterosynaptic facilitation of inhibitory synaptic input to neurons of the rat dorsal motor nucleus of the vagus. J. Neurosci. 26, 9666–9672 (2006).
Peters, J. H., McDougall, S. J., Fawley, J. A., Smith, S. M. & Andresen, M. C. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65, 657–669 (2010).
Evans, C., Baxi, S., Neff, R., Venkatesan, P. & Mendelowitz, D. Synaptic activation of cardiac vagal neurons by capsaicin sensitive and insensitive sensory neurons. Brain Res. 979, 210–215 (2003).
Roth, G. I. & Yamamoto, W. S. The microcirculation of the area postrema of the rat. J. Comp. Neurol. 133, 329–340 (1968).
Dockray, G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264, 568–570 (1976).
Takagi, H. et al. Fine structural studies of cholecystokinin-8-like immunoreactive neurons and axon terminals in the nucleus of tractus solitarius of the rat. J. Comp. Neurol. 227, 369–379 (1984).
Holmes, G. M., Tong, M. & Travagli, R. A. Effects of brainstem cholecystokinin-8s on gastric tone and esophageal-gastric reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G621–G631 (2009).
Stanley, S., Wynne, K., McGowan, B. & Bloom, S. Hormonal regulation of food intake. Physiol. Rev. 85, 1131–1158 (2005).
Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).
Holmes, G. M., Browning, K. N., Tong, M., Qualls-Creekmore, E. & Travagli, R. A. Vagally mediated effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. J. Physiol. 587, 4749–4759 (2009).
Kakei, M., Yada, T., Nakagawa, A. & Nakabayashi, H. Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Auton. Neurosci. 102, 39–44 (2002).
Wan, S., Coleman, F. H. & Travagli, R. A. Glucagon-like peptide-1 (GLP-1) excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007).
Grabauskas, G. et al. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J. Physiol. 593, 3973–3989 (2015).
Arnold, M., Mura, A., Langhans, W. & Geary, N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J. Neurosci. 26, 11052–11060 (2006).
Fry, M. & Ferguson, A. V. Ghrelin modulates electrical activity of area postrema neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R485–R492 (2008).
Li, Y., Wu, X., Zhao, Y., Chen, S. & Owyang, C. Ghrelin acts on the dorsal vagal complex to stimulate pancreatic protein secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1350–G1358 (2006).
Holzer, P., Reichmann, F. & Farzi, A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides 46, 261–274 (2012).
Michel, M. C. et al. XVI. International union of pharmacology reccommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev. 50, 143–150 (1999).
Rozengurt, E. & Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 7, 557–562 (2007).
Maljaars, P. W., Peters, H. P., Mela, D. J. & Masclee, A. A. Ileal brake: a sensible food target for appetite control. A review. Physiol. Behav. 95, 271–281 (2008).
Chen, C. H., Stephens, R. L. Jr. & Rogers, R. C. PYY and NPY control of gastric motility via action on Y1 and Y2 receptors in the DVC. Neurogastroenterol. Motil. 9, 109–116 (1997).
Chen, C. H. & Rogers, R. C. Central inhibitory action of peptide YY on gastric motility in rats. Am. J. Physiol. 269, R787–R792 (1995).
Yang, H., Li, W. P., Reeve, J. R., Rivier, J. & Tache, Y. PYY-preferring receptor in the dorsal vagal complex and its involvement in PYY stimulation in gastric acid secretion in rats. Br. J. Pharmacol. 123, 1549–1554 (1998).
Adrian, T. E. et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89, 494–499 (1985).
Yang, H. et al. Peripheral PYY inhibits intracisternal TRH-induced gastric acid secretion by acting in the brain. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G575–G581 (2000).
Schemann, M. & Tamura, K. Presynaptic inhibitory effects of the peptides NPY, PYY and PP on nicotinic EPSPs in guinea-pig gastric myenteric neurones. J. Physiol. 451, 79–89 (1992).
Avau, B., Carbone, F., Tack, J. & Depoortere, I. Ghrelin signaling in the gut, its physiological properties, and therapeutic potential. Neurogastroenterol. Motil. 25, 720–732 (2013).
Latorre, R., Sternini, C. & De, G. R. & Greenwood-van, M. B. Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterol. Motil. 28, 620–630 (2016).
Stengel, A. & Tache, Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp. Biol. Med. (Maywood) 235, 1168–1178 (2010).
Stengel, A. & Tache, Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight. Annu. Rev. Physiol. 71, 219–239 (2008).
Fukudo, S. IBS: autonomic dysregulation in IBS. Nat. Rev. Gastroenterol. Hepatol. 10, 569–571 (2013).
Khoo, J., Rayner, C. K., Feinle-Bisset, C., Jones, K. L. & Horowitz, M. Gastrointestinal hormonal dysfunction in gastroparesis and functional dyspepsia. Neurogastroenterol. Motil. 22, 1270–1278 (2010).
Franklin, T. B., Saab, B. J. & Mansuy, I. M. Neural mechanisms of stress resilience and vulnerability. Neuron 75, 747–761 (2012).
Panksepp, J. & Panksepp, J. B. Toward a cross-species understanding of empathy. Trends Neurosci. 36, 489–496 (2013).
Kelly, A. M. & Goodson, J. L. Social functions of individual vasopressin-oxytocin cell groups in vertebrates: what do we really know? Front. Neuroendocrinol. 35, 512–529 (2014).
Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).
Churchland, P. S. & Winkielman, P. Modulating social behavior with oxytocin: how does it work? What does it mean? Horm. Behav. 61, 392–399 (2012).
Gordon, I., Martin, C., Feldman, R. & Leckman, J. F. Oxytocin and social motivation. Dev. Cogn. Neurosci. 1, 471–493 (2011).
Zheng, J. et al. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G946–G953 (2010).
Babygirija, R., Zheng, J., Ludwig, K. & Takahashi, T. Central oxytocin is involved in restoring impaired gastric motility following chronic repeated stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R157–R165 (2010).
Bulbul, M., Babygirija, R., Ludwig, K. & Takahashi, T. Central oxytocin attenuates augmented gastric postprandial motility induced by restraint stress in rats. Neurosci. Lett. 479, 302–306 (2010).
Babygirija, R., Bulbul, M., Cerjak, D., Ludwig, K. & Takahashi, T. Sustained acceleration of colonic transit following chronic homotypic stress in oxytocin knockout mice. Neurosci. Lett. 495, 77–81 (2011).
Bulbul, M. et al. Hypothalamic oxytocin attenuates CRF expression via GABAA receptors in rats. Brain Res. 1387, 39–45 (2011).
Murphy, D. et al. The hypothalamic–neurohypophyseal system: from genome to physiology. J. Neuroendocrinol. 24, 539–553 (2012).
Richar, P., Moos, F. & Freund-Mercier, M.-J. Central effects of oxytocin. Physiol. Rev. 71, 331–370 (1991).
Herman, J. P., Flak, J. & Jankord, R. Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog. Brain Res. 170, 353–364 (2008).
Raggenbass, M., Dubois-Dauphin, M., Charpak, S. & Dreifuss, J. J. Neurons in the dorsal motor nucleus of the vagus nerve are excited by oxytocin in the rat but not in the guinea pig. Proc. Natl Acad. Sci. USA 84, 3926–3930 (1987).
Raggenbass, M. & Dreifuss, J. J. Mechanism of action of oxytocin in rat vagal neurones: induction of a sustained sodium-dependent current. J. Physiol. 457, 131–142 (1992).
Flanagan, L. M., Olson, B. R., Sved, A. F., Verbalis, J. G. & Stricker, E. M. Gastric motility in conscious rats given oxytocin and an oxytocin antagonist centrally. Brain Res. 578, 256–260 (1992).
Fujimiya, M. & Inui, A. Peptidergic regulation of gastrointestinal motility in rodents. Peptides 21, 1565–1582 (2001).
Holmes, G. M. et al. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone. J. Physiol. 591, 3081–3100 (2013).
Babygirija, R., Bulbul, M., Yoshimoto, S., Ludwig, K. & Takahashi, T. Central and peripheral release of oxytocin following chronic homotypic stress in rats. Auton. Neurosci. 167, 56–60 (2012).
Lewis, M. W., Hermann, G. E., Rogers, R. C. & Travagli, R. A. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex. J. Physiol. 543, 135–146 (2002).
Browning, K. N. et al. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J. Physiol. 592, 4591–4605 (2014).
Blake, C. B. & Smith, B. N. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R711–R720 (2014).
Shuster, S. J., Riedl, M., Li, X., Vulchanova, L. & Elde, R. Stimulus-dependent translocation of κ opioid receptors to the plasma membrane. J. Neurosci. 19, 2658–2664 (1999).
Baltadzhieva, R., Gurevich, T. & Korczyn, A. D. Autonomic impairment in amyotrophic lateral sclerosis. Curr. Opin. Neurol. 18, 487–493 (2005).
Slim, M., Calandre, E. P. & Rico-Villademoros, F. An insight into the gastrointestinal component of fibromyalgia: clinical manifestations and potential underlying mechanisms. Rheumatol. Int. 35, 433–444 (2015).
Aziz, N. A. et al. Weight loss in neurodegenerative disorders. J. Neurol. 255, 1872–1880 (2008).
Heemskerk, A. W. & Roos, R. A. Dysphagia in Huntington's disease: a review. Dysphagia 26, 62–66 (2011).
Fasano, A., Visanji, N. P., Liu, L. W., Lang, A. E. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14, 625–639 (2015).
Pfeiffer, R. F. Gastrointestinal involvement in Parkinson's disease: the horse or the cart. Acta Physiol. (Oxf.) 211, 271–272 (2014).
Natale, G., Pasquali, L., Ruggieri, S., Paparelli, A. & Fornai, F. Parkinson's disease and the gut: a well known clinical association in need of an effective cure and explanation. Neurogastroenterol. Motil. 20, 741–749 (2008).
Wedel, T. et al. Enteric nerves and interstitial cells of Cajal are altered in patients with slow-transit constipation and megacolon. Gastroenterology 123, 1459–1467 (2002).
Lebouvier, T. et al. Pathological lesions in colonic biopsies during Parkinson's disease. Gut 57, 1741–1743 (2008).
Edwards, L. L., Quigley, E. M., Harned, R. K., Hofman, R. & Pfeiffer, R. F. Characterization of swallowing and defecation in Parkinson's disease. Am. J. Gastroenterol. 89, 15–25 (1994).
Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2, 107–116 (2003).
Hardoff, R. et al. Gastric emptying time and gastric motility in patients with Parkinson's disease. Mov. Disord. 16, 1041–1047 (2001).
McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson's disease. Neurobiol. Dis. 46, 597–606 (2012).
Kuo, Y. M. et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated α-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet. 19, 1633–1650 (2010).
Blandini, F. et al. Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson's disease. Neurosci. Lett. 467, 203–207 (2009).
Colucci, M. et al. Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model. Auton. Neurosci. 169, 77–86 (2012).
Derkinderen, P. et al. Parkinson disease: the enteric nervous system spills its guts. Neurology 77, 1761–1767 (2011).
Zheng, L. F. et al. Alterations in TH- and ChAT-immunoreactive neurons in the DMV and gastric dysmotility in an LPS-induced PD rat model. Auton. Neurosci. 177, 194–198 (2013).
Stott, S. R. & Barker, R. A. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur. J. Neurosci. 39, 1042–1056 (2014).
Zhu, H. C., Zhao, J., Luo, C. Y. & Li, Q. Q. Gastrointestinal dysfunction in a Parkinson's disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J. Mol. Neurosci. 47, 15–25 (2012).
Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).
Toti, L. & Travagli, R. A. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain–gut axis. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G1013–G1023 (2014).
Goedert, M., Spillantini, M. G., Del, T. K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).
George, J. M. The synucleins. Genome Biol. 3, 3002.1–3002.6 (2002).
Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).
Braak, H., De Vos, R. A., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).
Hawkes, C. H., Del, T. K. & Braak, H. A timeline for Parkinson's disease. Parkinsonism Relat. Disord. 16, 79–84 (2010).
Visanji, N. P., Brooks, P. L., Hazrati, L. N. & Lang, A. E. The prion hypothesis in Parkinson's disease: Braak to the future. Acta Neuropathol. Commun. 1, 2 (2013).
Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).
Zheng, L. F. et al. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol. (Oxf.) 211, 434–446 (2014).
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).
Greene, J. G. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid. Redox Signal. 21, 649–667 (2014).
Burke, R. E., Dauer, W. T. & Vonsattel, J. P. A critical evaluation of the Braak staging scheme for Parkinson's disease. Ann. Neurol. 64, 485–491 (2008).
Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).
Brettschneider, J., Del, T. K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).
Hawkes, C. H., Del, T. K. & Braak, H. Parkinson's disease: the dual hit theory revisited. Ann. NY Acad. Sci. 1170, 615–622 (2009).
Buckinx, R., Adriaensen, D., Nassauw, L. V. & Timmermans, J. P. Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front. Neurosci. 5, 54 (2011).
Bale, T. L. & Vale, W. W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. Toxicol. 44, 525–557 (2004).
Valentino, R. J., Pavcovich, L. A. & Hirata, H. Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat. J. Comp. Neurol. 363, 402–422 (1995).
Tache, Y. & Bonaz, B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J. Clin. Invest. 117, 33–40 (2007).
Lenz, H. J., Raedler, A., Greten, H., Vale, W. W. & Rivier, J. E. Stress-induced gastrointestinal secretory and motor responses in rats are mediated by endogenous corticotropin-releasing factor. Gastroenterology 95, 1510–1517 (1988).
Martinez, V., Rivier, J., Wang, L. & Tache, Y. Central injecton of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function. J. Pharmacol. Exp. Ther. 280, 754–760 (1997).
Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).
Goedert, M., Falcon, B., Clavaguera, F. & Tolnay, M. Prion-like mechanisms in the pathogenesis of tauopathies and synucleinopathies. Curr. Neurol. Neurosci. Rep. 14, 495 (2014).
Goedert, M. Alzheimer's and Parkinson's diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).
Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).
Olanow, C. W. & Brundin, P. Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).
Hansen, C. et al. α-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).
Lee, H. J. et al. Direct transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J. Biol. Chem. 285, 9262–9272 (2010).
Acknowledgements
The authors wish to thank NIH grants DK 55530, DK 78364 and DK 99350 and the Michael J. Fox Foundation for Parkinson's Disease for their support; we are also very grateful to K. N. Browning for critical comments on previous versions of the manuscript and for checking the grammar (because we do not want to “write as we speak”). We also thank C. M. Travagli and Z. Travagli for support and encouragement.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to this work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Travagli, R., Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 13, 389–401 (2016). https://doi.org/10.1038/nrgastro.2016.76
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrgastro.2016.76
This article is cited by
-
Transcutaneous vagal nerve stimulation for treating gastrointestinal symptoms in individuals with diabetes: a randomised, double-blind, sham-controlled, multicentre trial
Diabetologia (2024)
-
Brain regulation of gastric dysfunction induced by stress
Nature Metabolism (2023)
-
MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway
Cellular Oncology (2023)
-
The neural basis of sugar preference
Nature Reviews Neuroscience (2022)
-
Gastrointestinal involvement in Parkinson’s disease: pathophysiology, diagnosis, and management
npj Parkinson's Disease (2022)