Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alcoholic liver disease: mechanisms of injury and targeted treatment

Key Points

  • Alcoholic liver disease (ALD) is characterized by a complex spectrum of histological lesions, ranging from steatosis to cirrhosis

  • Alcoholic hepatitis is a specific entity, which is associated with a fast progression to cirrhosis and with liver failure and a poor outcome in its most severe form

  • ALD is characterized by oxidative stress, disturbance of hepatocyte metabolism, liver inflammation, modifications in the regeneration process and translocation of bacterial products from the gut microbiota into the portal blood stream

  • Because animal models do not reproduce the complete spectrum of alcohol-induced hepatic lesions, translational research based on human samples is crucial to identify new treatment options

  • The best-documented treatment for severe alcoholic hepatitis is corticosteroids, but this treatment is not ideal and 40% of patients still die after a short period of time

  • The future evaluation of new strategies in severe alcoholic hepatitis should focus not only upon survival, but also on surrogate markers of outcome, with a specific plan of development

Abstract

Alcoholic liver disease (ALD) is a complex process that includes a wide spectrum of hepatic lesions, from steatosis to cirrhosis. Cell injury, inflammation, oxidative stress, regeneration and bacterial translocation are key drivers of alcohol-induced liver injury. Alcoholic hepatitis is the most severe form of all the alcohol-induced liver lesions. Animal models of ALD mainly involve mild liver damage (that is, steatosis and moderate inflammation), whereas severe alcoholic hepatitis in humans occurs in the setting of cirrhosis and is associated with severe liver failure. For this reason, translational studies using humans and human samples are crucial for the development of new therapeutic strategies. Although multiple attempts have been made to improve patient outcome, the treatment of alcoholic hepatitis is still based on abstinence from alcohol and brief exposure to corticosteroids. However, nearly 40% of patients with the most severe forms of alcoholic hepatitis will not benefit from treatment. We suggest that future clinical trials need to focus on end points other than mortality. This Review discusses the main pathways associated with the progression of liver disease, as well as potential therapeutic strategies targeting these pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolism of ethanol and related cell injury.
Figure 2: Mechanisms of alcohol-related steatosis.
Figure 3: Potential targeted therapies in ALD.

Similar content being viewed by others

References

  1. European Association for the Study of the Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J. Hepatol. 57, 399–420 (2012).

  2. Gao, B. & Bataller, R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141, 1572–1585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Mathurin, P. et al. Fibrosis progression occurs in a subgroup of heavy drinkers with typical histological features. Aliment. Pharmacol. Ther. 25, 1047–1054 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Pessione, F. et al. Five-year survival predictive factors in patients with excessive alcohol intake and cirrhosis. Effect of alcoholic hepatitis, smoking and abstinence. Liver Int. 23, 45–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Verrill, C., Markham, H., Templeton, A., Carr, N. J. & Sheron, N. Alcohol-related cirrhosis—early abstinence is a key factor in prognosis, even in the most severe cases. Addiction 104, 768–774 (2009).

    Article  PubMed  Google Scholar 

  7. Mendenhall, C. L. Anabolic steroid therapy as an adjunct to diet in alcoholic hepatic steatosis. Am. J. Dig. Dis. 13, 783–791 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Galambos, J. T. Natural history of alcoholic hepatitis. 3. Histological changes. Gastroenterology 63, 1026–1035 (1972).

    Article  CAS  PubMed  Google Scholar 

  9. Pares, A., Caballeria, J., Bruguera, M., Torres, M. & Rodes, J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 2, 33–42 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Norberg, A., Jones, A. W., Hahn, R. G. & Gabrielsson, J. L. Role of variability in explaining ethanol pharmacokinetics: research and forensic applications. Clin. Pharmacokinet. 42, 1–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Cederbaum, A. I. Alcohol metabolism. Clin. Liver Dis. 16, 667–685 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lieber, C. S. ALCOHOL: its metabolism and interaction with nutrients. Ann. Rev. Nutr. 20, 395–430 (2000).

    Article  CAS  Google Scholar 

  13. Lieber, C. S. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34, 9–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lu, Y. & Cederbaum, A. I. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44, 723–738 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Lieber, C. S. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)—a review. Alcohol. Clin. Exp. Res. 23, 991–1007 (1999).

    CAS  PubMed  Google Scholar 

  16. Cederbaum, A. I. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J. Gastroenterol. Hepatol. 21 (Suppl. 3), S22–S25 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Wheeler, M. D. et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic. Biol. Med. 31, 1544–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Philippe, M. A., Ruddell, R. G. & Ramm, G. A. Role of iron in hepatic fibrosis: one piece in the puzzle. World J. Gastroenterol. 13, 4746–4754 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsukamoto, H. et al. Experimental liver cirrhosis induced by alcohol and iron. J. Clin. Invest. 96, 620–630 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luedde, T., Kaplowitz, N. & Schwabe, R. F. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147, 765–783 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brenner, C., Galluzzi, L., Kepp, O. & Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Dolganiuc, A., Thomes, P. G., Ding, W. X., Lemasters, J. J. & Donohue, T. M. Jr. Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res. 36, 1301–1308 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez-Checa, J. C., Garcia-Ruiz, C., Ookhtens, M. & Kaplowitz, N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress. J. Clin. Invest. 87, 397–405 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Checa, J. C., Ookhtens, M. & Kaplowitz, N. Effects of chronic ethanol feeding on rat hepatocytic glutathione. Relationship of cytosolic glutathione to efflux and mitochondrial sequestration. J. Clin. Invest. 83, 1247–1252 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano, T., Kaplowitz, N., Tsukamoto, H., Kamimura, S. & Fernandez-Checa, J. C. Hepatic mitochondrial glutathione depletion and progression of experimental alcoholic liver disease in rats. Hepatology 16, 1423–1427 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Wheeler, M. D. et al. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J. Biol. Chem. 276, 36664–36672 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez-Checa, J. C., Kaplowitz, N., Garcia-Ruiz, C. & Colell, A. Mitochondrial glutathione: importance and transport. Semin. Liver Dis. 18, 389–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez-Checa, J. C., Hirano, T., Tsukamoto, H. & Kaplowitz, N. Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol 10, 469–475 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Gong, P., Cederbaum, A. I. & Nieto, N. Heme oxygenase-1 protects HepG2 cells against cytochrome P450 2E1-dependent toxicity. Free Radic. Biol. Med. 36, 307–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Imrie, D. & Sadler, K. C. Stress management: how the unfolded protein response impacts fatty liver disease. J. Hepatol. 57, 1147–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Malhi, H. & Kaufman, R. J. Endoplasmic reticulum stress in liver disease. J. Hepatol. 54, 795–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Ji, C., Deng, Q. & Kaplowitz, N. Role of TNF-α in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury. Hepatology 40, 442–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Petrasek, J. et al. STING–IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  PubMed  Google Scholar 

  34. Esfandiari, F., Villanueva, J. A., Wong, D. H., French, S. W. & Halsted, C. H. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am. J. Physiol. 289, G54–G63 (2005).

    CAS  Google Scholar 

  35. Ji, C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury. J. Gastroenterol. Hepatol. 23 (Suppl. 1), S16–S24 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crabb, D. W. & Liangpunsakul, S. Alcohol and lipid metabolism. J. Gastroenterol. Hepatol. 21 (Suppl. 3), S56–S60 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Ji, C. & Kaplowitz, N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124, 1488–1499 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez-Gea, V. et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J. Hepatol. 59, 98–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. You, M., Fischer, M., Deeg, M. A. & Crabb, D. W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 277, 29342–29347 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Endo, M., Masaki, T., Seike, M. & Yoshimatsu, H. TNF-α induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c). Exp. Biol. Med (Maywood) 232, 614–621 (2007).

    CAS  Google Scholar 

  41. Lawler, J. F. Jr, Yin, M., Diehl, A. M., Roberts, E. & Chatterjee, S. Tumor necrosis factor-α stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J. Biol. Chem. 273, 5053–5059 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Nakajima, T. et al. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 40, 972–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Galli, A., Pinaire, J., Fischer, M., Dorris, R. & Crabb, D. W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 276, 68–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fischer, M., You, M., Matsumoto, M. & Crabb, D. W. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J. Biol. Chem. 278, 27997–28004 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Molina, P. E. Alcohol–intoxicating roadblocks and bottlenecks in hepatic protein and lipid metabolism. Am. J. Physiol. Endocrinol. Metab. 295, E1–E2 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garcia-Villafranca, J., Guillen, A. & Castro, J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie 90, 460–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. You, M. & Crabb, D. W. Recent advances in alcoholic liver disease. I. Minireview: molecular mechanisms of alcoholic fatty liver. Am. J. Physiol. 287, G1–G6 (2004).

    Article  CAS  Google Scholar 

  49. Yin, H. et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146, 801–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. You, M., Liang, X., Ajmo, J. M. & Ness, G. C. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am. J. Physiol. 294, G892–G898 (2008).

    CAS  Google Scholar 

  51. Jeong, W. I. et al. Paracrine activation of hepatic CB1 receptors by stellate cell-derived endocannabinoids mediates alcoholic fatty liver. Cell. Metab. 7, 227–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Louvet, A. et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology 54, 1217–1226 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Bykov, I. et al. Hepatic gene expression and lipid parameters in complement C3−/− mice that do not develop ethanol-induced steatosis. J. Hepatol. 46, 907–914 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Cohen, J. I., Roychowdhury, S., McMullen, M. R., Stavitsky, A. B. & Nagy, L. E. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology 139, 664–674. (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pritchard, M. T. et al. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132, 1117–1126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tomita, K. et al. Pioglitazone prevents alcohol-induced fatty liver in rats through up-regulation of c-Met. Gastroenterology 126, 873–885 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Naveau, S. et al. Harmful effect of adipose tissue on liver lesions in patients with alcoholic liver disease. J. Hepatol. 52, 895–902 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Naveau, S. Excess weight risk factor for alcoholic liver disease. Hepatology 25, 108–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Raynard, B. et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 35, 635–638 (2002).

    Article  PubMed  Google Scholar 

  60. Dunn, W. et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J. Hepatol. 57, 384–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang, L. et al. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol. Clin. Exp. Res. 31, 1581–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Xu, A. et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest. 112, 91–100 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. You, M., Considine, R. V., Leone, T. C., Kelly, D. P. & Crabb, D. W. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology 42, 568–577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, Z., Zhou, Z., Deaciuc, I., Chen, T. & McClain, C. J. Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology 47, 867–879 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Mathurin, P. et al. Exacerbation of alcoholic liver injury by enteral endotoxin in rats. Hepatology 32, 1008–1017 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Parlesak, A., Schafer, C., Schutz, T., Bode, J. C. & Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 32, 742–747 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Tamai, H., Horie, Y., Kato, S., Yokoyama, H. & Ishii, H. Long-term ethanol feeding enhances susceptibility of the liver to orally administered lipopolysaccharides in rats. Alcohol. Clin. Exp. Res. 26 (8 Suppl.) 75S–80S (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Fujimoto, M. et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol. Clin. Exp. Res. 24 (4 Suppl.) 48S–54S (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Hanck, C., Rossol, S., Bocker, U., Tokus, M. & Singer, M. V. Presence of plasma endotoxin is correlated with tumour necrosis factor receptor levels and disease activity in alcoholic cirrhosis. Alcohol Alcohol. 33, 606–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Bhagwandeen, B. S., Apte, M., Manwarring, L. & Dickeson, J. Endotoxin induced hepatic necrosis in rats on an alcohol diet. J. Pathol. 152, 47–53 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Adachi, Y., Moore, L. E., Bradford, B. U., Gao, W. & Thurman, R. G. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108, 218–224 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Nanji, A. A., Khettry, U. & Sadrzadeh, S. M. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc. Soc. Exp. Biol Med. 205, 243–247 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Gustot, T. et al. Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 43, 989–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Oak, S., Mandrekar, P., Catalano, D., Kodys, K. & Szabo, G. TLR2- and TLR4-mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes. J. Immunol. 176, 7628–7635 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Guha, M. & Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Wheeler, M. D. & Thurman, R. G. Up-regulation of CD14 in liver caused by acute ethanol involves oxidant-dependent AP-1 pathway. J. Biol. Chem. 278, 8435–8441 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Hritz, I. et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48, 1224–1231 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Zima, T. & Kalousova, M. Oxidative stress and signal transduction pathways in alcoholic liver disease. Alcohol. Clin. Exp. Res. 29 (11 Suppl.) 110S–115S (2005).

    Article  CAS  PubMed  Google Scholar 

  80. De Minicis, S. & Brenner, D. A. Oxidative stress in alcoholic liver disease: role of NADPH oxidase complex. J. Gastroenterol. Hepatol. 23 (Suppl. 1) S98–S103 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Uesugi, T., Froh, M., Arteel, G. E., Bradford, B. U. & Thurman, R. G. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34, 101–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Xiong, S. et al. Hepatic macrophage iron aggravates experimental alcoholic steatohepatitis. Am. J. Physiol. 295, G512–G521 (2008).

    CAS  Google Scholar 

  83. Lin, M., Rippe, R. A., Niemela, O., Brittenham, G. & Tsukamoto, H. Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages. Am. J. Physiol. 272, G1355–G1364 (1997).

    CAS  PubMed  Google Scholar 

  84. She, H. et al. Iron activates NF-kappaB in Kupffer cells. Am. J. Physiol. 283, G719–G726 (2002).

    CAS  Google Scholar 

  85. Tsukamoto, H. et al. Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury. Am. J. Physiol. 277, G1240–G1250 (1999).

    CAS  PubMed  Google Scholar 

  86. Afford, S. C. et al. Distinct patterns of chemokine expression are associated with leukocyte recruitment in alcoholic hepatitis and alcoholic cirrhosis. J. Pathol. 186, 82–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Colmenero, J. et al. Hepatic expression of candidate genes in patients with alcoholic hepatitis: correlation with disease severity. Gastroenterology 132, 687–697 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Maltby, J., Wright, S., Bird, G. & Sheron, N. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. Hepatology 24, 1156–1160 (1996).

    CAS  PubMed  Google Scholar 

  89. Taieb, J. et al. Blood neutrophil functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids. J. Hepatol. 32, 579–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Barnes, M. A. et al. Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis, and steatosis. Hepatology 57, 1980–1991 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mandrekar, P., Ambade, A., Lim, A., Szabo, G. & Catalano, D. An essential role for monocyte chemoattractant protein-1 in alcoholic liver injury: regulation of proinflammatory cytokines and hepatic steatosis in mice. Hepatology 54, 2185–2197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wan, J. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Byun, J. S., Suh, Y. G., Yi, H. S., Lee, Y. S. & Jeong, W. I. Activation of Toll-like receptor 3 attenuates alcoholic liver injury by stimulating Kupffer cells and stellate cells to produce interleukin-10 in mice. J. Hepatol. 58, 342–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Minagawa, M., Deng, Q., Liu, Z. X., Tsukamoto, H. & Dennert, G. Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption. Gastroenterology 126, 1387–1399 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Szabo, G. & Mandrekar, P. A recent perspective on alcohol, immunity, and host defense. Alcohol. Clin. Exp. Res. 33, 220–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Brun, P., Castagliuolo, I., Pinzani, M., Palu, G. & Martines, D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am. J. Physiol. 289, G571–G578 (2005).

    CAS  Google Scholar 

  97. Paik, Y. H. et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37, 1043–1055 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Thirunavukkarasu, C., Uemura, T., Wang, L. F., Watkins, S. C. & Gandhi, C. R. Normal rat hepatic stellate cells respond to endotoxin in LBP-independent manner to produce inhibitor(s) of DNA synthesis in hepatocytes. J. Cell. Physiol. 204, 654–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Yan, A. W. et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53, 96–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Mutlu, E. et al. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol. Clin. Exp. Res. 33, 1836–1846 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen, P., Starkel, P., Turner, J. R., Ho, S. B. & Schnabl, B. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor I and mediates alcoholic liver disease in mice. Hepatology http://dx.doi.org/10.1002/hep.27489.

  102. Schnabl, B. & Brenner, D. A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146, 1513–1524 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, P. et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203–214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mutlu, E. A. et al. Colonic microbiome is altered in alcoholism. Am. J. Physiol. 302, G966–G978 (2012).

    Article  CAS  Google Scholar 

  105. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Forsyth, C. B. et al. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43, 163–172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stadlbauer, V. et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis. J. Hepatol. 48, 945–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Kirpich, I. A. et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42, 675–682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Malaguarnera, G., Giordano, M., Nunnari, G., Bertino, G. & Malaguarnera, M. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J. Gastroenterol. 20, 16639–16648 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Diehl, A. M. Recent events in alcoholic liver disease, V. effects of ethanol on liver regeneration. Am. J. Physiol. 288, G1–G6 (2005).

    Article  CAS  Google Scholar 

  112. Michalopoulos, G. K. Liver regeneration: alternative epithelial pathways. Int. J. Biochem. Cell Biol. 43, 173–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Cosgrove, B. D. et al. An inducible autocrine cascade regulates rat hepatocyte proliferation and apoptosis responses to tumor necrosis factor-alpha. Hepatology 48, 276–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Freimuth, J. et al. Loss of caspase-8 in hepatocytes accelerates the onset of liver regeneration in mice through premature nuclear factor kappa B activation. Hepatology 58, 1779–1789 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, H. et al. Interplay of hepatic and myeloid signal transducer and activator of transcription 3 in facilitating liver regeneration via tempering innate immunity. Hepatology 51, 1354–1362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Webber, E. M., Bruix, J., Pierce, R. H. & Fausto, N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology 28, 1226–1234 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Xu, M. J. et al. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: a critical role for IL-6/STAT3. Hepatology 61, 692–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roskams, T. et al. Oxidative stress and oval cell accumulation in mice and humans with alcoholic and nonalcoholic fatty liver disease. Am. J. Physiol. 163, 1301–1311 (2003).

    CAS  Google Scholar 

  119. Koteish, A., Yang, S., Lin, H., Huang, X. & Diehl, A. M. Chronic ethanol exposure potentiates lipopolysaccharide liver injury despite inhibiting Jun N-terminal kinase and caspase 3 activation. J. Biol. Chem. 277, 13037–13044 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Dippold, R. P., Vadigepalli, R., Gonye, G. E., Patra, B. & Hoek, J. B. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol. Clin. Exp. Res. 37 (Suppl. 1) E59–E69 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Jung, Y. et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 134, 1532–1543 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sancho-Bru, P. et al. Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 55, 1931–1941 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Dubuquoy, L. et al. Progenitor cell expansion and impaired hepatocyte regeneration in explanted livers from alcoholic hepatitis. Gut (in press).

  124. Tsuchiya, M. et al. Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. Hepatology 56, 130–139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lieber, C. S., Jones, D. P. & Decarli, L. M. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J. Clin. Invest. 44, 1009–1021 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lieber, C. S., DeCarli, L. M. & Sorrell, M. F. Experimental methods of ethanol administration. Hepatology 10, 501–510 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Tsukamoto, H. et al. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 5, 224–232 (1985).

    Article  CAS  PubMed  Google Scholar 

  128. Tsukamoto, H., Reidelberger, R. D., French, S. W. & Largman, C. Long-term cannulation model for blood sampling and intragastric infusion in the rat. Am. J. Physiol. 247, R595–R599 (1984).

    CAS  PubMed  Google Scholar 

  129. von Montfort, C., Beier, J. I., Guo, L., Kaiser, J. P. & Arteel, G. E. Contribution of the sympathetic hormone epinephrine to the sensitizing effect of ethanol on LPS-induced liver damage in mice. Am. J. Physiol. 294, G1227–G1234 (2008).

    Article  CAS  Google Scholar 

  130. Bertola, A., Park, O. & Gao, B. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Hepatology 58, 1814–1823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mathews, S., Xu, M., Wang, H., Bertola, A. & Gao, B. Animals models of gastrointestinal and liver diseases. Animal models of alcohol-induced liver disease: pathophysiology, translational relevance, and challenges. Am. J. Physiol. 306, G819–G823 (2014).

    Article  CAS  Google Scholar 

  132. Affo, S. et al. Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut 62, 452–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Altamirano, J. et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 146, 1231–1239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Affo, S. et al. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 63, 1782–1792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dominguez, M. et al. Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis. Gastroenterology 136, 1639–1650 (2009).

    Article  PubMed  Google Scholar 

  136. Morales-Ibanez, O. et al. Human and experimental evidence supporting a role for osteopontin in alcoholic hepatitis. Hepatology 58, 1742–1756 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yong, K. J. et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N. Engl. J. Med. 368, 2266–2276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. O'Shea, R. S., Dasarathy, S. & McCullough, A. J. Alcoholic liver disease. Am. J. Gastroenterol. 105, 14–32 (2010).

    Article  PubMed  Google Scholar 

  139. Mathurin, P. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis (AH): individual data analysis of the last three randomized placebo controlled double blind trials of corticosteroids in severe AH. J. Hepatol. 36, 480–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Mathurin, P. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut 60, 255–260 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Forrest, E. H. et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 54, 1174–1179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dominguez, M. et al. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am. J. Gastroenterol. 103, 2747–2756 (2008).

    Article  PubMed  Google Scholar 

  143. Louvet, A. et al. The Lille model: a new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 45, 1348–1354 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Centre Hospitalier Regional, Universitaire de Lille. Lille Model. LilleModel.com [online], (2015).

  145. Mathurin, P. et al. Early change in bilirubin levels is an important prognostic factor in severe alcoholic hepatitis treated with prednisolone. Hepatology 38, 1363–1369 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Iimuro, Y., Gallucci, R. M., Luster, M. I., Kono, H. & Thurman, R. G. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26, 1530–1537 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Yin, M. et al. Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117, 942–952 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Naveau, S. et al. Plasma levels of soluble tumor necrosis factor receptors p55 and p75 in patients with alcoholic liver disease of increasing severity. J. Hepatol. 28, 778–784 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Spahr, L. et al. Soluble TNF-R1, but not tumor necrosis factor alpha, predicts the 3-month mortality in patients with alcoholic hepatitis. J. Hepatol. 41, 229–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Kendrick, S. F., Henderson, E., Palmer, J., Jones, D. E. & Day, C. P. Theophylline improves steroid sensitivity in acute alcoholic hepatitis. Hepatology 52, 126–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. di Mambro, A. J. et al. In vitro steroid resistance correlates with outcome in severe alcoholic hepatitis. Hepatology 53, 1316–1322 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Dhanda, A. D. et al. Long-term outcome in patients with severe alcoholic hepatitis can be reliably determined using an in vitro measure of steroid sensitivity. Hepatology http://dx.doi.org/10.1002/hep.27211.

  153. Kendrick, S. F. et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 51, 1988–1997 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Hamdi, H. et al. Glucocorticoid-induced leucine zipper: A key protein in the sensitization of monocytes to lipopolysaccharide in alcoholic hepatitis. Hepatology 46, 1986–1992 (2007).

    Article  PubMed  Google Scholar 

  155. Mookerjee, R. P. et al. Tumour necrosis factor alpha is an important mediator of portal and systemic haemodynamic derangements in alcoholic hepatitis. Gut 52, 1182–1187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Spahr, L. et al. Combination of steroids with infliximab or placebo in severe alcoholic hepatitis: a randomized controlled pilot study. J. Hepatol. 37, 448–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Tilg, H. et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J. Hepatol. 38, 419–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Sharma, P., Kumar, A., Sharma, B. C. & Sarin, S. K. Infliximab monotherapy for severe alcoholic hepatitis and predictors of survival: an open label trial. J. Hepatol. 50, 584–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Naveau, S. et al. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 39, 1390–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Boetticher, N. C., et al. A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 135, 1953–1960 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Brenndorfer, E. D. et al. Anti-tumor necrosis factor alpha treatment promotes apoptosis and prevents liver regeneration in a transgenic mouse model of chronic hepatitis C. Hepatology 52, 1553–1563 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Akriviadis, E. et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 1637–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Sidhu, S. S. et al. Corticosteroid plus pentoxifylline is not better than corticosteroid alone for improving survival in severe alcoholic hepatitis (COPE trial). Dig. Dis. Sci. 57, 1664–1671 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. De, B. K. et al. Pentoxifylline versus prednisolone for severe alcoholic hepatitis: a randomized controlled trial. World J. Gastroenterol. 15, 1613–1619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Doherty, G. M., Jensen, J. C., Alexander, H. R., Buresh, C. M. & Norton, J. A. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 110, 192–198 (1991).

    CAS  PubMed  Google Scholar 

  166. Han, J., Thompson, P. & Beutler, B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J. Exp. Med. 172, 391–394 (1990).

    Article  CAS  PubMed  Google Scholar 

  167. Louvet, A. et al. Early switch to pentoxifylline in patients with severe alcoholic hepatitis is inefficient in non-responders to corticosteroids. J. Hepatol. 48, 465–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Mathurin, P. et al. Prednisolone with vs without pentoxifylline and survival of patients with severe alcoholic hepatitis: a randomized clinical trial. JAMA 310, 1033–1041 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Park, S. H. et al. Pentoxifylline vs. corticosteroid to treat severe alcoholic hepatitis: a randomised, non-inferiority, open trial. J. Hepatol. 61, 792–798 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Thursz, M. et al. Steroids or Pentoxifylline for Alcoholic Hepatitis: Results of the STOPAH Trial. Hepatology 60, LB1 (2014).

    Google Scholar 

  171. Lebrec, D. et al. Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology 138, 1755–1762 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Lieber, C. S. S-Adenosyl-L-methionine and alcoholic liver disease in animal models: implications for early intervention in human beings. Alcohol 27, 173–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Colell, A. et al. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine. Hepatology 26, 699–708 (1997).

    CAS  PubMed  Google Scholar 

  174. Garcia-Ruiz, C. Effect of chronic ethanol feeding on glutathione and functional integrity of mitochondria in periportal and perivenous rat hepatocytes. J. Clin. Invest. 94, 193–201 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Phillips, M. et al. Antioxidants versus corticosteroids in the treatment of severe alcoholic hepatitis--a randomised clinical trial. J. Hepatol. 44, 784–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Moreno, C. et al. Enteral nutrition with or without N-acetylcysteine in the treatment of severe acute alcoholic hepatitis: a randomized multicenter controlled trial. J. Hepatol. 53, 1117–1122 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Stewart, S. et al. A randomized trial of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J. Hepatol. 47, 277–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Nguyen-Khac, E. et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N. Engl. J. Med. 365, 1781–1789 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Gustot, T., Durand, F., Lebrec, D., Vincent, J. L. & Moreau, R. Severe sepsis in cirrhosis. Hepatology 50, 2022–2033 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Louvet, A. et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 137, 541–548 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Wasmuth, H. E. et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J. Hepatol. 42, 195–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Leon, C. G., Tory, R., Jia, J., Sivak, O. & Wasan, K. M. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm. Res. 25, 1751–1761 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Imperiale, T. F. & McCullough, A. J. Do corticosteroids reduce mortality from alcoholic hepatitis? A meta-analysis of the randomized trials. Ann. Intern. Med. 113, 299–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  184. Maddrey, W. C. et al. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75, 193–199 (1978).

    Article  CAS  PubMed  Google Scholar 

  185. Hardy, T. et al. White cell count and platelet count associate with histological alcoholic hepatitis in jaundiced harmful drinkers. BMC Gastroenterol. 13, 55. (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Mookerjee, R. P. et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J. Hepatol. 55, 1103–1111 (2011).

    Article  PubMed  Google Scholar 

  187. US National Library of Medicine, ClinicalTrials.gov [online], (2015).

  188. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  189. US National Library of Medicine, ClinicalTrials.gov [online], (2013).

  190. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  191. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  192. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  193. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  194. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  195. US National Library of Medicine, ClinicalTrials.gov [online], (2013).

  196. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  197. US National Library of Medicine, ClinicalTrials.gov [online], (2013).

  198. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  199. US National Library of Medicine, ClinicalTrials.gov [online], (2014).

  200. US Department of Health and Human Services. NIH Research Portfolio Online Report Tools (RePORT) [online], (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Philippe Mathurin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louvet, A., Mathurin, P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12, 231–242 (2015). https://doi.org/10.1038/nrgastro.2015.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing