The mucosal immune system: master regulator of bidirectional gut–brain communications

Key Points

  • Common gastrointestinal diseases, such as IBS, functional dyspepsia and IBD, are closely linked to psychological morbidity

  • This link is driven in part through bidirectional signalling between the brain and gut, which reciprocally regulate each other

  • Growing evidence implicates the importance of immune activation, which might be overt (IBD) or more subtle (IBS, functional dyspepsia) in pathological gut–brain interactions

  • The composition of the intestinal microbiota affects behaviour and mood, which could in part rely on selective activation of distinct host cytokine responses

  • Therapeutic targeting of gut microorganisms, host immunity or psychological symptoms could hold the key to uncoupling pathological interactions between the gut and brain

Abstract

Communication between the brain and gut is not one-way, but a bidirectional highway whereby reciprocal signals between the two organ systems are exchanged to coordinate function. The messengers of this complex dialogue include neural, metabolic, endocrine and immune mediators responsive to diverse environmental cues, including nutrients and components of the intestinal microbiota (microbiota–gut–brain axis). We are now starting to understand how perturbation of these systems affects transition between health and disease. The pathological repercussions of disordered gut–brain dialogue are probably especially pertinent in functional gastrointestinal diseases, including IBS and functional dyspepsia. New insights into these pathways might lead to novel treatment strategies in these common gastrointestinal diseases. In this Review, we consider the role of the immune system as the gatekeeper and master regulator of brain–gut and gut–brain communications. Although adaptive immunity (T cells in particular) participates in this process, there is an emerging role for cells of the innate immune compartment (including innate lymphoid cells and cells of the mononuclear phagocyte system). We will also consider how these key immune cells interact with the specific components of the enteric and central nervous systems, and rapidly respond to environmental variables, including the microbiota, to alter gut homeostasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mucosal immune networks.
Figure 2: Key brain–immune–gut interactions.
Figure 3: Low-grade inflammation in FGID.
Figure 4: The gut microbiota directly influences T-cell differentiation.
Figure 5: Therapeutic paradigms for interfering with the brain–gut axis.

References

  1. 1

    Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012).

    Google Scholar 

  2. 2

    Talley, N. J. & Ford, A. C. Functional dyspepsia. N. Engl. J. Med. 373, 1853–1863 (2015).

    CAS  Google Scholar 

  3. 3

    Talley, N. J. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20 (Suppl. 1), 121–129 (2008).

    Google Scholar 

  4. 4

    Talley, N. J. & Spiller, R. Irritable bowel syndrome: a little understood organic bowel disease? Lancet 360, 555–564 (2002).

    Google Scholar 

  5. 5

    Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Ek, W. E. et al. Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case–control cohorts. Gut 64, 1774–1782 (2015).

    CAS  Google Scholar 

  8. 8

    Tansey, E. M. Pavlov at home and abroad: his role in international physiology. Auton. Neurosci. 125, 1–11 (2006).

    CAS  Google Scholar 

  9. 9

    Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS  Google Scholar 

  10. 10

    Goyal, R. K. & Hirano, I. The enteric nervous system. N. Engl. J. Med. 334, 1106–1115 (1996).

    CAS  Google Scholar 

  11. 11

    Savidge, T. C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132, 1344–1358 (2007).

    CAS  Google Scholar 

  12. 12

    Bohorquez, D. V. & Liddle, R. A. The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Mace, O. J., Tehan, B. & Marshall, F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Perspect. 3, e00155 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mace, O. J. & Marshall, F. Digestive physiology of the pig symposium: gut chemosensing and the regulation of nutrient absorption and energy supply. J. Anim. Sci. 91, 1932–1945 (2013).

    CAS  Google Scholar 

  15. 15

    Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).

    CAS  Google Scholar 

  16. 16

    Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Okada, H., Kuhn, C., Feillet, H. & Bach, J. F. The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 160, 1–9 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Glaser, R., Robles, T. F., Sheridan, J., Malarkey, W. B. & Kiecolt-Glaser, J. K. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch. Gen. Psychiatry 60, 1009–1014 (2003).

    CAS  Google Scholar 

  19. 19

    McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).

    CAS  Google Scholar 

  20. 20

    Goodhand, J. R. et al. Mood disorders in inflammatory bowel disease: relation to diagnosis, disease activity, perceived stress, and other factors. Inflamm. Bowel Dis. 18, 2301–2309 (2012).

    CAS  Google Scholar 

  21. 21

    Addolorato, G., Capristo, E., Stefanini, G. F. & Gasbarrini, G. Inflammatory bowel disease: a study of the association between anxiety and depression, physical morbidity, and nutritional status. Scand. J. Gastroenterol. 32, 1013–1021 (1997).

    CAS  Google Scholar 

  22. 22

    Kovacs, Z. & Kovacs, F. Depressive and anxiety symptoms, dysfunctional attitudes and social aspects in irritable bowel syndrome and inflammatory bowel disease. Int. J. Psychiatry Med. 37, 245–255 (2007).

    Google Scholar 

  23. 23

    Kurina, L. M., Goldacre, M. J., Yeates, D. & Gill, L. E. Depression and anxiety in people with inflammatory bowel disease. J. Epidemiol. Community Health 55, 716–720 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Hauser, W., Janke, K. H., Klump, B. & Hinz, A. Anxiety and depression in patients with inflammatory bowel disease: comparisons with chronic liver disease patients and the general population. Inflamm. Bowel Dis. 17, 621–632 (2011).

    Google Scholar 

  25. 25

    Mardini, H. E., Kip, K. E. & Wilson, J. W. Crohn's disease: a two-year prospective study of the association between psychological distress and disease activity. Dig. Dis. Sci. 49, 492–497 (2004).

    Google Scholar 

  26. 26

    Persoons, P. et al. The impact of major depressive disorder on the short- and long-term outcome of Crohn's disease treatment with infliximab. Aliment. Pharmacol. Ther. 22, 101–110 (2005).

    CAS  Google Scholar 

  27. 27

    Mittermaier, C. et al. Impact of depressive mood on relapse in patients with inflammatory bowel disease: a prospective 18-month follow-up study. Psychosom. Med. 66, 79–84 (2004).

    Google Scholar 

  28. 28

    Bernstein, C. N. et al. A prospective population-based study of triggers of symptomatic flares in IBD. Am. J. Gastroenterol. 105, 1994–2002 (2010).

    Google Scholar 

  29. 29

    Goodhand, J. R. et al. Factors associated with thiopurine non-adherence in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 38, 1097–1108 (2013).

    CAS  Google Scholar 

  30. 30

    Larauche, M., Mulak, A. & Tache, Y. Stress and visceral pain: from animal models to clinical therapies. Exp. Neurol. 233, 49–67 (2012).

    Google Scholar 

  31. 31

    Larauche, M., Gourcerol, G., Million, M., Adelson, D. W. & Tache, Y. Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: influence of surgery and postoperative single housing on visceromotor responses. Stress 13, 343–354 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. 32

    Bradesi, S., Eutamene, H., Garcia-Villar, R., Fioramonti, J. & Bueno, L. Acute and chronic stress differently affect visceral sensitivity to rectal distension in female rats. Neurogastroenterol. Motil. 14, 75–82 (2002).

    CAS  Google Scholar 

  33. 33

    Ren, T. H. et al. Effects of neonatal maternal separation on neurochemical and sensory response to colonic distension in a rat model of irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G849–G856 (2007).

    CAS  Google Scholar 

  34. 34

    O'Malley, D., Cryan, J. F. & Dinan, T. G. Crosstalk between interleukin-6 and corticotropin-releasing factor modulate submucosal plexus activity and colonic secretion. Brain Behav. Immun. 30, 115–124 (2013).

    CAS  Google Scholar 

  35. 35

    Reber, S. O., Obermeier, F., Straub, R. H., Falk, W. & Neumann, I. D. Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration. Endocrinology 147, 4968–4976 (2006).

    CAS  Google Scholar 

  36. 36

    Lennon, E. M. et al. Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult IL-10−/− mice. Inflamm. Bowel Dis. 19, 712–719 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Varghese, A. K. et al. Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 130, 1743–1753 (2006).

    CAS  Google Scholar 

  38. 38

    Qiu, B. S., Vallance, B. A., Blennerhassett, P. A. & Collins, S. M. The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat. Med. 5, 1178–1182 (1999).

    CAS  Google Scholar 

  39. 39

    Adam, B. et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 123, 179–186 (2006).

    Google Scholar 

  40. 40

    Mykletun, A. et al. Prevalence of mood and anxiety disorder in self reported irritable bowel syndrome (IBS). An epidemiological population based study of women. BMC Gastroenterol. 10, 88 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Koloski, N. A. et al. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61, 1284–1290 (2012).

    CAS  Google Scholar 

  42. 42

    Savas, L. S. et al. Irritable bowel syndrome and dyspepsia among women veterans: prevalence and association with psychological distress. Aliment. Pharmacol. Ther. 29, 115–125 (2009).

    CAS  Google Scholar 

  43. 43

    Jones, R., Latinovic, R., Charlton, J. & Gulliford, M. Physical and psychological co-morbidity in irritable bowel syndrome: a matched cohort study using the General Practice Research Database. Aliment. Pharmacol. Ther. 24, 879–886 (2006).

    CAS  Google Scholar 

  44. 44

    Tayama, J. et al. Maladjustment to academic life and employment anxiety in university students with irritable bowel syndrome. PLoS ONE 10, e0129345 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Vu, J., Kushnir, V., Cassell, B., Gyawali, C. P. & Sayuk, G. S. The impact of psychiatric and extraintestinal comorbidity on quality of life and bowel symptom burden in functional GI disorders. Neurogastroenterol. Motil. 26, 1323–1332 (2014).

    CAS  Google Scholar 

  46. 46

    Kennedy, P. J. et al. Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol. Med. 44, 1553–1566 (2014).

    CAS  Google Scholar 

  47. 47

    Canavan, J. B., Bennett, K., Feely, J., O'Morain, C. A. & O'Connor, H. J. Significant psychological morbidity occurs in irritable bowel syndrome: a case–control study using a pharmacy reimbursement database. Aliment. Pharmacol. Ther. 29, 440–449 (2009).

    CAS  Google Scholar 

  48. 48

    Qi, R. et al. Intrinsic brain abnormalities in irritable bowel syndrome and effect of anxiety and depression. Brain Imaging Behav. http://dx.doi.org/10.1007/s11682-015-9478-1 (2015).

  49. 49

    Icenhour, A. et al. Neural circuitry of abdominal pain-related fear learning and reinstatement in irritable bowel syndrome. Neurogastroenterol. Motil. 27, 114–127 (2015).

    CAS  Google Scholar 

  50. 50

    Song, G. H. et al. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 126, 79–90 (2006).

    Google Scholar 

  51. 51

    Hong, J. Y. et al. Altered brain responses in subjects with irritable bowel syndrome during cued and uncued pain expectation. Neurogastroenterol. Motil. 28, 127–138 (2016).

    Google Scholar 

  52. 52

    Grzesiak, M. et al. The lifetime prevalence of anxiety disorders among patients with irritable bowel syndrome. Adv. Clin. Exp. Med. 23, 987–992 (2014).

    Google Scholar 

  53. 53

    Hillila, M. T., Siivola, M. T. & Farkkila, M. A. Comorbidity and use of health-care services among irritable bowel syndrome sufferers. Scand. J. Gastroenterol. 42, 799–806 (2007).

    Google Scholar 

  54. 54

    Talley, N. J., Fett, S. L., Zinsmeister, A. R. & Melton, L. J. 3rd. Gastrointestinal tract symptoms and self-reported abuse: a population-based study. Gastroenterology 107, 1040–1049 (1994).

    CAS  Google Scholar 

  55. 55

    Talley, N. J., Fett, S. L. & Zinsmeister, A. R. Self-reported abuse and gastrointestinal disease in outpatients: association with irritable bowel-type symptoms. Am. J. Gastroenterol. 90, 366–371 (1995).

    CAS  Google Scholar 

  56. 56

    Drossman, D. A. et al. Sexual and physical abuse in women with functional or organic gastrointestinal disorders. Ann. Intern. Med. 113, 828–833 (1990).

    CAS  Google Scholar 

  57. 57

    Koloski, N. A., Jones, M. & Talley, N. J. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study. Aliment. Pharmacol. Ther. 44, 592–600 (2016).

    CAS  Google Scholar 

  58. 58

    Thabane, M., Kottachchi, D. T. & Marshall, J. K. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 26, 535–544 (2007).

    CAS  Google Scholar 

  59. 59

    Marshall, J. K. et al. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology 131, 445–450 (2006).

    Google Scholar 

  60. 60

    Ford, A. C. et al. Prevalence of uninvestigated dyspepsia 8 years after a large waterborne outbreak of bacterial dysentery: a cohort study. Gastroenterology 138, 1727–1736 (2010).

    Google Scholar 

  61. 61

    Wouters, M. M. et al. Psychological comorbidity increases the risk for postinfectious IBS partly by enhanced susceptibility to develop infectious gastroenteritis. Gut 65, 1279–1288 (2016).

    CAS  Google Scholar 

  62. 62

    Dunlop, S. P., Jenkins, D., Neal, K. R. & Spiller, R. C. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125, 1651–1659 (2003).

    Google Scholar 

  63. 63

    Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    CAS  Google Scholar 

  64. 64

    Isidro, R. A. & Appleyard, C. B. Colonic macrophage polarization in homeostasis, inflammation, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G59–G73 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. 65

    La Flamme, A. C. et al. Type II-activated murine macrophages produce IL-4. PLoS ONE 7, e46989 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Goldberg, R., Prescott, N., Lord, G. M., MacDonald, T. T. & Powell, N. The unusual suspects — innate lymphoid cells as novel therapeutic targets in IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 271–283 (2015).

    CAS  Google Scholar 

  67. 67

    Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Zimmerman, N. P., Vongsa, R. A., Wendt, M. K. & Dwinell, M. B. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm. Bowel Dis. 14, 1000–1011 (2008).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  Google Scholar 

  70. 70

    Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016).

    CAS  Google Scholar 

  71. 71

    Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    CAS  Google Scholar 

  72. 72

    Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 369, 711–721 (2013).

    CAS  Google Scholar 

  73. 73

    Ulrich-Lai, Y. M. & Herman, J. P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10, 397–409 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Elenkov, I. J., Wilder, R. L., Chrousos, G. P. & Vizi, E. S. The sympathetic nerve — an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  Google Scholar 

  75. 75

    Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A. & Livnat, S. Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135, 755s–765s (1985).

    CAS  Google Scholar 

  76. 76

    Mawdsley, J. E., Macey, M. G., Feakins, R. M., Langmead, L. & Rampton, D. S. The effect of acute psychologic stress on systemic and rectal mucosal measures of inflammation in ulcerative colitis. Gastroenterology 131, 410–419 (2006).

    CAS  Google Scholar 

  77. 77

    Vanuytsel, T. et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1293–1299 (2014).

    CAS  Google Scholar 

  78. 78

    Nakano, K. et al. Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J. Immunol. 186, 3745–3752 (2011).

    CAS  Google Scholar 

  79. 79

    Khan, N. A. & Poisson, J. P. 5-HT3 receptor-channels coupled with Na+ influx in human T cells: role in T cell activation. J. Neuroimmunol. 99, 53–60 (1999).

    CAS  Google Scholar 

  80. 80

    Aune, T. M., McGrath, K. M., Sarr, T., Bombara, M. P. & Kelley, K. A. Expression of 5HT1a receptors on activated human T cells. Regulation of cyclic AMP levels and T cell proliferation by 5-hydroxytryptamine. J. Immunol. 151, 1175–1183 (1993).

    CAS  Google Scholar 

  81. 81

    Buttari, B. et al. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. FASEB J. 28, 3038–3049 (2014).

    CAS  Google Scholar 

  82. 82

    Payan, D. G., Brewster, D. R., Missirian-Bastian, A. & Goetzl, E. J. Substance P recognition by a subset of human T lymphocytes. J. Clin. Invest. 74, 1532–1539 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Johnson, M. C., McCormack, R. J., Delgado, M., Martinez, C. & Ganea, D. Murine T-lymphocytes express vasoactive intestinal peptide receptor 1 (VIP-R1) mRNA. J. Neuroimmunol. 68, 109–119 (1996).

    CAS  Google Scholar 

  84. 84

    Sanders, V. M. et al. Differential expression of the β2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J. Immunol. 158, 4200–4210 (1997).

    CAS  Google Scholar 

  85. 85

    Sanders, V. M. The role of adrenoceptor-mediated signals in the modulation of lymphocyte function. Adv. Neuroimmunol. 5, 283–298 (1995).

    CAS  Google Scholar 

  86. 86

    Sanders, V. M. & Straub, R. H. Norepinephrine, the β-adrenergic receptor, and immunity. Brain Behav. Immun. 16, 290–332 (2002).

    CAS  Google Scholar 

  87. 87

    Panina-Bordignon, P. et al. β2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 100, 1513–1519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Ramer-Quinn, D. S., Baker, R. A. & Sanders, V. M. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J. Immunol. 159, 4857–4867 (1997).

    CAS  Google Scholar 

  89. 89

    Takenaka, M. C. et al. Norepinephrine controls effector T cell differentiation through β2-adrenergic receptor-mediated inhibition of NF-κB and AP-1 in dendritic cells. J. Immunol. 196, 637–644 (2016).

    CAS  Google Scholar 

  90. 90

    Orand, A. et al. Catecholaminergic gene polymorphisms are associated with GI symptoms and morphological brain changes in irritable bowel syndrome. PLoS ONE 10, e0135910 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    CAS  Google Scholar 

  93. 93

    Li, D. et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J. Allergy Clin. Immunol. 134, 1422–1432.e11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Cirillo, C. et al. Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am. J. Gastroenterol. 110, 1205–1215 (2015).

    CAS  Google Scholar 

  95. 95

    Girodet, P. O. et al. Alternative macrophage activation is increased in asthma. Am. J. Respir. Cell Mol. Biol. 55, 467–475 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    CAS  Google Scholar 

  97. 97

    Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Limsui, D. et al. Symptomatic overlap between irritable bowel syndrome and microscopic colitis. Inflamm. Bowel Dis. 13, 175–181 (2007).

    Google Scholar 

  99. 99

    Midhagen, G. & Hallert, C. High rate of gastrointestinal symptoms in celiac patients living on a gluten-free diet: controlled study. Am. J. Gastroenterol. 98, 2023–2026 (2003).

    CAS  Google Scholar 

  100. 100

    Isgar, B., Harman, M., Kaye, M. D. & Whorwell, P. J. Symptoms of irritable bowel syndrome in ulcerative colitis in remission. Gut 24, 190–192 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Farrokhyar, F., Marshall, J. K., Easterbrook, B. & Irvine, E. J. Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: prevalence and impact on health. Inflamm. Bowel Dis. 12, 38–46 (2006).

    Google Scholar 

  102. 102

    Ford, A. C., Talley, N. J., Walker, M. M. & Jones, M. P. Increased prevalence of autoimmune diseases in functional gastrointestinal disorders: case–control study of 23471 primary care patients. Aliment. Pharmacol. Ther. 40, 827–834 (2014).

    CAS  Google Scholar 

  103. 103

    Bashashati, M. et al. Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 26, 1036–1048 (2014).

    CAS  Google Scholar 

  104. 104

    Dinan, T. G. et al. Hypothalamic–pituitary–gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 130, 304–311 (2006).

    CAS  Google Scholar 

  105. 105

    Dinan, T. G. et al. Enhanced cholinergic-mediated increase in the pro-inflammatory cytokine IL-6 in irritable bowel syndrome: role of muscarinic receptors. Am. J. Gastroenterol. 103, 2570–2576 (2008).

    CAS  Google Scholar 

  106. 106

    Liebregts, T. et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 132, 913–920 (2007).

    CAS  Google Scholar 

  107. 107

    Liebregts, T. et al. Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am. J. Gastroenterol. 106, 1089–1098 (2011).

    CAS  Google Scholar 

  108. 108

    Gao, J. Correlation between anxiety-depression status and cytokines in diarrhea-predominant irritable bowel syndrome. Exp. Ther. Med. 6, 93–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Aerssens, J. et al. Alterations in mucosal immunity identified in the colon of patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 6, 194–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Macsharry, J. et al. Mucosal cytokine imbalance in irritable bowel syndrome. Scand. J. Gastroenterol. 43, 1467–1476 (2008).

    CAS  Google Scholar 

  111. 111

    Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Google Scholar 

  112. 112

    Guilarte, M. et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 56, 203–209 (2007).

    Google Scholar 

  113. 113

    Martinez, C. et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut 62, 1160–1168 (2013).

    CAS  Google Scholar 

  114. 114

    Weston, A. P., Biddle, W. L., Bhatia, P. S. & Miner, P. B. Jr. Terminal ileal mucosal mast cells in irritable bowel syndrome. Dig. Dis. Sci. 38, 1590–1595 (1993).

    CAS  Google Scholar 

  115. 115

    Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Cremon, C. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 104, 392–400 (2009).

    CAS  Google Scholar 

  117. 117

    Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    CAS  Google Scholar 

  118. 118

    Buhner, S. et al. Submucous rather than myenteric neurons are activated by mucosal biopsy supernatants from irritable bowel syndrome patients. Neurogastroenterol. Motil. 24, 1134–e572 (2012).

    CAS  Google Scholar 

  119. 119

    Wouters, M. M. et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150, 875–887.e89 (2016).

    CAS  Google Scholar 

  120. 120

    Santos, J., Yang, P. C., Soderholm, J. D., Benjamin, M. & Perdue, M. H. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 48, 630–636 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Ronkainen, J. et al. Prevalence of oesophageal eosinophils and eosinophilic oesophagitis in adults: the population-based Kalixanda study. Gut 56, 615–620 (2007).

    Google Scholar 

  122. 122

    Vanheel, H. et al. Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 63, 262–271 (2014).

    CAS  Google Scholar 

  123. 123

    Walker, M. M. et al. Duodenal eosinophilia and early satiety in functional dyspepsia: confirmation of a positive association in an Australian cohort. J. Gastroenterol. Hepatol. 29, 474–479 (2014).

    Google Scholar 

  124. 124

    Walker, M. M. et al. Implications of eosinophilia in the normal duodenal biopsy — an association with allergy and functional dyspepsia. Aliment. Pharmacol. Ther. 31, 1229–1236 (2010).

    CAS  Google Scholar 

  125. 125

    Futagami, S. et al. Migration of eosinophils and CCR2-/CD68-double positive cells into the duodenal mucosa of patients with postinfectious functional dyspepsia. Am. J. Gastroenterol. 105, 1835–1842 (2010).

    Google Scholar 

  126. 126

    Powell, N., Walker, M. M. & Talley, N. J. Gastrointestinal eosinophils in health, disease and functional disorders. Nat. Rev. Gastroenterol. Hepatol. 7, 146–156 (2010).

    Google Scholar 

  127. 127

    Kindt, S. et al. Immune dysfunction in patients with functional gastrointestinal disorders. Neurogastroenterol. Motil. 21, 389–398 (2009).

    CAS  Google Scholar 

  128. 128

    Ohman, L., Isaksson, S., Lundgren, A., Simren, M. & Sjovall, H. A controlled study of colonic immune activity and β7+ blood T lymphocytes in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 980–986 (2005).

    Google Scholar 

  129. 129

    Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Elsenbruch, S. et al. Are there alterations of neuroendocrine and cellular immune responses to nutrients in women with irritable bowel syndrome? Am. J. Gastroenterol. 99, 703–710 (2004).

    Google Scholar 

  131. 131

    Bal, S. M. et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    CAS  Google Scholar 

  132. 132

    Suto, G., Kiraly, A. & Tache, Y. Interleukin 1β inhibits gastric emptying in rats: mediation through prostaglandin and corticotropin-releasing factor. Gastroenterology 106, 1568–1575 (1994).

    CAS  Google Scholar 

  133. 133

    Hermann, G. & Rogers, R. C. Tumor necrosis factor-alpha in the dorsal vagal complex suppresses gastric motility. Neuroimmunomodulation 2, 74–81 (1995).

    CAS  Google Scholar 

  134. 134

    Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 22, 516–523 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Felger, J. C. & Lotrich, F. E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246, 199–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136

    Emch, G. S., Hermann, G. E. & Rogers, R. C. TNF-α activates solitary nucleus neurons responsive to gastric distension. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G582–G586 (2000).

    CAS  Google Scholar 

  137. 137

    Soulet, D. & Rivest, S. Bone-marrow-derived microglia: myth or reality? Curr. Opin. Pharmacol. 8, 508–518 (2008).

    CAS  Google Scholar 

  138. 138

    Rivest, S. Molecular insights on the cerebral innate immune system. Brain Behav. Immun. 17, 13–19 (2003).

    CAS  Google Scholar 

  139. 139

    Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 (2005).

    CAS  Google Scholar 

  140. 140

    Arnett, H. A. et al. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat. Neurosci. 4, 1116–1122 (2001).

    CAS  Google Scholar 

  141. 141

    Klein, M. et al. Innate immunity to pneumococcal infection of the central nervous system depends on Toll-like receptor (TLR) 2 and TLR4. J. Infect. Dis. 198, 1028–1036 (2008).

    CAS  Google Scholar 

  142. 142

    Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007).

    CAS  Google Scholar 

  143. 143

    Bogie, J. F., Stinissen, P. & Hendriks, J. J. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 128, 191–213 (2014).

    CAS  Google Scholar 

  144. 144

    Liu, Y. et al. LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 128, 1778–1789 (2005).

    Google Scholar 

  145. 145

    Casellas, F., Aguade, S. & Molero, J. Intestinal permeability in inflammatory bowel disease. Am. J. Gastroenterol. 81, 502 (1986).

    CAS  Google Scholar 

  146. 146

    Mujagic, Z. et al. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment. Pharmacol. Ther. 40, 288–297 (2014).

    CAS  Google Scholar 

  147. 147

    Dlugosz, A. et al. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 27, 1747–1754 (2015).

    CAS  Google Scholar 

  148. 148

    McDonnell, M. et al. Systemic Toll-like receptor ligands modify B-cell responses in human inflammatory bowel disease. Inflamm. Bowel Dis. 17, 298–307 (2011).

    Google Scholar 

  149. 149

    Dunn, A. J., Swiergiel, A. H. & de Beaurepaire, R. Cytokines as mediators of depression: what can we learn from animal studies? Neurosci. Biobehav. Rev. 29, 891–909 (2005).

    CAS  Google Scholar 

  150. 150

    Kronfol, Z. & House, J. D. Lymphocyte mitogenesis, immunoglobulin and complement levels in depressed patients and normal controls. Acta Psychiatr. Scand. 80, 142–147 (1989).

    CAS  Google Scholar 

  151. 151

    Maes, M. et al. Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol. Med. 22, 45–53 (1992).

    CAS  Google Scholar 

  152. 152

    Miyaoka, H. et al. Depression from interferon therapy in patients with hepatitis C. Am. J. Psychiatry 156, 1120 (1999).

    CAS  Google Scholar 

  153. 153

    Loftis, J. M. et al. Vulnerability to somatic symptoms of depression during interferon-alpha therapy for hepatitis C: a 16-week prospective study. J. Psychosom. Res. 74, 57–63 (2013).

    Google Scholar 

  154. 154

    Dantzer, R. & Kelley, K. W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun. 21, 153–160 (2007).

    CAS  Google Scholar 

  155. 155

    Kapas, L. et al. Somnogenic, pyrogenic, and anorectic activities of tumor necrosis factor-alpha and TNF-alpha fragments. Am. J. Physiol. 263, R708–R715 (1992).

    CAS  Google Scholar 

  156. 156

    Kent, S., Rodriguez, F., Kelley, K. W. & Dantzer, R. Reduction in food and water intake induced by microinjection of interleukin-1 beta in the ventromedial hypothalamus of the rat. Physiol. Behav. 56, 1031–1036 (1994).

    CAS  Google Scholar 

  157. 157

    Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654 (1986).

    CAS  Google Scholar 

  158. 158

    Silverman, M. N., Pearce, B. D. & Miller, A. H. in Cytokines and Mental Health ( ed Kronfol, Z. ) 85–122 (Springer Science, 2003).

    Google Scholar 

  159. 159

    Mark, K. S. & Miller, D. W. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci. 64, 1941–1953 (1999).

    CAS  Google Scholar 

  160. 160

    Lopez-Ramirez, M. A. et al. Role of caspases in cytokine-induced barrier breakdown in human brain endothelial cells. J. Immunol. 189, 3130–3139 (2012).

    CAS  Google Scholar 

  161. 161

    Cohen, S. S. et al. Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. Neuroimmunomodulation 20, 264–273 (2013).

    CAS  Google Scholar 

  162. 162

    Maruo, N., Morita, I., Shirao, M. & Murota, S. IL-6 increases endothelial permeability in vitro. Endocrinology 131, 710–714 (1992).

    CAS  Google Scholar 

  163. 163

    Bsibsi, M. et al. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53, 688–695 (2006).

    Google Scholar 

  164. 164

    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  165. 165

    Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166

    Chassaing, B. et al. Crohn disease — associated adherent-invasive E. coli bacteria target mouse and human Peyer's patches via long polar fimbriae. J. Clin. Invest. 121, 966–975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  Google Scholar 

  168. 168

    Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).

    CAS  Google Scholar 

  169. 169

    Carroll, I. M., Ringel-Kulka, T., Siddle, J. P. & Ringel, Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24, 521–e248 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Sundin, J. et al. Altered faecal and mucosal microbial composition in post-infectious irritable bowel syndrome patients correlates with mucosal lymphocyte phenotypes and psychological distress. Aliment. Pharmacol. Ther. 41, 342–351 (2015).

    CAS  Google Scholar 

  171. 171

    Giamarellos-Bourboulis, E. et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 50, 1076–1087 (2015).

    Google Scholar 

  172. 172

    Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    Google Scholar 

  173. 173

    Ikeda, M., Hamada, K., Sumitomo, N., Okamoto, H. & Sakakibara, B. Serum amyloid A, cytokines, and corticosterone responses in germfree and conventional mice after lipopolysaccharide injection. Biosci. Biotechnol. Biochem. 63, 1006–1010 (1999).

    CAS  Google Scholar 

  174. 174

    Souza, D. G. et al. The essential role of the intestinal microbiota in facilitating acute inflammatory responses. J. Immunol. 173, 4137–4146 (2004).

    CAS  Google Scholar 

  175. 175

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. 176

    Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. 177

    Seo, S. U. et al. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42, 744–755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. 178

    Lakhdari, O. et al. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut. PLoS ONE 5, e13092 (2010).

    PubMed  PubMed Central  Google Scholar 

  179. 179

    Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. 180

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  Google Scholar 

  181. 181

    Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    CAS  Google Scholar 

  182. 182

    Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  Google Scholar 

  183. 183

    Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).

    CAS  Google Scholar 

  184. 184

    Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Clarke, G. et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    CAS  Google Scholar 

  186. 186

    Neufeld, K. M., Kang, N., Bienenstock, J. & Foster, J. A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23, 255–e119 (2011).

    CAS  Google Scholar 

  187. 187

    Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    Google Scholar 

  188. 188

    Galley, J. D. et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189 (2014).

    PubMed  PubMed Central  Google Scholar 

  189. 189

    Galley, J. D. & Bailey, M. T. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 5, 390–396 (2014).

    PubMed  PubMed Central  Google Scholar 

  190. 190

    Galley, J. D. et al. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 5, 748–760 (2014).

    PubMed  PubMed Central  Google Scholar 

  191. 191

    Bailey, M. T. et al. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect. Immun. 78, 1509–1519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011).

    Google Scholar 

  193. 193

    Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G. & Cryan, J. F. Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148 (2014).

    CAS  Google Scholar 

  194. 194

    Houlden, A. et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 57, 10–20 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. 195

    Kabouridis, P. S. & Pachnis, V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Invest. 125, 956–964 (2015).

    PubMed  PubMed Central  Google Scholar 

  196. 196

    Collins, J., Borojevic, R., Verdu, E. F., Huizinga, J. D. & Ratcliffe, E. M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil. 26, 98–107 (2014).

    CAS  Google Scholar 

  197. 197

    Luczynski, P. et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 44, 2654–2666 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. 198

    Ford, A. C. et al. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am. J. Gastroenterol. 109, 1350–1365 (2014).

    CAS  Google Scholar 

  199. 199

    Lackner, J. M. et al. Rapid response to cognitive behavior therapy predicts treatment outcome in patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 8, 426–432 (2010).

    PubMed  PubMed Central  Google Scholar 

  200. 200

    Everitt, H. et al. Assessing Cognitive behavioural Therapy in Irritable Bowel (ACTIB): protocol for a randomised controlled trial of clinical-effectiveness and cost-effectiveness of therapist delivered cognitive behavioural therapy and web-based self-management in irritable bowel syndrome in adults. BMJ Open 5, e008622 (2015).

    PubMed  PubMed Central  Google Scholar 

  201. 201

    Lackner, J. M. et al. The Irritable Bowel Syndrome Outcome Study (IBSOS): rationale and design of a randomized, placebo-controlled trial with 12 month follow up of self- versus clinician-administered CBT for moderate to severe irritable bowel syndrome. Contemp. Clin. Trials 33, 1293–1310 (2012).

    PubMed  PubMed Central  Google Scholar 

  202. 202

    Dunlop, S. P. et al. Randomized, double-blind, placebo-controlled trial of prednisolone in post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 18, 77–84 (2003).

    CAS  Google Scholar 

  203. 203

    Feldmann, M. Many cytokines are very useful therapeutic targets in disease. J. Clin. Invest. 118, 3533–3536 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. 204

    Stefanini, G. F. et al. Oral cromolyn sodium in comparison with elimination diet in the irritable bowel syndrome, diarrheic type. Multicenter study of 428 patients. Scand. J. Gastroenterol. 30, 535–541 (1995).

    CAS  Google Scholar 

  205. 205

    Lunardi, C. et al. Double-blind cross-over trial of oral sodium cromoglycate in patients with irritable bowel syndrome due to food intolerance. Clin. Exp. Allergy 21, 569–572 (1991).

    CAS  Google Scholar 

  206. 206

    Bahi, A., Schwed, J. S., Walter, M., Stark, H. & Sadek, B. Anxiolytic and antidepressant-like activities of the novel and potent non-imidazole histamine H3 receptor antagonist ST-1283. Drug Des. Devel. Ther. 8, 627–637 (2014).

    PubMed  PubMed Central  Google Scholar 

  207. 207

    Spiller, R. Review article: probiotics and prebiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 28, 385–396 (2008).

    CAS  Google Scholar 

  208. 208

    Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).

    Google Scholar 

  209. 209

    Moran, C. & Shanahan, F. Editorial: probiotics and IBS — where are we now? Aliment. Pharmacol. Ther. 40, 318 (2014).

    CAS  Google Scholar 

  210. 210

    Pinn, D. M., Aroniadis, O. C. & Brandt, L. J. Is fecal microbiota transplantation (FMT) an effective treatment for patients with functional gastrointestinal disorders (FGID)? Neurogastroenterol. Motil. 27, 19–29 (2015).

    CAS  Google Scholar 

  211. 211

    O'Mahony, L. et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541–551 (2005).

    Google Scholar 

  212. 212

    Pimentel, M. et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N. Engl. J. Med. 364, 22–32 (2011).

    CAS  Google Scholar 

  213. 213

    Chumpitazi, B. P. et al. Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome. Aliment. Pharmacol. Ther. 42, 418–427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. 214

    Halmos, E. P., Power, V. A., Shepherd, S. J., Gibson, P. R. & Muir, J. G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75.e5 (2014).

    CAS  Google Scholar 

  215. 215

    McIntosh, K. et al. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial. Gut http://dx.doi.org/10.1136/gutjnl-2015-311339 (2016).

  216. 216

    Zucchelli, M. et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 60, 1671–1677 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. 217

    Swan, C. et al. Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα. Gut 62, 985–994 (2013).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

N.P. and M.M.W. researched data for the article, N.P. wrote the article and N.P., M.M.W. and N.J.T. made substantial contributions to discussion of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Nick Powell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Powell, N., Walker, M. & Talley, N. The mucosal immune system: master regulator of bidirectional gut–brain communications. Nat Rev Gastroenterol Hepatol 14, 143–159 (2017). https://doi.org/10.1038/nrgastro.2016.191

Download citation

Further reading