Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunological landscape and immunotherapy of hepatocellular carcinoma

This article has been updated

Key Points

  • Hepatocellular carcinoma (HCC) is an immunogenic liver lesion that expresses shared tumour antigens (tumour-associated antigens) and private neo-antigens arising from specific gene mutations

  • Despite HCC antigenicity and intratumour accumulation of effector T cells, antitumour immune responses are subverted by a variety of stromal cells and multiple immunoinhibitory molecules

  • Different immunotherapeutic modalities have been used to treat HCC, including diverse vaccine platforms, adoptive T-cell therapy, cytokines, gene therapy and monoclonal antibodies that target immune checkpoint molecules

  • The abundance of additive immunosuppressive factors in the HCC microenvironment calls for a multitargeted approach, combining systemic and locoregional therapeutic modalities

  • Administration of monoclonal antibodies, adoptive T-cell therapy or vaccines in combination with gene therapy vectors that encode monoclonal antibodies and/or immunostimulatory cytokines are powerful strategies to treat HCC

Abstract

Advanced hepatocellular carcinoma (HCC) is a serious therapeutic challenge and targeted therapies only provide a modest benefit in terms of overall survival. Novel approaches are urgently needed for the treatment of this prevalent malignancy. Evidence demonstrating the antigenicity of tumour cells, the discovery that immune checkpoint molecules have an essential role in immune evasion of tumour cells, and the impressive clinical results achieved by blocking these inhibitory receptors, are revolutionizing cancer immunotherapy. Here, we review the data on HCC immunogenicity, the mechanisms for HCC immune subversion and the different immunotherapies that have been tested to treat HCC. Taking into account the multiplicity of hyperadditive immunosuppressive forces acting within the HCC microenvironment, a combinatorial approach is advised. Strategies include combinations of systemic immunomodulation and gene therapy, cell therapy or virotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of DC immunogenic functions by the HCC microenvironment.
Figure 2: Inhibition of NK and T cell effector functions by the HCC microenvironment.
Figure 3: Activation of antitumour responses by the checkpoint-blocking antibody anti-CTLA-4.
Figure 4: Activation of antitumour responses by checkpoint-blocking antibodies against PD-1 or PD-L1.
Figure 5: Classification of immunotherapies.
Figure 6: Combination therapy for HCC.
Figure 7: Clinical options for HCC therapy.

Similar content being viewed by others

Change history

  • 03 November 2015

    In the version of this article originally published online an affiliation was missing for Bruno Sangro and has now been added. The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. European Association For The Study Of The Liver & European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 56, 908–943 (2012).

  2. Sangro, B. et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: a European evaluation. Hepatology 54, 868–878 (2011).

    Article  PubMed  Google Scholar 

  3. Llovet, J. M. & Bruix, J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 37, 429–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Giannini, E. G. et al. Prognosis of untreated hepatocellular carcinoma. Hepatology 61, 184–190 (2015).

    Article  PubMed  Google Scholar 

  5. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Flecken, T. et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 59, 1415–1426 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Hato, T., Goyal, L., Greten, T. F., Duda, D. G. & Zhu, A. X. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 60, 1776–1782 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Greten, T. F. et al. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 10, 209 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kudo, M. Multistep human hepatocarcinogenesis: correlation of imaging with pathology. J. Gastroenterol. 44, S112–S118 (2009).

    Article  Google Scholar 

  13. Yoong, K. F., McNab, G., Hubscher, S. G. & Adams, D. H. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J. Immunol. 160, 3978–3988 (1998).

    CAS  PubMed  Google Scholar 

  14. Unitt, E. et al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J. Hepatol. 45, 246–253 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Wada, Y., Nakashima, O., Kutami, R., Yamamoto, O. & Kojiro, M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27, 407–414 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Willimsky, G., Schmidt, K., Loddenkemper, C., Gellermann, J. & Blankenstein, T. Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. J. Clin. Invest. 123, 1032–1043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anguille, S. et al. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol. Rev. 67, 731–753 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhadra, R., Cobb, D. A. & Khan, I. A. CD40 signaling to the rescue: a CD8 exhaustion perspective in chronic infectious diseases. Crit. Rev. Immunol. 33, 361–378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coughlin, C. M. et al. Tumor cell responses to IFNγ affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9, 25–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Budhu, A. et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10, 99–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Quezada, S. A., Peggs, K. S., Simpson, T. R. & Allison, J. P. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol. Rev. 241, 104–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of 'tumor escape' phenotypes. Nat. Immunol. 3, 999–1005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Champsaur, M. & Lanier, L. L. Effect of NKG2D ligand expression on host immune responses. Immunol. Rev. 235, 267–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mondelli, M. U. NKG2D and its ligands: key to immunotherapy of liver cancer? J. Hepatol. 56, 308–310 (2012).

    Article  PubMed  Google Scholar 

  30. Jinushi, M. et al. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J. Hepatol. 43, 1013–1020 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Kohga, K. et al. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 51, 1264–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Kamimura, H. et al. Reduced NKG2D ligand expression in hepatocellular carcinoma correlates with early recurrence. J. Hepatol. 56, 381–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, W. et al. Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut http://dx.doi.org/10.1136/gutjnl-2014-307671.

  34. Yan, W. et al. Netrin-1 induces epithelial-mesenchymal transition and promotes hepatocellular carcinoma invasiveness. Dig. Dis. Sci. 59, 1213–1221 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Pan, K. et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 134, 1247–1253 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Z., Zhang, Y., Sun, X. X., Ma, X. & Chen, Z. N. microRNA-146a inhibits cancer metastasis by downregulating VEGF through dual pathways in hepatocellular carcinoma. Mol. Cancer 14, 5 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, Y., Lin, N., Chen, Z. & Xu, R. Hypoxia-induced secretion of platelet-derived growth factor-BB by hepatocellular carcinoma cells increases activated hepatic stellate cell proliferation, migration and expression of vascular endothelial growth factor-A. Mol. Med. Rep. 11, 691–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Castillo, J. et al. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform ΔEx2p73 in human hepatocellular tumors. Gastroenterology 137, 1805–1815.e4 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, K. J. et al. Selective recruitment of regulatory T cell through CCR6–CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PLoS ONE 6, e24671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blay, J., White, T. D. & Hoskin, D. W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602–2605 (1997).

    CAS  PubMed  Google Scholar 

  42. Gessi, S., Merighi, S., Sacchetto, V., Simioni, C. & Borea, P. A. Adenosine receptors and cancer. Biochim. Biophys. Acta 1808, 1400–1412 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Hoechst, B. et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells. Gastroenterology 135, 234–243 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Arihara, F. et al. Increase in CD14+HLA-DR−/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol. Immunother. 62, 1421–1430 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Ostrand-Rosenberg, S., Sinha, P., Beury, D. W. & Clements, V. K. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin. Cancer Biol. 22, 275–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β 1. J. Immunol. 182, 240–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chen, Y. et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 α/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology 59, 1435–1447 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Orimo, A. & Weinberg, R. A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5, 1597–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Infante, J. R. et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J. Clin. Oncol. 25, 319–325 (2007).

    Article  PubMed  Google Scholar 

  53. Li, T. et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 318, 154–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Neaud, V. et al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 26, 1458–1466 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Hochst, B. et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J. Hepatol. 59, 528–535 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Dunham, R. M. et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J. Immunol. 190, 2009–2016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perugorria, M. J. et al. The epidermal growth factor receptor ligand amphiregulin participates in the development of mouse liver fibrosis. Hepatology 48, 1251–1261 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zaiss, D. M. et al. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38, 275–284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, S. D. et al. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat. Rev. 38, 218–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Hernandez-Gea, V., Toffanin, S., Friedman, S. L. & Llovet, J. M. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 144, 512–527 (2013).

    Article  PubMed  Google Scholar 

  61. Carambia, A. et al. TGF-β-dependent induction of CD4+CD25+Foxp3+ Tregs by liver sinusoidal endothelial cells. J. Hepatol. 61, 594–599 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Han, Y. et al. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59, 567–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Quezada, S. A. & Peggs, K. S. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Br. J. Cancer 108, 1560–1565 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sprinzl, M. F. & Galle, P. R. Immune control in hepatocellular carcinoma development and progression: role of stromal cells. Semin. Liver Dis. 34, 376–388 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Berasain, C., Castillo, J., Perugorria, M. J., Prieto, J. & Avila, M. A. Amphiregulin: a new growth factor in hepatocarcinogenesis. Cancer Lett. 254, 30–41 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, J. et al. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Cancer 125, 1640–1648 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Moo-Young, T. A. et al. Tumor-derived TGF-β mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother. 32, 12–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Fourcade, J. et al. CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 72, 887–896 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Said, E. A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16, 452–459 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Zou, W. & Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 8, 467–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Zabala, M. et al. Induction of immunosuppressive molecules and regulatory T cells counteracts the antitumor effect of interleukin-12-based gene therapy in a transgenic mouse model of liver cancer. J. Hepatol. 47, 807–815 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Shi, F. et al. PD-1 and PD-L1 upregulation promotes CD8+ T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int. J. Cancer 128, 887–896 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Krempski, J. et al. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J. Immunol. 186, 6905–6913 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Gao, Q. et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 15, 971–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Nakayama, M. et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113, 3821–3830 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Wada, J., Ota, K., Kumar, A., Wallner, E. I. & Kanwar, Y. S. Developmental regulation, expression, and apoptotic potential of galectin-9, a β-galactoside binding lectin. J. Clin. Invest. 99, 2452–2461 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Gautron, A. S., Dominguez-Villar, M., de Marcken, M. & Hafler, D. A. Enhanced suppressor function of TIM-3+FoxP3+ regulatory T cells. Eur. J. Immunol. 44, 2703–2711 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, H. et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56, 1342–1351 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    Article  CAS  PubMed  Google Scholar 

  93. Workman, C. J., Rice, D. S., Dugger, K. J., Kurschner, C. & Vignali, D. A. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur. J. Immunol. 32, 2255–2263 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Grosso, J. F. et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J. Clin. Invest. 117, 3383–3392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. USA 107, 7875–7880 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pasero, C. & Olive, D. Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. Immunol. Lett. 151, 71–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Hokuto, D. et al. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur. J. Cancer 51, 157–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Belladonna, M. L., Orabona, C., Grohmann, U. & Puccetti, P. TGF-β and kynurenines as the key to infectious tolerance. Trends Mol. Med. 15, 41–49 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Mellor, A. L. & Munn, D. H. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 8, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, Q. et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J. Immunol. 188, 1117–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Mao, Y., Poschke, I. & Kiessling, R. Tumour-induced immune suppression: role of inflammatory mediators released by myelomonocytic cells. J. Intern. Med. 276, 154–170 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Montesinos, M. C. et al. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A2A receptors. Am. J. Pathol. 160, 2009–2018 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, F. T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nat. Rev. Cancer 5, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Cedeno-Laurent, F. & Dimitroff, C. J. Galectins and their ligands: negative regulators of anti-tumor immunity. Glycoconj. J. 29, 619–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Matsuda, Y., Yamagiwa, Y., Fukushima, K., Ueno, Y. & Shimosegawa, T. Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol. Res. 38, 1098–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Cedeno-Laurent, F., Opperman, M., Barthel, S. R., Kuchroo, V. K. & Dimitroff, C. J. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J. Immunol. 188, 3127–3137 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Peng, W., Wang, H. Y., Miyahara, Y., Peng, G. & Wang, R. F. Tumor-associated galectin-3 modulates the function of tumor-reactive T cells. Cancer Res. 68, 7228–7236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sprinzl, M. F. et al. Sorafenib perpetuates cellular anticancer effector functions by modulating the crosstalk between macrophages and natural killer cells. Hepatology 57, 2358–2368 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Akiba, J., Yano, H., Ogasawara, S., Higaki, K. & Kojiro, M. Expression and function of interleukin-8 in human hepatocellular carcinoma. Int. J. Oncol. 18, 257–264 (2001).

    CAS  PubMed  Google Scholar 

  116. Fernando, R. I., Castillo, M. D., Litzinger, M., Hamilton, D. H. & Palena, C. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 71, 5296–5306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Llovet, J. M. et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 18, 2290–2300 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Philips, G. K. & Atkins, M. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int. Immunol. 27, 39–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Sangro, B. & Prieto, J. Gene therapy for liver cancer: clinical experience and future prospects. Curr. Opin. Mol. Ther. 12, 561–569 (2010).

    CAS  PubMed  Google Scholar 

  123. Therasse, P., Eisenhauer, E. A. & Verweij, J. RECIST revisited: a review of validation studies on tumour assessment. Eur. J. Cancer 42, 1031–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Schlom, J. Therapeutic cancer vaccines: current status and moving forward. J. Natl Cancer Inst. 104, 599–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hoos, A. et al. Improved endpoints for cancer immunotherapy trials. J. Natl Cancer Inst. 102, 1388–1397 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Llovet, J. M. et al. Randomized controlled trial of interferon treatment for advanced hepatocellular carcinoma. Hepatology 31, 54–58 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, L. T. et al. Long-term results of a randomized, observation-controlled, Phase III trial of adjuvant interferon α-2b in hepatocellular carcinoma after curative resection. Ann. Surg. 255, 8–17 (2012).

    Article  PubMed  Google Scholar 

  128. Boisguerin, V. et al. Translation of genomics-guided RNA-based personalised cancer vaccines: towards the bedside. Br. J. Cancer 111, 1469–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sawada, Y. et al. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin. Cancer Res. 18, 3686–3696 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Radford, K. J., Tullett, K. M. & Lahoud, M. H. Dendritic cells and cancer immunotherapy. Curr. Opin. Immunol. 27, 26–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Quinn, D. I., Shore, N. D., Egawa, S., Gerritsen, W. R. & Fizazi, K. Immunotherapy for castration-resistant prostate cancer: progress and new paradigms. Urol. Oncol. 33, 245–260 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Tullett, K. M., Lahoud, M. H. & Radford, K. J. Harnessing human cross-presenting CLEC9A+XCR1+ dendritic cells for immunotherapy. Front. Immunol. 5, 239 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  136. Tada, F. et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol. 41, 1601–1609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Butterfield, L. H. et al. A Phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four α-fetoprotein peptides. Clin. Cancer Res. 12, 2817–2825 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. El Ansary, M. et al. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J. Cancer Res. Clin. Oncol. 139, 39–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Palmer, D. H. et al. A Phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 49, 124–132 (2009).

    Article  PubMed  Google Scholar 

  140. Nakamoto, Y. et al. Combined therapy of transcatheter hepatic arterial embolization with intratumoral dendritic cell infusion for hepatocellular carcinoma: clinical safety. Clin. Exp. Immunol. 147, 296–305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Qiu, Y. et al. Hepatocellular carcinoma-specific immunotherapy with synthesized α1,3- galactosyl epitope-pulsed dendritic cells and cytokine-induced killer cells. World J. Gastroenterol. 17, 5260–5266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lee, W. C. et al. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J. Immunother. 28, 496–504 (2005).

    Article  PubMed  Google Scholar 

  143. Mazzolini, G. et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol. 23, 999–1010 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Chi, K. H. et al. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J. Immunother. 28, 129–135 (2005).

    Article  PubMed  Google Scholar 

  145. Mazzolini, G. et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol. 23, 999–1010 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Morisaki, T. et al. NKG2D-directed cytokine-activated killer lymphocyte therapy combined with gemcitabine for patients with chemoresistant metastatic solid tumors. Anticancer Res. 34, 4529–4538 (2014).

    CAS  PubMed  Google Scholar 

  147. Phan, G. Q. & Rosenberg, S. A. Adoptive cell transfer for patients with metastatic melanoma: the potential and promise of cancer immunotherapy. Cancer Control 20, 289–297 (2013).

    Article  PubMed  Google Scholar 

  148. Besser, M. J. et al. Clinical responses in a Phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Shi, H., Liu, L. & Wang, Z. Improving the efficacy and safety of engineered T cell therapy for cancer. Cancer Lett. 328, 191–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Jensen, M. C. & Riddell, S. R. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol. Rev. 257, 127–144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shi, M. et al. Autologous cytokine-induced killer cell therapy in clinical trial Phase I is safe in patients with primary hepatocellular carcinoma. World J. Gastroenterol. 10, 1146–1151 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma, H. et al. Therapeutic safety and effects of adjuvant autologous RetroNectin activated killer cell immunotherapy for patients with primary hepatocellular carcinoma after radiofrequency ablation. Cancer. Biol. Ther. 9, 903–907 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Takayama, T. et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356, 802–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Hui, D., Qiang, L., Jian, W., Ti, Z. & Da-Lu, K. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig. Liver Dis. 41, 36–41 (2009).

    Article  PubMed  CAS  Google Scholar 

  160. Pan, K. et al. The efficacy of cytokine-induced killer cell infusion as an adjuvant therapy for postoperative hepatocellular carcinoma patients. Ann. Surg. Oncol. 20, 4305–4311 (2013).

    Article  PubMed  Google Scholar 

  161. Weng, D. S. et al. Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. J. Immunother. 31, 63–71 (2008).

    Article  PubMed  Google Scholar 

  162. Huang, Z. M. et al. Cytokine-induced killer cells in combination with transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma patients. J. Immunother. 36, 287–293 (2013).

    Article  PubMed  Google Scholar 

  163. Yu, X. et al. A randomized Phase II study of autologous cytokine-induced killer cells in treatment of hepatocellular carcinoma. J. Clin. Immunol. 34, 194–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rammensee, H. G. & Singh-Jasuja, H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev. Vaccines 12, 1211–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Furness, A. J., Vargas, F. A., Peggs, K. S. & Quezada, S. A. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies. Trends Immunol. 35, 290–298 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Sangro, B. et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59, 81–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. El-Khoueiry, A. B. et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209–040. J. Clin. Oncol. 33, LBA101 (2015).

    Article  Google Scholar 

  170. Segal, N. H. et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J. Clin. Oncol. 32, S3002 (2014).

    Article  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  172. Filmus, J. & Selleck, S. B. Glypicans: proteoglycans with a surprise. J. Clin. Invest. 108, 497–501 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhu, A. X. et al. First-in-man Phase I study of GC33, a novel recombinant humanized antibody against glypican-3, in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 19, 920–928 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Feng, M. & Ho, M. Glypican-3 antibodies: a new therapeutic target for liver cancer. FEBS Lett. 588, 377–382 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Hoffmann-La Roche. A randomised, placebo-controlled, double-blind, multicenter Phase II trial of intravenous GC33 at 1600 mg Q2W in previously treated patients with unresectable advanced or metastatic hepatocellular carcinoma (HCC). ClinicalTrials.gov [online], (2014).

  176. Melero, I., Hirschhorn-Cymerman, D., Morales-Kastresana, A., Sanmamed, M. F. & Wolchok, J. D. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin. Cancer Res. 19, 1044–1053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Beatty, G. L. et al. A Phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clin. Cancer Res. 19, 6286–6295 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  179. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  180. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  181. Gonzalez-Aseguinolaza, G. & Prieto, J. Gene therapy of liver diseases: a 2011 perspective. Clin. Res. Hepatol. Gastroenterol. 35, 699–708 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Hernández-Alcoceba, R., Sangro, B., Berraondo, P., Gonzalez-Aseguinolaza, G. & Prieto, J. Cytokines for the treatment of gastrointestinal cancers: clinical experience and new perspectives. Expert Opin. Investig. Drugs 22, 827–841 (2013).

    Article  PubMed  CAS  Google Scholar 

  183. Hernández-Alcoceba, R. Recent advances in oncolytic virus design. Clin. Transl. Oncol. 13, 229–239 (2011).

    Article  PubMed  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  185. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  186. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  187. Quetglas, J. I. et al. Virotherapy with a Semliki Forest virus-based vector encoding IL-12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol. Res. 3, 449–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  189. US National Library of Medicine. ClinicalTrials.gov [online], (2008).

  190. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  191. Suscovich, T. J. & Alter, G. In situ production of therapeutic monoclonal antibodies. Expert Rev. Vaccines 14, 205–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Sangro, B. et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol. 22, 1389–1397 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Park, B. H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a Phase I trial. Lancet Oncol. 9, 533–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19, 329–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  198. Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Allard, B., Pommey, S., Smyth, M. J. & Stagg, J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin. Cancer Res. 19, 5626–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Sawada, Y. et al. Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int. J. Oncol. 46, 28–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Le, D. T. et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J. Immunother. 36, 382–389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Karyampudi, L. et al. Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 74, 2974–2985 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hirschhorn-Cymerman, D. et al. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J. Exp. Med. 209, 2113–2126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hernandez-Chacon, J. A. et al. Costimulation through the CD137/4-1BB pathway protects human melanoma tumor-infiltrating lymphocytes from activation-induced cell death and enhances antitumor effector function. J. Immunother. 34, 236–250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Engeland, C. E. et al. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol. Ther. 22, 1949–1959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Quetglas, J. I. et al. Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol. Ther. 20, 1664–1675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zerbini, A. et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 66, 1139–1146 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Victor, C. T. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 16, 373–377 (2015).

    Article  CAS  Google Scholar 

  209. Duffy, A. G. et al. A pilot study of tremelimumab—a monoclonal antibody against CTLA-4–in combination with either trans catheter arterial chemoembolization (TACE) or radiofrequency ablation (RFA) in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol. 33, S4081 (2015).

    Article  Google Scholar 

  210. Duffy, A. G. & Greten, T. F. Immunological off-target effects of standard treatments in gastrointestinal cancers. Ann. Oncol. 25, 24–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Gonzalez-Aparicio, M. et al. Self-inactivating helper virus for the production of high-capacity adenoviral vectors. Gene Ther. 18, 1025–1033 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Kawaguchi, Y. et al. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. Int. J. Cancer 120, 781–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Desar, I. M. et al. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int. J. Cancer 129, 507–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Zhu, X. D. et al. Antiangiogenic therapy promoted metastasis of hepatocellular carcinoma by suppressing host-derived interleukin-12b in mouse models. Angiogenesis 16, 809–820 (2013).

    Article  CAS  PubMed  Google Scholar 

  215. Hipp, M. M. et al. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 111, 5610–5620 (2008).

    Article  CAS  PubMed  Google Scholar 

  216. Wang, W. et al. Biomarkers on melanoma patient T cells associated with ipilimumab treatment. J. Transl. Med. 10, 146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  218. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Le, D. T. et al. PD-1 Blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to express deep gratitude to colleagues of the Division of Hepatology and Gene Therapy of the Centre of Applied Medical Research (CIMA) of the University of Navarra, the Liver Unit and the Clinical Trial Unit of the University Clinic of Navarra, Drs J.J. Lasarte, P. Sarobe, M. Avila, F. Corrales, C. Berasain, R. Hernandez-Alcoceba, C. Smerdou, P. Berraondo, R. Aldabe, G. Gonzalez-Aseguinolaza, J. Quiroga, M. Iñarrairaegui, J.I. Herrero, J.L. Perez-Gracia as well as to Dr Ch. Qian (Chongching Military Hospital) for their collaboration, inspiration and input in research and medical assistance during many years as well as the secretary M.E. Perez-Mena for her help in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.P. and B.S. contributed equally to researching data for the manuscript, discussion of content and writing. All authors contributed equally to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Jesús Prieto.

Ethics declarations

Competing interests

B.S. has acted as a consultant to Bristol–Myers Squibb. I.M. has acted as a consultant to AstraZeneca, Boehringer Ingelheim, Bristol–Myers Squibb, Genentech, LeadArtis, Miltenyi Biotec, Roche. J.P. declares no competing interests.

Supplementary information

Supplementary Table 1

Immunotherapies with FDA-approval for cancer treatment (DOC 84 kb)

Supplementary Table 2

Clinical trials on cell-based immunotherapies (DCs) in HCC (DOC 84 kb)

Supplementary Table 3

Clinical trials on cell-based immunotherapies (CIKs) in HCC (DOC 84 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, J., Melero, I. & Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 12, 681–700 (2015). https://doi.org/10.1038/nrgastro.2015.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.173

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer