Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dietary management of IBD—insights and advice

Key Points

  • Assessment of eating habits and nutritional status with subsequent remedial actions might lead to improvement of well-being and symptoms in patients with IBD

  • Data on diet influencing IBD activity is poor, with the exception of exclusive enteral nutrition inducing remission in Crohn's disease; how food choice can mimic this result is not known

  • Diet might be helpful in reducing symptoms and lessening the effects of IBD complications

  • A skilled dietitian is needed to guide diet for therapeutic benefit whilst maintaining adequate nutrition

  • Studies evaluating diet in IBD development have methodological problems; generally, data support 'healthy diets' including a variety from all food groups, whole-food instead of refined-foods and plant-based instead of animal-derived foods

Abstract

The current general interest in the use of food choice or diet in maintaining good health and in preventing and treating disease also applies to patients with IBD, who often follow poor or nutritionally challenging dietary plans. Unfortunately, dietary advice plays only a minor part in published guidelines for management of IBD, which sends a message that diet is not of great importance. However, a considerable evidence base supports a focused and serious attention to nutrition and diet in patients with IBD. In this Review, a step-wise approach in the evaluation and management of these patients is proposed. First, dietary intake and eating habits as well as current nutritional state should be documented, and corrective measures instituted. Secondly, dietary strategies as primary or adjunctive therapy for the reduction of inflammation and/or prevention of relapse of IBD should be seriously contemplated. Thirdly, use of diet to improve symptoms or lessen the effects of complications should be considered. Finally, dietary advice regarding disease prevention should be discussed when relevant. An increasing need exists for applying improved methodologies into establishing the value of current and new ways of using food choice as a therapeutic and preventive tool in IBD.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Steps in the dietary management of patients with IBD.
Figure 2: Some of the dietary factors hypothesized to be involved in the pathogenesis of IBD.

References

  1. Jamieson, A. E., Fletcher, P. C. & Schneider, M. A. Seeking control through the determination of diet: a qualitative investigation of women with irritable bowel syndrome and inflammatory bowel disease. Clin. Nurse Spec. 21, 152–160 (2007).

    Article  PubMed  Google Scholar 

  2. Hou, J. K., Lee, D. & Lewis, J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin. Gastroenterol. Hepatol. 12, 1592–1600 (2014).

    Article  PubMed  Google Scholar 

  3. Vagianos, K. et al. What are adults with inflammatory bowel disease (IBD) eating? A closer look at the dietary habits of a population-based Canadian IBD cohort. JPEN J. Parenter. Enteral Nutr. http://dx.doi.org/10.1177/0148607114549254.

  4. Walton, M. & Alaunyte, I. Do patients living with ulcerative colitis adhere to healthy eating guidelines? A cross-sectional study. Brit. J. Nutr. 112, 1628–1635 (2014).

    CAS  Article  PubMed  Google Scholar 

  5. Martin, G. S., Tapsell, L. C., Denmeade, S. & Betterham, M. J. Relative validity of a diet history interview in an intervention trial manipulating dietary fat in the management of Type II diabetes mellitus. Prev. Med. 36, 420–428 (2003).

    Article  PubMed  Google Scholar 

  6. Australian Government National Health and Medical Research Council. Australian dietary guidelines (2013) NHMRC [online], (2013).

  7. Zallot, C. et al. Dietary beliefs and behavior among inflammatory bowel disease patients. Inflamm. Bowel Dis. 19, 66–72 (2013).

    Article  PubMed  Google Scholar 

  8. Craig, W. J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract. 25, 613–620 (2010).

    Article  PubMed  Google Scholar 

  9. Coin, A. et al. Fat-free and fat mass reference values by dual-energy X-ray absorptiometry (DEXA) in a 20–80 year-old Italian population. Clin. Nutr. 27, 87–94 (2008).

    Article  PubMed  Google Scholar 

  10. Forbes, A., Goldesgeyme, E. & Paulon, E. Nutrition in inflammatory bowel disease. JPEN J. Parenter. Enteral Nutr. 35, 571–580 (2011).

    CAS  Article  Google Scholar 

  11. Bryant, R. V., Trott, M. J., Bartholomeusz, F. D. & Andrews, J. M. Systematic review: body composition in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 38, 213–225 (2013).

    CAS  Article  PubMed  Google Scholar 

  12. van Langenberg, D. R. et al. Delving into disability in Crohn's disease: dysregulation of molecular pathways may explain skeletal muscle loss in Crohn's disease. J. Crohns Colitis 8, 626–634 (2014).

    CAS  Article  PubMed  Google Scholar 

  13. van Langenberg, D. R. et al. Objectively measured muscle fatigue in Crohn's disease: correlation with self-reported fatigue and associated factors for clinical application. J. Crohns Colitis 8, 137–146 (2014).

    CAS  Article  PubMed  Google Scholar 

  14. Jiménez-Redondo, S. et al. Influence of nutritional status on health-related quality of life of non-institutionalized older people. J. Nutr. Health Aging 18, 359–364 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Addolorato, G., Capristo, E., Stefanini, G. F. & Gasbarrini, G. Inflammatory bowel disease: a study of the association between anxiety and depression, physical morbidity, and nutritional status. Scand. J. Gastroenterol. 32, 1013–1021 (1997).

    CAS  Article  PubMed  Google Scholar 

  16. Bernal, I. et al. Predictors of clinical response to systemic steroids in active ulcerative colitis. Dig. Dis. Sci. 51, 1434–1438 (2006).

    Article  PubMed  Google Scholar 

  17. Valentini, L. et al. Malnutrition and impaired muscle strength in patents with Crohn's disease and ulcerative colitis in remission. Nutrition 24, 694–702 (2008).

    Article  PubMed  Google Scholar 

  18. Valentini, L. & Schulzke, J. Mundane, yet challenging: the assessment of malnutrition in inflammatory bowel disease. Euro J. Int. Med. 22, 13–15 (2011).

    Article  Google Scholar 

  19. Belli, D. C. et al. Chronic intermittent elemental diet improves growth failure in children with Crohn's disease. Gastroenterology 94, 603–610 (1988).

    CAS  Article  PubMed  Google Scholar 

  20. Royall, D. et al. Total enteral nutrition support improves body composition of patients with active Crohn's disease. JPEN J. Parenter Enteral Nutr. 19, 95–99 (1995).

    CAS  Article  PubMed  Google Scholar 

  21. Rahman, A., Martin, C. & Heyland, D. K. Nutrition therapy for the critically III surgical patient with aortic aneurysmal rupture: defining and improving current practice. JPEN J. Parenter. Enteral Nutr. 39, 104–113 (2015).

    Article  PubMed  Google Scholar 

  22. Stroud, M., Duncan, H. & Nightingale, J. Guidelines for enteral feeding in adult hospital patients. Gut 52, 1–12 (2003).

    Article  Google Scholar 

  23. Nagahori, M. et al. Prevalence of metabolic syndrome is comparable between inflammatory bowel disease patients and the general population. J. Gastroenterol. 45, 1008–1013 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. Fink, C., Karagiannides, I., Bakirtzi, K. & Pothoulakis, C. Adipose tissue and inflammatory bowel disease pathogenesis. Inflamm. Bowel Dis. 18, 1550–1557 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Causey, M. W. et al. The impact of obesity on outcomes following major surgery for Crohn's disease: an American College of Surgeons national surgical quality improvement Program assessment. Dis. Colon Rectum 54, 1488–1495 (2011).

    Article  PubMed  Google Scholar 

  26. Krane, M. K. et al. Does morbid obesity change outcomes after laparoscopic surgery for inflammatory bowel disease? Review of 626 consecutive cases. J. Am. Coll. Surg. 216, 986–996 (2013).

    Article  PubMed  Google Scholar 

  27. Long, M. D. et al. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease. Inflamm. Bowel Dis. 17, 2162–2168 (2011).

    Article  PubMed  Google Scholar 

  28. Nic Suibhne, T. et al. High prevalence of overweight and obesity in adults with Crohn's disease: associations with disease and lifestyle factors. J. Crohns Colitis 7, e241–e248 (2013).

    Article  PubMed  Google Scholar 

  29. Steed, H., Walsh, S. & Reynolds, N. A brief report of the epidemiology of obesity in the inflammatory bowel disease population of Tayside, Scotland. Obes. Facts 2, 370–372 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ungar, B. et al. Severe and morbid obesity in Crohn's disease patients: prevalence and disease associations. Digestion 88, 26–32 (2013).

    Article  PubMed  Google Scholar 

  31. Chan, S. S. et al. Body mass index and the risk for Crohn's disease and ulcerative colitis: data from a European Prospective Cohort Study (The IBD in EPIC Study). Am. J. Gastroenterol. 108, 575–582 (2013).

    Article  PubMed  Google Scholar 

  32. Via, M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012, 103472 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vagianos, K., Bector, S., McConnell, J. & Bernstein, C. N. Nutrition assessment of patients with inflammatory bowel disease. JPEN J. Parenter. Enteral Nutr. 31, 311–319 (2007).

    CAS  Article  PubMed  Google Scholar 

  34. Vavricka, S. R., Rogler, G. Intestinal absorption and vitamin levels: is a new focus needed? Dig. Dis. 30 (Suppl. 3), 73–80 (2012).

    Article  PubMed  Google Scholar 

  35. Ostro, M. J., Greenberg, G. R. & Jeejeebhoy, K. N. Total parenteral nutrition and complete bowel rest in the management of Crohn's disease. JPEN J. Parenter. Enteral Nutr. 9, 280–287 (1985).

    CAS  Article  PubMed  Google Scholar 

  36. Zachos, M., Tondeur, M. & Griffiths, A. M. Enteral nutritional therapy for induction of remission in Crohn's disease. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD000542 http://dx.doi.org/10.1002/14651858.CD000542.pub2.

  37. Hugot, J. P. et al. Crohn's disease: the cold chain hypothesis. Lancet 362, 2012–2015 (2003).

    CAS  Article  PubMed  Google Scholar 

  38. Roberts, C. L., Rushworth, S. L., Richman, E. & Rhodes, J. M. Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn's disease. J. Crohns Colitis 7, 338–341 (2013).

    Article  PubMed  Google Scholar 

  39. Gibson, P. R. & Shepherd, S. J. Personal view: food for thought—western lifestyle and susceptibility to Crohn's disease. The FODMAP hypothesis. Aliment. Pharmacol. Ther. 21, 1399–1409 (2005).

    CAS  Article  PubMed  Google Scholar 

  40. Roediger, W. E. Review article: nitric oxide from dysbiotic bacterial respiration of nitrate in the pathogenesis and as a target for therapy of ulcerative colitis. Aliment. Pharmacol. Ther. 27, 531–541 (2008).

    CAS  Article  PubMed  Google Scholar 

  41. Lerner, A. Aluminum is a potential environmental factor for Crohn's disease induction: extended hypothesis. Ann. N. Y. Acad. Sci. 1107, 329–345 (2007).

    CAS  Article  PubMed  Google Scholar 

  42. Lomer, M. C., Thompson, R. P. & Powell, J. J. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease. Proc. Nutr. Soc. 61, 123–139 (2002).

    Article  PubMed  Google Scholar 

  43. Sullivan, S. N. Hypothesis revisited: toothpaste and the cause of Crohn's disease. Lancet 3336, 1096–1097 (1990).

    Article  Google Scholar 

  44. Chuah, S. Y. et al. Dietary fats and inflammatory bowel disease in Asians. Ital. J. Gastroenterol. 24, 386–388 (1992).

    CAS  PubMed  Google Scholar 

  45. Guthy, E. Crohn's disease and nutritional lipids. Hypothesis on etiology of regional enteritis [German]. Dtsch Med. Wochenschr. 107, 71–73 (1982).

    CAS  Article  PubMed  Google Scholar 

  46. Garg, M. et al. Review article: vitamin D and inflammatory bowel disease—established concepts and future directions. Aliment. Pharmacol. Ther. 36, 324–344 (2012).

    CAS  Article  PubMed  Google Scholar 

  47. Peyrin-Biroulet, L., Oussalah, A. & Bigard, M. A. Crohn's disease: the hot hypothesis. Med. Hypotheses 73, 94–96 (2009).

    Article  PubMed  Google Scholar 

  48. Garg, M., Rosella, O., Lubel, J. S. & Gibson, P. R. Association of circulating vitamin D concentrations with intestinal but not systemic inflammation in inflammatory bowel disease. Inflamm. Bowel Dis. 19, 2634–2643 (2013).

    Article  PubMed  Google Scholar 

  49. Roediger, W. E. Decreased sulphur amino acid intake in ulcerative colitis. Lancet 351, 1555 (1998).

    CAS  Article  PubMed  Google Scholar 

  50. Cohen, S. A. et al. Clinical and mucosal improvement with the specific carbohydrate diet in pediatric Crohn's disease: a prospective pilot study. J. Pediatr. Gastroenterol. Nutr. 59, 516–521 (2014).

    CAS  Article  PubMed  Google Scholar 

  51. Suskind, D. L. et al. Nutritional therapy in pediatric Crohn disease: the specific carbohydrate diet. J. Pediatr. Gastroenterol. Nutr. 58, 87–91 (2014).

    CAS  Article  PubMed  Google Scholar 

  52. Olendzki, B. C. et al. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr. J. 13, 5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yao, C. K., Gibson, P. R. & Shepherd, S. J. Design of clinical trials evaluating dietary interventions in patients with functional gastrointestinal disorders. Am. J. Gastroenterol. 108, 748–758 (2013).

    CAS  Article  PubMed  Google Scholar 

  54. Dickinson, R. J. et al. Controlled trial of intravenous hyperalimentation and total bowel rest as an adjunct to the routine therapy of acute colitis. Gastroenterology 79, 1199–1204 (1980).

    CAS  Article  PubMed  Google Scholar 

  55. Strisciuglio, C. et al. Does cow's milk protein elimination diet have a role on induction and maintenance of remission in children with ulcerative colitis? Acta Paediatr. 102, e273–e278 (2013).

    Article  PubMed  Google Scholar 

  56. Wright, R. & Truelove, S. C. A controlled therapeutic trial of various diets in ulcerative colitis. Br. Med. J. 2, 138–141 (1965).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Wedlake, L., Slack, N., Andreyev, H. J. & Whelan, K. Fiber in the treatment and maintenance of inflammatory bowel disease: a systematic review of randomized controlled trials. Inflamm. Bowel Dis. 20, 576–586 (2014).

    Article  PubMed  Google Scholar 

  58. James, S. L. et al. Abnormal fibre usage in UC in remission. Gut http://dx.doi.org/10.1136/gutjnl-2014-307198.

  59. Turner, D. et al. Maintenance of remission in inflammatory bowel disease using omega-3 fatty acids (fish oil): a systematic review and meta-analyses. Inflamm. Bowel Dis. 17, 336–345 (2011).

    Article  PubMed  Google Scholar 

  60. Kyaw, M. H., Moshkovska, T. & Mayberry, J. A prospective, randomized, controlled, exploratory study of comprehensive dietary advice in ulcerative colitis: impact on disease activity and quality of life. Eur. J. Gastroenterol. Hepatol. 26, 910–917 (2014).

    CAS  Article  PubMed  Google Scholar 

  61. Day, A. S. et al. Exclusive enteral feeding as primary therapy for Crohn's disease in Australian children and adolescents: a feasible and effective approach. J. Gastroenterol. Hepatol. 21, 1609–1614 (2006).

    Article  PubMed  Google Scholar 

  62. Dziechciarz, P., Horvath, A., Shamir, R. & Szajewska, H. Meta-analysis: enteral nutrition in active Crohn's disease in children. Aliment. Pharmacol. Ther. 26, 795–806 (2007).

    CAS  Article  PubMed  Google Scholar 

  63. Heuschkel, R. B., Menache, C. C., Megerian, J. T. & Baird, A. E. Enteral nutrition and corticosteroids in the treatment of acute Crohn's disease in children. J. Pediatr. Gastroenterol. Nutr. 31, 8–15 (2000).

    CAS  Article  PubMed  Google Scholar 

  64. Levin, A. D. et al. Vitamin D deficiency in children with inflammatory bowel disease. Dig. Dis. Sci. 56, 830–836 (2011).

    CAS  Article  PubMed  Google Scholar 

  65. Afzal, N. A. et al. Improvement in quality of life of children with acute Crohn's disease does not parallel mucosal healing after treatment with exclusive enteral nutrition. Aliment. Pharmacol. Ther. 20, 167–172 (2004).

    CAS  Article  PubMed  Google Scholar 

  66. Wall, C. L., Day, A. S. & Gearry, R. B. Use of exclusive enteral nutrition in adults with Crohn's disease: a review. World J. Gastroenterol. 19, 7652–7660 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gerasimidis, K. et al. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm. Bowel Dis. 20, 861–871 (2014).

    Article  PubMed  Google Scholar 

  68. Tjellström, B. et al. Effect of exclusive enteral nutrition on gut microflora function in children with Crohn's disease. Scand. J. Gastroenterol. 47, 1454–1459 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Greenberg, G. R. et al. Controlled trial of bowel rest and nutritional support in the management of Crohn's disease. Gut 29, 1309–1315 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Jones, V. A. Comparison of total parenteral nutrition and elemental diet in induction of remission of Crohn's disease. Long-term maintenance of remission by personalized food exclusion diets. Dig. Dis. Sci. 32 (12 Suppl.), 100S–107S (1987).

    CAS  Article  PubMed  Google Scholar 

  71. Marion-Letellier, R. et al. Polyunsaturated fatty acids in inflammatory bowel diseases: a reappraisal of effects and therapeutic approaches. Inflamm. Bowel Dis. 19, 650–661 (2013).

    Article  PubMed  Google Scholar 

  72. Tsujikawa, T. et al. Clinical importance of n-3 fatty acid-rich diet and nutritional education for the maintenance of remission in Crohn's disease. J. Gastroenterol. 35, 99 (2000).

    CAS  Article  PubMed  Google Scholar 

  73. Lomer, M. C. et al. Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn's disease. Eur. J. Gastroenterol. Hepatol. 17, 377–384 (2005).

    Article  PubMed  Google Scholar 

  74. Patel, P. et al. Clinical evidence for allergy in orofacial granulomatosis and inflammatory bowel disease. Clin. Transl. Allergy 3, 26 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Campbell, H. et al. Distinguishing orofacial granulomatosis from Crohn's disease: two separate disease entities? Inflamm. Bowel Dis. 17, 2109–2115 (2011).

    Article  PubMed  Google Scholar 

  76. Campbell, H. et al. Dietary intervention for oral allergy syndrome as a treatment in orofacial granulomatosis: a new approach? J. Oral Pathol. Med. 42, 517–522 (2013).

    CAS  Article  PubMed  Google Scholar 

  77. Campbell, H. E. et al. Development of a low phenolic acid diet for the management of orofacial granulomatosis. J. Hum. Nutr. Diet 26, 527–537 (2013).

    CAS  Article  PubMed  Google Scholar 

  78. Riordan, A. M. et al. Treatment of active Crohn's disease by exclusion diet: East Anglian multicentre controlled trial. Lancet 342, 1131–1134 (1993).

    CAS  Article  PubMed  Google Scholar 

  79. Takagi, S. et al. Effectiveness of an 'half elemental diet' as maintenance therapy for Crohn's disease: A randomized-controlled trial. Aliment. Pharmacol. Ther. 24, 1333–1340 (2006).

    CAS  Article  PubMed  Google Scholar 

  80. Chiba, M. et al. Lifestyle-related disease in Crohn's disease: relapse prevention by a semi-vegetarian diet. World J. Gastroenterol. 16, 2484–2495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nicholson, I., Dalzell, A. M. & El-Matary, W. Vitamin D as a therapy for colitis: a systematic review. J. Crohns Colitis 6, 405–411 (2012).

    Article  PubMed  Google Scholar 

  82. Jørgensen, S. P. et al. Clinical trial: vitamin D3 treatment in Crohn's disease—a randomized double-blind placebo-controlled study. Aliment. Pharmacol. Ther. 32, 377–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Ludvigsson, J. F. et al. Elemental versus polymeric enteral nutrition in paediatric Crohn's disease: a multicentre randomized controlled trial. Acta Paediatr. 93, 327–335 (2004).

    CAS  Article  PubMed  Google Scholar 

  84. Kansal, S., Wagner, J., Kirkwood, C. D. & Catto-Smith, A. G. Enteral nutrition in Crohn's disease: an underused therapy. Gastroenterol. Res. Pract. 2013, 482108 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Gorard, D. A. et al. Initial response and subsequent course of Crohn's disease treated with elemental diet or prednisolone. Gut 34, 1198–1202 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. van Bodegraven, A. A. et al. Treatment of bone loss in osteopenic patients with Crohn's disease: a double-blind, randomised trial of oral risedronate 35 mg once weekly or placebo, concomitant with calcium and vitamin D supplementation. Gut 63, 1424–1430 (2014).

    CAS  Article  PubMed  Google Scholar 

  87. Davies, P. S. & Rhodes, J. Maintenance of remission in ulcerative colitis with sulphasalazine or a high-fibre diet: a clinical trial. Br. Med. J. 1, 1524–1525 (1978).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Farrokhyar, F., Marshall, J. K., Easterbrook, B. & Irvine, E. J. Functional gastrointestinal disorders and mood disorders in patients with inactive inflammatory bowel disease: Prevalence and impact on health. Inflamm. Bowel Dis. 12, 38–46 (2006).

    Article  PubMed  Google Scholar 

  89. Simrén, M. et al. Quality of life in inflammatory bowel disease in remission: the impact of IBS-like symptoms and associated psychological factors. Am. J. Gastroenterol. 97, 389–396 (2002).

    Article  PubMed  Google Scholar 

  90. de Roest, R. H. et al. The low FODMAP diet improves gastrointestinal symptoms in patients with irritable bowel syndrome: a prospective study. Int. J. Clin. Pract. 67, 895–903 (2013).

    CAS  Article  PubMed  Google Scholar 

  91. Halmos, E. P. et al. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146, 67–75 (2014).

    CAS  Article  PubMed  Google Scholar 

  92. Staudacher, H. M., Whelan, K., Irving, P. M. & Lomer, M. C. E. Comparison of symptom response following advice for a diet low in fermentable carbohydrates (FODMAPs) versus standard dietary advice in patients with irritable bowel syndrome. J. Hum. Nutr. Diet 24, 487–495 (2011).

    CAS  Article  PubMed  Google Scholar 

  93. Halmos, E. et al. Restriction of dietary FODMAPs reduces gastrointestinal symptoms compared with a typical Australian intake in patients with irritable bowel syndrome: a randomised controlled cross-over trial. J. Gastroenterol. Hepatol. 27 (Suppl. 4) 141 (2012).

    Google Scholar 

  94. Pedersen, N. et al. Low FODMAP diet reduces IBS symptoms and improves quality of life in patients with IBD in a randomized controlled trial. Presented at the 9th Congress of ECCO.

  95. Gearry, R. B. et al. Reduction of dietary poorly absorbed short-chain carbohydrates (FODMAPs) improves abdominal symptoms in patients with inflammatory bowel disease—a pilot study. J. Crohn's Colitis 3, 8–14 (2009).

    Article  Google Scholar 

  96. Barrett, J. S. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 31, 874–882 (2010).

    CAS  PubMed  Google Scholar 

  97. Croagh, C. et al. Pilot study on the effect of reducing dietary FODMAP intake on bowel function in patients without a colon. Inflamm. Bowel Dis. 13, 1522–1528 (2007).

    Article  PubMed  Google Scholar 

  98. Herfarth, H. H. et al. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases. Inflamm. Bowel Dis. 20, 1194–1197 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gibson, P. R., Muir, J. G. & Newnham, E. D. Other dietary confounders. FODMAPs. Dig. Dis. (in press).

  100. Lee, J. et al. British Dietetic Association evidence-based guidelines for the dietary management of Crohn's disease in adults. J. Hum. Nutr. Diet 27, 207–218 (2014).

    CAS  Article  PubMed  Google Scholar 

  101. Levenstein, S., Prantera, C., Luzi, C. & D'Ubaldi, A. Low residue or normal diet in Crohn's disease: a prospective controlled study in Italian patients. Gut 26, 989–993 (1985).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Maconi, G. et al. Prevalence of pancreatic insufficiency in inflammatory bowel diseases. Assessment by fecal elastase-1. Dig. Dis. Sci. 53, 262–270 (2008).

    CAS  Article  PubMed  Google Scholar 

  103. Worcester, E. M. Stones from bowel disease. Endocrinol. Metab. Clin. North Am. 31, 979–999 (2002).

    CAS  Article  PubMed  Google Scholar 

  104. Tiselius, H. G. Epidemiology and medical management of stone disease. Brit. J. Urol. Int. 91, 758–767 (2003).

    Article  Google Scholar 

  105. Goh, K. & Xiao, S. D. Inflammatory bowel disease: a survey of the epidemiology in Asia. J. Dig. Dis. 10, 1–6 (2009).

    Article  PubMed  Google Scholar 

  106. Prideaux, L. et al. Inflammatory bowel disease in Asia: a systematic review. J. Gastroenterol. Hepatol. 27, 1266–1280 (2012).

    Article  PubMed  Google Scholar 

  107. Ananthakrishnan, A. N. et al. Higher predicted vitamin D status is associated with reduced risk of Crohn's disease. Gastroenterology 142, 482–489 (2012).

    CAS  Article  PubMed  Google Scholar 

  108. Steed, H., Walsh, S. & Reynolds, N. Crohn's disease incidence in NHS Tayside. Scott Med. J. 55, 22–25 (2010).

    CAS  Article  PubMed  Google Scholar 

  109. Ananthakrishnan, A. N. et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease. Gut 63, 776–784 (2014).

    CAS  Article  PubMed  Google Scholar 

  110. Ananthakrishnan, A. N. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. Gastroenterology 145, 970–977 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Khalili, H. et al. Early life factors and risk of inflammatory bowel disease in adulthood. Inflamm. Bowel Dis. 19, 542–547 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gearry, R. B. et al. Population-based cases control study of inflammatory bowel disease risk factors. J. Gastroenterol. Hepatol. 25, 325–333 (2010).

    Article  PubMed  Google Scholar 

  113. Barclay, A. R. et al. Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 155, 421–426 (2009).

    Article  PubMed  Google Scholar 

  114. Hart, A. R. et al. Diet in the aetiology of ulcerative colitis: a European prospective cohort study. Digestion 77, 57–64 (2008).

    Article  PubMed  Google Scholar 

  115. Jantchou, P. et al. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am. J. Gastroenterol. 105, 2195–2201 (2010).

    CAS  Article  PubMed  Google Scholar 

  116. Shoda, R., Matsueda, K., Yamato, S. & Umeda, N. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am. J. Clin. Nutr. 63, 741–745 (1996).

    CAS  Article  PubMed  Google Scholar 

  117. Hou, J. K., Abraham, B. & El-Serag, H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am. J. Gastroenterol. 106, 563–573 (2011).

    CAS  Article  PubMed  Google Scholar 

  118. Spooren, C. E. et al. Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 38, 1172–1187 (2013).

    CAS  Article  PubMed  Google Scholar 

  119. Klement, E. et al. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am. J. Clin. Nutr. 80, 1342–1352 (2004).

    CAS  Article  PubMed  Google Scholar 

  120. Brown, A. C., Rampertab, S. D. & Mullin, G. E. Existing dietary guidelines for Crohn's disease and ulcerative colitis. Expert Rev. Gastroenterol. Hepatol. 5, 411–425 (2011).

    Article  PubMed  Google Scholar 

  121. Gibson, P. R. Overview of inflammatory bowel disease in Australia in the last 50 years. J. Gastroenterol. Hepatol. 24, S63–S68 (2009).

    Article  PubMed  Google Scholar 

  122. Eswaran, S., Muir, J. & Chey, W. D. Fiber and functional gastrointestinal disorders. Am. J. Gastroenterol. 108, 718–727 (2013).

    CAS  Article  PubMed  Google Scholar 

  123. Biesiekierski, J. R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterolgy 145, 320–328 (2013).

    CAS  Article  Google Scholar 

  124. Benjamin, J. et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease. Gut 60, 923–929 (2011).

    CAS  Article  PubMed  Google Scholar 

  125. Campos, F. G. et al. Pharmacological nutrition in inflammatory bowel diseases. Nutr. Hosp. 18, 57–64 (2003).

    CAS  PubMed  Google Scholar 

  126. Baliga, M. S. et al. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations. Food Funct. 3, 1109–1117 (2012).

    CAS  Article  PubMed  Google Scholar 

  127. Pfeffer-Gik, T. & Levine, A. Dietary clues to the pathogenesis of Crohn's disease. Dig. Dis. 32, 389–394 (2014).

    Article  PubMed  Google Scholar 

  128. Detsky, A. S. et al. What is subjective global assessment of nutritional status? JPEN J. Parenter. Enteral Nutr. 11, 8–13 (1987).

    CAS  Article  PubMed  Google Scholar 

  129. Ferguson, M., Capra, S., Bauer, J. & Banks, M. Development of a valid and reliable malnutrition screening tool for adult acute hospital patients. Nutr. 15, 458–464 (1999).

    CAS  Article  Google Scholar 

  130. Guigoz, Y. The Mini Nutritional Assessment (MNA) review of the literature—what does it tell us? J. Nutr. Health Aging 10, 466–485 (2006).

    CAS  PubMed  Google Scholar 

  131. Fuller, N. J. et al. Inter-observer variability in the measurement of body composition. Eur. J. Clin. Nutr. 45, 43–49 (1991).

    CAS  PubMed  Google Scholar 

  132. Kyle, U. G. et al. Bioelectrical impedance analysis—part 1: review of principles and methods. Clin. Nutr. 23, 1226–1243 (2004).

    Article  PubMed  Google Scholar 

  133. Lee, S. & Kuk, J. L. Changes in fat and skeletal muscle with exercise training in obese adolescents: comparison of whole-body MRI and dual energy X-ray absorptiometry. Obesity (Silver Spring) 21, 2063–2071 (2013).

    Article  Google Scholar 

  134. Bosy-Westphal, A. et al. Accuracy of bioelectrical impedance consumer devices for measurement of body composition in comparison to whole body magnetic resonance imaging and dual X-ray absorptiometry. Obes. Facts 1, 319–324 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ishida, S. et al. Serum albumin levels correlate with inflammation rather than nutrition supply in burns patients: a retrospective study. J. Med. Invest. 61, 361–368 (2014).

    Article  PubMed  Google Scholar 

  136. Ingenbleek, Y. & Young, V. Transthyretin (prealbumin) in health and disease: nutritional implications. Annu. Rev. Nutr. 14, 495–533 (1994).

    CAS  Article  PubMed  Google Scholar 

  137. Theil, E. C. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms. Ann. Rev. Biochem. 56, 289–315 (1987).

    CAS  Article  PubMed  Google Scholar 

  138. Battat, R. et al. Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm. Bowel Dis. 20, 1120–1128 (2014).

    PubMed  Google Scholar 

  139. Gibson, R. S., Hess, S. Y., Hotz, C. & Brown, K. H. Indicators of zinc status at the population level: a review of the evidence. Br. J. Nutr. 99 (Suppl. 3), S14–S23 (2008).

    CAS  Article  PubMed  Google Scholar 

  140. Suitor, C. W. & Bailey, L. B. Dietary folate equivalents: interpretation and application. J. Acad. Nutr. Diet 100, 88–94 (2000).

    CAS  Google Scholar 

  141. Heaney, R. P. Dairy and bone health. J. Am. Coll. Nutr. 28 (Suppl. 1.) 82S–90S (2009).

    CAS  Article  PubMed  Google Scholar 

  142. Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 24, 47–66 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Leo, S. et al. Ulcerative colitis in remission: it is possible to predict the risk of relapse? Digestion 44, 217–221 (1989).

    CAS  Article  PubMed  Google Scholar 

  144. Jowett, S. L. et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut 53, 1479–1484 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Magee, E. A. et al. Associations between diet and disease activity in ulcerative colitis patients using a novel method of data analysis. Nutr. J. 4, 7 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tanaka, M. et al. Moderate dietary temperance effectively prevents relapse of Crohn disease: a prospective study of patients in remission. Gastroenterol. Nurs. 30, 202–210 (2007).

    Article  PubMed  Google Scholar 

  147. Guerreiro, C. S. et al. Fatty acids IL6 and TNFα polymorphisms: an example of nutrigenetics in Crohn's disease. Am. J. Gastroenterol. 104, 2241–2249 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Bentz, S. et al. Clinical relevance of IgG antibodies against food antigens in Crohn's disease: a double-blind cross-over diet intervention study. Digestion 81, 252–264 (2010).

    CAS  Article  PubMed  Google Scholar 

  149. Brotherton, C. S., Taylor, A. G., Bourguignon, C. & Anderson, J. G. A high-fiber diet may improve bowel function and health-related quality of life in patients with Crohn disease. Gastroenterol. Nurs. 37, 206–216 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lomer, M. C. et al. Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn's disease. Eur. J. Gastroenterol. Hepatol. 13, 101–106 (2001).

    CAS  Article  PubMed  Google Scholar 

  151. Ritchie, J. K., Wadsworth, J., Lennard-Jones, J. E. & Rogers, E. Controlled multicentre therapeutic trial of an unrefined carbohydrate, fibre rich diet in Crohn's disease. Br. Med. J. (Clin. Res. Ed.) 295, 517–520 (1987).

    CAS  Article  Google Scholar 

  152. Wilschanski, M. et al. Supplementary enteral nutrition maintains remission in paediatric Crohn's disease. Gut 38, 543–548 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Esaki, M. et al. Factors affecting recurrence in patients with Crohn's disease under nutritional therapy. Dis. Colon Rectum 49 (10 Suppl.), S68–S74 (2006).

    Article  PubMed  Google Scholar 

  154. Verma, S., Holdsworth, C. D. & Giaffer, M. H. Does adjuvant nutritional support diminish steroid dependency in Crohn disease? Scand. J. Gastroenterol. 36, 383–388 (2001).

    CAS  Article  PubMed  Google Scholar 

  155. Yamamoto, T. et al. Impact of long-term enteral nutrition on clinical and endoscopic recurrence after resection for Crohn's disease: a prospective, non-randomized, parallel, controlled study. Aliment. Pharmacol. Ther. 25, 67–72 (2007).

    CAS  Article  PubMed  Google Scholar 

  156. Yamamoto, T. et al. Enteral nutrition to suppress postoperative Crohn's disease recurrence: a five-year prospective cohort study. Int. J. Colorectal Dis. 28, 335–340 (2013).

    Article  PubMed  Google Scholar 

  157. Yamamoto, T., Nakahigashi, M., Umegae, S. & Matsumoto, K. Prospective clinical trial: enteral nutrition during maintenance infliximab in Crohn's disease. J. Gastroenterol. 45, 24–29 (2010).

    CAS  Article  PubMed  Google Scholar 

  158. Hirai, F. et al. Effectiveness of concomitant enteral nutrition therapy and Infliximab for maintenance treatment of Crohn's disease in adults. Dig. Dis. Sci. 58, 1329–1334 (2013).

    CAS  Article  PubMed  Google Scholar 

  159. Tjonneland, A. et al. Linoleic acid, a dietary n-6 polyunsaturated fatty acid, and the aetiology of ulcerative colitis: a nested case-control study within a European prospective cohort study. Gut 58, 1606–1611 (2009).

    CAS  Article  PubMed  Google Scholar 

  160. de Silva, P. S. et al. Dietary arachidonic and oleic acid intake in ulcerative colitis etiology: a prospective cohort study using 7-day food diaries. Eur. J. Gastroenterol. Hepatol. 26, 11–18 (2014).

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Peter R. Gibson.

Ethics declarations

Competing interests

P.R.G. has published books on food intolerances. E.P.H. declares no competing interests. The Department of Gastroenterology, Monash University, Australia, has published an aApp on the Monash University Low FODMAPs Diet, the proceeds of which partly go to the Department, but not to the individuals working there.

Supplementary information

Supplementary Table 1

Scorecard with interpretation of the overall findings associated with susceptibility to developing Crohn's disease or ulcerative colitis in retrospective dietary intake studies (develop from data from Spooren et al.S1) (PDF 102 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halmos, E., Gibson, P. Dietary management of IBD—insights and advice. Nat Rev Gastroenterol Hepatol 12, 133–146 (2015). https://doi.org/10.1038/nrgastro.2015.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.11

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing