Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Food allergy and the gut

Key Points

  • Food allergy affects 6–8% of children <5 years old and 3–4% of the general population in developed countries; incidence of peanut allergy has increased considerably over the past decade

  • Food allergy results from a lack of oral tolerance, a state of systemic unresponsiveness to ingested soluble antigens mediated mainly by regulatory T cells in the gastrointestinal tract

  • Food reactions can have IgE-mediated, non-IgE-mediated or a combination of IgE-mediated and non-IgE-mediated pathophysiology involving the skin, gastrointestinal tract, respiratory tract and/or cardiovascular system

  • Double-blind, placebo-controlled food challenge remains the gold standard for diagnosing food allergy

  • Dietary elimination of offending foods is the current standard of care; future therapies focus on specific food immunotherapy via oral, sublingual and epicutaneous routes

  • Most childhood food allergies resolve with age, with the exception of peanut and tree nut allergies that tend to be lifelong

Abstract

Food allergy develops as a consequence of a failure in oral tolerance, which is a default immune response by the gut-associated lymphoid tissues to ingested antigens that is modified by the gut microbiota. Food allergy is classified on the basis of the involvement of IgE antibodies in allergic pathophysiology, either as classic IgE, mixed pathophysiology or non-IgE-mediated food allergy. Gastrointestinal manifestations of food allergy include emesis, nausea, diarrhoea, abdominal pain, dysphagia, food impaction, protein-losing enteropathy and failure to thrive. Childhood food allergy has a generally favourable prognosis, whereas natural history in adults is not as well known. Elimination of the offending foods from the diet is the current standard of care; however, future therapies focus on gradual reintroduction of foods via oral, sublingual or epicutaneous food immunotherapy. Vaccines, modified hypoallergenic foods and modification of the gut microbiota represent additional approaches to treatment of food allergy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential immune responses in the gut (oral tolerance) and skin (IgE sensitization and food allergy) using peanut allergy as an example.
Figure 2: Approach to diagnosis and management of food allergy.

Similar content being viewed by others

References

  1. Sampson, H. A. et al. Food allergy: a practice parameter update-2014. J. Allergy Clin. Immunol. 134, 1016–1025 (2014).

    Article  PubMed  Google Scholar 

  2. Muraro, A. et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy 69, 1008–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Boyce, J. A. et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. J. Allergy Clin. Immunol. 126, 1105–1118 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta, R. S. et al. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 128, e9–17 (2011).

    Article  PubMed  Google Scholar 

  5. Prescott, S. L. et al. A global survey of changing patterns of food allergy burden in children. World Allergy Organ. J. 6, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nwaru, B. I. et al. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy 69, 992–1007 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Sicherer, S. H. Epidemiology of food allergy. J. Allergy Clin. Immunol. 127, 594–602 (2011).

    Article  PubMed  Google Scholar 

  8. Savage, J., Sicherer, S. & Wood, R. The Natural History of Food Allergy. J. Allergy Clin. Immunol. Pract. 4, 196–203 (2016).

    Article  PubMed  Google Scholar 

  9. Osborne, N. J. et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 127, 668–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Furuta, G. T. & Katzka, D. A. Eosinophilic Esophagitis. N. Engl. J. Med. 373, 1640–1648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wells, H. O. T. The biological reactions of the vegetable protein. I. Anaphylaxis. J. Infect. Dis. 8, 66–124 (1911).

    Article  CAS  Google Scholar 

  12. Berin, M. C. & Sampson, H. A. Mucosal immunology of food allergy. Curr. Biol. 23, R389–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalach, N., Rocchiccioli, F., de Boissieu, D., Benhamou, P. H. & Dupont, C. Intestinal permeability in children: variation with age and reliability in the diagnosis of cow's milk allergy. Acta Paediatr. 90, 499–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Charbonnier, L. M. et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J. Allergy Clin. Immunol. 135, 217–227 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Scholl, I. et al. Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut allergens in BALB/c mice and humans. Am. J. Clin. Nutr. 81, 154–160 (2005).

    Article  PubMed  Google Scholar 

  16. Ashley, S., Dang, T., Koplin, J., Martino, D. & Prescott, S. Food for thought: progress in understanding the causes and mechanisms of food allergy. Curr. Opin. Allergy Clin. Immunol. 15, 237–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. de Kivit, S. et al. In vitro evaluation of intestinal epithelial TLR activation in preventing food allergic responses. Clin. Immunol. 154, 91–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl. Acad. Sci. USA 111, 13145–13150 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hua, X., Goedert, J. J., Pu, A., Yu, G. & Shi, J. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine 3, 172–179 (2016).

    Article  PubMed  Google Scholar 

  21. Berni Canani, R. et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 10, 742–750 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Lack, G., Fox, D., Northstone, K. & Golding, J. Factors associated with the development of peanut allergy in childhood. N. Engl. J. Med. 348, 977–985 (2003).

    Article  PubMed  Google Scholar 

  23. Du Toit, G. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 122, 984–991 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Fox, A. T., Sasieni, P., du Toit, G., Syed, H. & Lack, G. Household peanut consumption as a risk factor for the development of peanut allergy. J. Allergy Clin. Immunol. 123, 417–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Du Toit, G. et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 372, 803–813 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Perkin, M. R. et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N. Engl. J. Med. 374, 1733–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Strid, J., Hourihane, J., Kimber, I., Callard, R. & Strobel, S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization 1. Clin. Exp. Allergy 35, 757–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh, K. Y., Tsai, C. C., Wu, C. H. & Lin, R. H. Epicutaneous exposure to protein antigen and food allergy. Clin. Exp. Allergy 33, 1067–1075 (2003).

    Article  PubMed  Google Scholar 

  29. Noti, M. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 133, 1390–1399 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brown, S. J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 127, 661–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sander, I. et al. Component-resolved diagnosis of baker's allergy based on specific IgE to recombinant wheat flour proteins. J. Allergy Clin. Immunol. 135, 1529–1537 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Mandallaz, M. M., de Weck, A. L. & Dahinden, C. A. Bird-egg syndrome. Cross-reactivity between bird antigens and egg-yolk livetins in IgE-mediated hypersensitivity. Int. Arch. Allergy Appl. Immunol. 87, 143–150 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Valenta, R. & Kraft, D. Type I allergic reactions to plant-derived food: A consequence of primary sensitization to pollen allergens. J. Allergy Clin. Immunol. 97, 895–895 (1996).

    Article  Google Scholar 

  34. Commins, S. P. et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose 2. J. Allergy Clin. Immunol. 127, 1286–1293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Asero, R. Effects of birch pollen-specific immunotherapy on apple allergy in birch pollen-hypersensitive patients. Clin. Exp. Allergy 28, 1368–1373 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Robson-Ansley, P. & Toit, G. D. Pathophysiology, diagnosis and management of exercise-induced anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 10, 312–317 (2010).

    Article  PubMed  Google Scholar 

  37. Rothenberg, M. E. Eosinophilic gastrointestinal disorders (EGID). J. Allergy Clin. Immunol. 113, 11–28 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. DeBrosse, C. W. & Rothenberg, M. E. Allergy and eosinophil-associated gastrointestinal disorders (EGID). Curr. Opin. Immunol. 20, 703–708 (2008).

    Article  CAS  Google Scholar 

  39. Nowak-Wegrzyn, A., Katz, Y., Mehr, S. S. & Koletzko, S. Non-IgE-mediated gastrointestinal food allergy. J. Allergy Clin. Immunol. 135, 1114–1124 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Papadopoulou, A. et al. Management guidelines of eosinophilic esophagitis in childhood. J. Pediatr. Gastroenterol. Nutr. 58, 107–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Furuta, G. T. & Katzka, D. A. Eosinophilic Esophagitis. N. Engl. J. Med. 373, 1640–1648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Giriens, B. et al. Escalating incidence of eosinophilic esophagitis in Canton of Vaud, Switzerland, 1993-2013: a population-based study. Allergy 70, 1633–1639 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Dellon, E. S., Jensen, E. T., Martin, C. F., Shaheen, N. J. & Kappelman, M. D. Prevalence of eosinophilic esophagitis in the United States. Clin. Gastroenterol. Hepatol. 12, 589–596 (2014).

    Article  PubMed  Google Scholar 

  44. Rothenberg, M. E. et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat. Genet. 42, 289–291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blanchard, C. et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Invest. 116, 536–547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sleiman, P. M. et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5, 5593 (2014).

    Article  PubMed  Google Scholar 

  47. Kottyan, L. C. et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46, 895–900 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simon, D. et al. Eosinophilic esophagitis is characterized by a non-IgE-mediated food hypersensitivity. Allergy 71, 611–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Gonsalves, N. et al. Elimination diet effectively treats eosinophilic esophagitis in adults; food reintroduction identifies causative factors. Gastroenterology 142, 1451–1459 (2012).

    Article  PubMed  Google Scholar 

  50. Lucendo, A. J., Serrano-Montalban, B., Arias, A., Redondo, O. & Tenias, J. M. Efficacy of Dietary Treatment for Inducing Disease Remission in Eosinophilic Gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 61, 56–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Kagalwalla, A. F. et al. Effect of six-food elimination diet on clinical and histologic outcomes in eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 4, 1097–1102 (2006).

    Article  PubMed  Google Scholar 

  52. Jensen, E. T., Martin, C. F., Kappelman, M. D. & Dellon, E. S. Prevalence of Eosinophilic Gastritis, Gastroenteritis, and Colitis: Estimates From a National Administrative Database. J. Pediatr. Gastroenterol. Nutr. 62, 36–42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cianferoni, A. & Spergel, J. M. Eosinophilic Esophagitis and Gastroenteritis. Curr. Allergy Asthma Rep. 15, 58 (2015).

    Article  PubMed  CAS  Google Scholar 

  54. Katz, Y., Goldberg, M. R., Rajuan, N., Cohen, A. & Leshno, M. The prevalence and natural course of food protein-induced enterocolitis syndrome to cow's milk: a large-scale, prospective population-based study. J. Allergy Clin. Immunol. 127, 647–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Fernandes, B. N., Boyle, R. J., Gore, C., Simpson, A. & Custovic, A. Food protein-induced enterocolitis syndrome can occur in adults. J. Allergy Clin. Immunol. 130, 1199–1200 (2012).

    Article  PubMed  Google Scholar 

  56. Gleich, G. J., Sebastian, K., Firszt, R. & Wagner, L. A. Shrimp allergy: gastrointestinal symptoms commonly occur in the absence of IgE sensitization. J. Allergy Clin. Immunol. Pract. 4, 316–318 (2015).

    Article  PubMed  Google Scholar 

  57. Ohtsuka, Y. et al. Microarray analysis of mucosal biopsy specimens in neonates with rectal bleeding: is it really an allergic disease? J. Allergy Clin. Immunol. 129, 1676–1678 (2012).

    Article  PubMed  Google Scholar 

  58. Hwang, J. B. & Hong, J. Food protein-induced proctocolitis: Is this allergic disorder a reality or a phantom in neonates? Korean J. Pediatr. 56, 514–518 (2013).

    Google Scholar 

  59. Ravelli, A. M., Tobanelli, P., Volpi, S. & Ugazio, A. G. Vomiting and gastric motility in infants with cow's milk allergy. J. Pediatr. Gastroenterol. Nutr. 32, 59–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Fargeas, M. J., Theodourou, V., Fioramonti, J. & Bueno, L. Relationship between mast cell degranulation and jejunal myoelectric alterations in intestinal anaphylaxis in rats. Gastroenterology 102, 157–162 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Fargeas, M. J., Fioramonti, J. & Bueno, L. Central action of interleukin 1 beta on intestinal motility in rats: mediation by two mechanisms. Gastroenterology 104, 377–383 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Heine, R. G. Allergic gastrointestinal motility disorders in infancy and early childhood. Pediatr. Allergy Immunol. 19, 383–391 (2008).

    Article  PubMed  Google Scholar 

  63. Borrelli, O. et al. Neuroimmune interaction and anorectal motility in children with food allergy-related chronic constipation. Am. J. Gastroenterol. 104, 454–463 (2009).

    Article  PubMed  Google Scholar 

  64. Zangen, T. et al. Gastrointestinal motility and sensory abnormalities may contribute to food refusal in medically fragile toddlers. J. Pediatr. Gastroenterol. Nutr. 37, 287–293 (2003).

    Article  PubMed  Google Scholar 

  65. Ito, A. et al. Involvement of the SgIGSF/Necl-2 adhesion molecule in degranulation of mesenteric mast cells. J. Neuroimmunol. 184, 209–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Rothenberg, M. E. & Cohen, M. B. An eosinophil hypothesis for functional dyspepsia. Clin. Gastroenterol. Hepatol. 5, 1147–1148 (2007).

    Article  PubMed  Google Scholar 

  67. Wood, J. D. Histamine, mast cells, and the enteric nervous system in the irritable bowel syndrome, enteritis, and food allergies. Gut 55, 445–447 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shaker, R. Gastroesophageal reflux disease: beyond mucosal injury. J. Clin. Gastroenterol. 41 (Suppl. 2), S160–162 (2007).

    Article  PubMed  Google Scholar 

  69. Bernstein, I. L. et al. Allergy diagnostic testing: an updated practice parameter. Ann. Allergy Asthma Immunol. 100, S1–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Sampson, H. A. Utility of food-specific IgE concentrations in prediciting symptomatic food allergy. J. Allergy Clin. Immunol. 107, 891–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Sicherer, S. H. & Wood, R. A. Advances in diagnosing peanut allergy. J. Allergy Clin. Immunol. Pract. 1, 1–13 (2013).

    Article  PubMed  Google Scholar 

  72. Beyer, K. et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. Allergy 70, 90–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Santos, A. F. et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. J. Allergy Clin. Immunol. 134, 645–652 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dellon, E. et al. ACG clinical guideline: Evidenced based approach to the diagnosis and management of esophageal eosinophilia and eosinophilic esophagitis (EoE). Am. J. Gastroenterol. 108, 679–692 (2013).

    Article  PubMed  Google Scholar 

  75. Liacouras, C. A. et al. Eosinophilic esophagitis: Updated consensus recommendations for children and adults. J. Allergy Clin. Immunol. 128, 3–20 (2011).

    Article  PubMed  Google Scholar 

  76. Molina-Infante, J. et al. Proton pump inhibitor-responsive oesophageal eosinophilia: an entity challenging current diagnostic criteria for eosinophilic oesophagitis. Gut 65, 524–531 (2015).

    Article  PubMed  CAS  Google Scholar 

  77. Koletzko, S. et al. Diagnostic approach and management of cow's-milk protein allergy in infants and children: ESPGHAN GI Committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 55, 221–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Powell, G. K. Milk- and soy-induced enterocolitis of infancy. J. Pediatr. 93, 553–560 (1978).

    Article  CAS  PubMed  Google Scholar 

  79. Caubet, J. M. et al. Clinical features and resolution of food protein-induced enterocolitis syndrome: 10-year experience. J. Allergy Clin. Immunol. 134, 382–389 (2014).

    Article  PubMed  Google Scholar 

  80. Brown, I. S., Smith, J. & Rosty, C. Gastrointestinal pathology in celiac disease: a case series of 150 consecutive newly diagnosed patients. Am. J. Clin. Pathol. 138, 42–49 (2012).

    Article  PubMed  Google Scholar 

  81. Kuitunen, P., Visakorpi, J. K., Savilahti, E. & Pelkonem, P. Malabsorption syndrome with cow's milk intolerance: Clinical findings and course in 54 cases. Arch. Dis. Childhood 50, 251–256 (1975).

    Article  Google Scholar 

  82. Straumann, A. Eosinophilic esophagitis: emerging therapies and future perspectives. Gastroenterol. Clin. North Am. 43, 385–394 (2014).

    Article  PubMed  Google Scholar 

  83. Suzuki, S. et al. Eosinophilic gastroenteritis due to cow's milk allergy presenting with acute pancreatitis. Int. Arch. Allergy Immunol. 158 (Suppl. 1), 75–82 (2012).

    Article  PubMed  Google Scholar 

  84. Rodriguez Jimenez, B., Dominguez Ortega, J., Gonzalez Garcia, J. M. & Kindelan Recarte, C. Eosinophilic gastroenteritis due to allergy to cow's milk. J. Investig. Allergol Clin. Immunol. 21, 150–152 (2011).

    CAS  PubMed  Google Scholar 

  85. von Berg, A. et al. Allergic manifestation 15 years after early intervention with hydrolyzed formulas - the GINI Study. Allergy 71, 210–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. von, B. A. et al. Preventive effect of hydrolyzed infant formulas persists until age 6 years: long-term results from the German Infant Nutritional Intervention Study (GINI). J. Allergy Clin. Immunol. 121, 1442–1447 (2008).

    Article  CAS  Google Scholar 

  87. Von Berg, A. et al. The effect of hydrolyzed cow's milk formula for allergy prevention in the first year of life: the German Infant Nutritional Intervention Study, a randomized double-blind trial. J. Allergy Clin. Immunol. 111, 533–540 (2003).

    Article  PubMed  Google Scholar 

  88. von Berg, A. et al. Allergies in high-risk schoolchildren after early intervention with cow's milk protein hydrolysates: 10-year results from the German Infant Nutritional Intervention (GINI) study. J. Allergy Clin. Immunol. 131, 1565–1573 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Boyle, R. J. et al. Hydrolysed formula and risk of allergic or autoimmune disease: systematic review and meta-analysis. BMJ 352, i974 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Greer, F. R., Sicherer, S. H. & Burks, A. W. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 121, 183–191 (2008).

    Article  PubMed  Google Scholar 

  91. Fleischer, D. M., Spergel, J. M., Assa'ad, A. H. & Pongracic, J. A. Primary prevention of allergic disease through nutritional interventions. J. Allergy Clin. Immunol. Pract. 1, 29–36 (2013).

    Article  PubMed  Google Scholar 

  92. Muraro, A. et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy 69, 590–601 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Fleischer, D. M. et al. Consensus communication on early peanut introduction and the prevention of peanut allergy in high-risk infants. J. Allergy Clin. Immunol. 136, 258–261 (2015).

    Article  PubMed  Google Scholar 

  94. Albin, S. & Nowak-Wegrzyn, A. Potential treatments for food allergy. Immunol. Allergy Clin. North Am. 35, 77–100 (2015).

    Article  PubMed  Google Scholar 

  95. Wood, R. A. Food allergen immunotherapy: Current status and prospects for the future. J. Allergy Clin. Immunol. 137, 973–982 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Varshney, P. et al. Adverse reactions during peanut oral immunotherapy home dosing. J. Allergy Clin. Immunol. 124, 1351–1352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jones, S. M. et al. Long-term treatment with egg oral immunotherapy enhances sustained unresponsiveness that persists after cessation of therapy. J Allergy Clin. Immunol. 137, 1117–1127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vickery, B. P. et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J. Allergy Clin. Immunol. 133, 468–475 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Lucendo, A. J., Arias, A. & Tenias, J. M. Relation between eosinophilic esophagitis and oral immunotherapy for food allergy: a systematic review with meta-analysis. Ann. Allergy Asthma Immunol. 113, 624–629 (2014).

    Article  PubMed  Google Scholar 

  100. Wood, R. A. et al. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow's milk allergy. J Allergy Clin. Immunol. 137, 1103–1110 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Begin, P. et al. Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy Asthma Clin. Immunol. 10, 7 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Begin, P. et al. Safety and feasibility of oral immunotherapy to multiple allergens for food allergy. Allergy Asthma Clin. Immunol. 10, 1 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tang, M. L. et al. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J. Allergy Clin. Immunol. 135, 737–744 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Berni Canani, R. et al. Formula selection for management of children with cow's milk allergy influences the rate of acquisition of tolerance: a prospective multicenter study. J. Pediatr. 163, 771–777 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Tanoue, T., Atarashi, K. & Honda, K. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 16, 295–309 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Cassani, B. et al. Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141, 2109–2118 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Torgerson, T. R. et al. Severe food allergy as a variant of IPEX syndrome caused by a deletion in a noncoding region of the FOXP3 gene. Gastroenterology 132, 1705–1717 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Karlsson, M. R., Rugtveit, J. & Brandtzaeg, P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 199, 1679–1688 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shreffler, W. G., Wanich, N., Moloney, M., Nowak-Wegrzyn, A. & Sampson, H. A. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 123, 43–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Qamar, N. et al. Naturally occurring tolerance acquisition to foods in previously allergic children is characterized by antigen specificity and associated with increased subsets of regulatory T cells. Clin. Exp. Allergy 45, 1663–1672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chehade, M. et al. Allergic Eosinophilic Gastroenteritis With Protein-losing Enteropathy: Intestinal Pathology, Clinical Course, and Long-term Follow-up 1. J. Pediatr. Gastroenterol. Nutr. 42, 516–521 (2006).

    Article  PubMed  Google Scholar 

  113. Chung, H. L. et al. Deposition of eosinophil-granule major basic protein and expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the mucosa of the small intestine in infants with cow's milk-sensitive enteropathy. J. Allergy Clin. Immunol. 103, 1195–1201 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Chung, H. L., Hwang, J. B., Park, J. J. & Kim, S. G. Expression of transforming growth factor beta1, transforming growth factor type I and II receptors, and TNF-alpha in the mucosa of the small intestine in infants with food protein-induced enterocolitis syndrome. J. Allergy Clin. Immunol. 109, 150–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Leonard, S. A. & Nowak-Wegrzyn, A. H. Baked Milk and Egg Diets for Milk and Egg Allergy Management. Immunol. Allergy Clin. North Am. 36, 147–159 (2016).

    Article  PubMed  Google Scholar 

  116. Kelly, K. J. et al. Eosinophilic esophagitis attributed to gastroesophageal reflux: improvement with an amino acid-based formula. Gastroenterology 109, 1503–1512 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Henderson, C. J. et al. Comparative dietary therapy effectiveness in remission of pediatric eosinophilic esophagitis. J. Allergy Clin. Immunol. 129, 1570–1578 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Spergel, J. M., Beausoleil, J. L., Mascarenhas, M. & Liacouras, C. A. The use of skin prick tests and patch tests to identify causative foods in eosinophilic esophagitis. J. Allergy Clin. Immunol. 109, 363–368 (2002).

    Article  PubMed  Google Scholar 

  119. Rodriguez-Sanchez, J. et al. Efficacy of IgE-targeted versus empiric six-food elimination diets for adult eosinophilic oesophagitis. Allergy 69, 936–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Aceves, S. S. et al. Resolution of remodeling in eosinophilic esophagitis correlates with epithelial response to topical corticosteroids. Allergy 65, 109–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Alexander, J. A. et al. Swallowed fluticasone improves histologic but not symptomatic response of adults with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 10, 742–749 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Gupta, S. K., Vitanza, J. M. & Collins, M. H. Efficacy and safety of oral budesonide suspension in pediatric patients with eosinophilic esophagitis. Clin. Gastroenterol. Hepatol. 13, 66–76 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Koletzko, Division of Paediatric Gastroenterology and Hepatology at the Kinderpoliklinik, and Dr von Haunersches Kinderspital at the Ludwig Maximilians University of Munich, Germany, for her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article.

Corresponding author

Correspondence to Anna Nowak-Wegrzyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak-Wegrzyn, A., Szajewska, H. & Lack, G. Food allergy and the gut. Nat Rev Gastroenterol Hepatol 14, 241–257 (2017). https://doi.org/10.1038/nrgastro.2016.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing