Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secretory diarrhoea: mechanisms and emerging therapies

Key Points

  • Diarrhoeal disease remains a major global health burden

  • Secretory diarrhoea results from abnormal fluid and electrolyte absorption and/or secretion

  • Ion channels and transporters such as the cystic fibrosis transmembrane conductance regulator and sodium/hydrogen exchanger 3 are targets for antisecretory antidiarrhoeal drugs

  • New compounds targeting intestinal transporters are in development for antidiarrhoeal therapy, including small molecules, natural compounds and existing drugs

  • Antidiarrhoeal therapies might be useful as stand-alone therapy or together with oral rehydration solutions

Abstract

Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca2+ signalling pathways. In many secretory diarrhoeas, activation of Cl channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca2+-activated Cl channels, increases fluid secretion, while inhibition of Na+ transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of intestinal fluid absorption and secretion in secretory diarrhoeas.
Figure 2: Potential therapies for secretory diarrhoeas at various stages of development and their molecular targets.
Figure 3: Chemical structures of CFTR and CaCC inhibitors for secretory diarrhoeas.

Similar content being viewed by others

References

  1. Kramer, B. & Kanof, A. Diarrhea in children: a historical review. J. Pediatr. 57, 769–783 (1960).

    Article  CAS  PubMed  Google Scholar 

  2. WHO. Global Health Observatory Data Repository [online], (2014).

  3. Walker, C. L. et al. Global burden of childhood pneumonia and diarrhoea. Lancet 381, 1405–1416 (2013).

    Article  PubMed  Google Scholar 

  4. Moore, S. R. et al. Prolonged episodes of acute diarrhea reduce growth and increase risk of persistent diarrhea in children. Gastroenterology 139, 1156–1164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Article  PubMed  Google Scholar 

  6. Rudan, I. et al. Epidemiology and etiology of childhood pneumonia in 2010 estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J. Glob. Health 3, 010401 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clay, P. G. & Crutchley, R. D. Noninfectious diarrhea in HIV seropositive individuals: a review of prevalence rates, etiology, and management in the era of combination antiretroviral therapy. Infect. Dis. Ther. 3, 103–122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pessi, M. A. et al. Targeted therapy-induced diarrhea: A review of the literature. Crit. Rev. Oncol. Hematol. 90, 165–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Binder, H. J. Mechanisms of diarrhea in inflammatory bowel diseases. Ann. NY Acad. Sci. 1165, 285–293 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Green, P. H. & Jabri, B. Celiac disease. Annu. Rev. Med. 57, 207–221 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721.e4 (2012).

    Article  PubMed  Google Scholar 

  12. Cutz, E. et al. Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N. Engl. J. Med. 320, 646–651 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Reifen, R. M., Cutz, E., Griffiths, A. M., Ngan, B. Y. & Sherman, P. M. Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J. Pediatr. Gastroenterol. Nutr. 18, 379–385 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Fiskerstrand, T. et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N. Engl. J. Med. 366, 1586–1595 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Krejs, G. J. VIPoma syndrome. Am. J. Med. 82, 37–48 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Centers for Disease Control and Prevention. CDC estimates of foodborne illness in the United States, http://www.cdc.gov/foodborneburden/ (2014).

  17. Thiagarajah, J.R. and Verkman, A.S. Water transport in the gastrointestinal tract. In Physiology of the Gastrointestinal Tract 5th edn (eds Johnson, L. R., Barrett, K. E., Ghishan, F. K., Merchant, J. L. & Said, H. M.) (Elsevier Academic Press, 2012).

    Google Scholar 

  18. Gawenis, L. R. et al. cAMP inhibition of murine intestinal Na/H exchange requires CFTR-mediated cell shrinkage of villus epithelium. Gastroenterology 125, 1148–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, R. et al. D-glucose acts via sodium/glucose cotransporter 1 to increase NHE3 in mouse jejunal brush border by a Na+/H+ exchange regulatory factor 2-dependent process. Gastroenterology 140, 560–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, N. M. et al. Role of down-regulated in adenoma anion exchanger in HCO3 secretion across murine duodenum. Gastroenterology 136, 893–901 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Seidler, U. E. Gastrointestinal HCO3 transport and epithelial protection in the gut: new techniques, transport pathways and regulatory pathways. Curr. Opin. Pharmacol. 13, 900–908 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Xia, W. et al. The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6 (PAT-1) in fluid and electrolyte absorption in the murine small intestine. Pflugers Arch. 466, 1541–1556 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wright, E. M. et al. The Na+/glucose cotransporter (SGLT1). Acta Physiol. Scand. Suppl. 607, 201–207 (1992).

    CAS  PubMed  Google Scholar 

  24. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219, 713–725 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Canessa, C. M., Horisberger, J. D. & Rossier, B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361, 467–470 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan, S., Ramakrishna, B. S. & Binder, H. J. Stimulation of sodium chloride absorption from secreting rat colon by short-chain fatty acids. Dig. Dis. Sci. 44, 1924–1930 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kurashima, K. et al. Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. Phosphorylation-dependent and -independent mechanisms. J. Biol. Chem. 272, 28672–28679 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Yun, C. H. et al. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc. Natl Acad. Sci. USA 94, 3010–3015 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, M. et al. Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine. J. Physiol. 588, 5049–5063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zachos, N. C. et al. Phospholipase C-γ binds directly to the Na+/H+ exchanger 3 and is required for calcium regulation of exchange activity. J. Biol. Chem. 284, 19437–19444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoque, K. M. et al. Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion. J. Gen. Physiol. 135, 43–58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Namkung, W., Finkbeiner, W. E. & Verkman, A. S. CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures. Mol. Biol. Cell 21, 2639–2648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barrett, K. E. & Keely, S. J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62, 535–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Matos, J. E. et al. Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl secretion. Acta Physiol. (Oxf.) 189, 251–258 (2007).

    Article  CAS  Google Scholar 

  35. Geibel, J. et al. Calcium-sensing receptor abrogates secretagogue- induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc. Natl Acad. Sci. USA 103, 9390–9397 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Cooke, H. J., Shonnard, K. & Wood, J. D. Effects of neuronal stimulation on mucosal transport in guinea pig ileum. Am. J. Physiol. 245, G290–G296 (1983).

    CAS  Google Scholar 

  37. Field, M., Fromm, D., al-Awqati, Q. & Greenough, W. B. 3rd Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest. 51, 796–804 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rao, M. C., Guandalini, S., Smith, P. L. & Field, M. Mode of action of heat-stable Escherichia coli enterotoxin. Tissue and subcellular specificities and role of cyclic GMP. Biochim. Biophys. Acta 632, 35–46 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Subramanya, S. B. et al. Differential regulation of cholera toxin-inhibited Na-H exchange isoforms by butyrate in rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G857–G863 (2007).

    Article  CAS  Google Scholar 

  40. Hecht, G. et al. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G370–G378 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Matkowskyj, K. et al. Age-dependent differences in galanin-dependent colonic fluid secretion after infection with Salmonella typhimurium. Gut 58, 1201–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Wapnir, R. A. & Teichberg, S. Regulation mechanisms of intestinal secretion: implications in nutrient absorption. J. Nutr. Biochem. 13, 190–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Berkes, J., Viswanathan, V. K., Savkovic, S. D. & Hecht, G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52, 439–451 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gill, R. K. et al. Mechanism underlying inhibition of intestinal apical Cl/OH exchange following infection with enteropathogenic E. coli. J. Clin. Invest. 117, 428–437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchelletta, R. R. et al. Altered expression and localization of ion transporters contribute to diarrhea in mice with Salmonella-induced enteritis. Gastroenterology 145, 1358–1368.e1–e4 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Greenberg, H. B. & Estes, M. K. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136, 1939–1951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ball, J. M., Tian, P., Zeng, C. Q., Morris, A. P. & Estes, M. K. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272, 101–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Morris, A. P. et al. NSP4 elicits age-dependent diarrhea and Ca2+ mediated I influx into intestinal crypts of CF mice. Am. J. Physiol. 277, G431–G444 (1999).

    CAS  PubMed  Google Scholar 

  49. Seo, N.-S. et al. Integrins α1β1 and α2β1 are receptors for the rotavirus enterotoxin. Proc. Natl Acad. Sci. USA 105, 8811–8818 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Hempson, S. J. et al. Rotavirus infection of murine small intestine causes colonic secretion via age restricted galanin-1 receptor expression. Gastroenterology 138, 2410–2417 (2010).

    Article  PubMed  Google Scholar 

  51. Lundgren, O. et al. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287, 491–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Halaihel, N. et al. Direct inhibitory effect of rotavirus NSP4 (114–135) peptide on the Na+-D-glucose symporter of rabbit intestinal brush border membrane. J. Virol. 74, 9464–9470 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Payne, D. C. et al. Norovirus and medically attended gastroenteritis in, U. S. children. N. Engl. J. Med. 368, 1121–1130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rufo, P. A. et al. Diarrhea-associated HIV-1 APIs potentiate muscarinic activation of Cl secretion by T84 cells via prolongation of cytosolic Ca2+ signaling. Am. J. Physiol. Cell Physiol. 286, C998–C1008 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Andreyev, J. et al. Guidance on the management of diarrhoea during cancer chemotherapy. Lancet Oncol. 15, e447–e460 (2014).

    Article  PubMed  Google Scholar 

  56. Turk, E., Zabel, B., Mundlos, S., Dyer, J. & Wright, E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature 350, 354–356 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Höglund, P. et al. Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat. Genet. 14, 316–319 (1996).

    Article  PubMed  Google Scholar 

  58. Kravtsov, D. et al. Myosin 5b loss of function leads to defects in polarized signaling: implication for microvillus inclusion disease pathogenesis and treatment. Am. J. Physiol. Gastrointest. Liver Physiol. 307, G992–G1001 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kozan, P. A. et al. Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction. J. Mol. Med. (Berl.) 93, 535–545 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Canani, R. B. & Terrin, G. Recent progress in congenital diarrheal disorders. Curr. Gastroenterol. Rep. 13, 257–264 (2011).

    Article  PubMed  Google Scholar 

  61. Pezzella, V. et al. Investigation of chronic diarrhoea in infancy. Early Hum. Dev. 89, 893–897 (2013).

    Article  PubMed  Google Scholar 

  62. Gareau, M. G. & Barrett, K. E. Fluid and electrolyte secretion in the inflamed gut: novel targets for treatment of inflammation-induced diarrhea. Curr. Opin. Pharmacol. 13, 895–899 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Gelbmann, C. M., Schteingart, C. D., Thompson, S. M., Hofmann, A. F. & Barrett, K. E. Mast cells and histamine contribute to bile acid-stimulated secretion in the mouse colon. J. Clin. Invest. 95, 2831–2839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Medani, M. et al. Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor. Life Sci. 122, 87–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Larmonier, C. B. et al. NHE3 modulates the severity of colitis in IL-10-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G998–G1009 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sullivan, S. et al. Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models: potential contributors to IBD-associated diarrhea. Inflamm. Bowel Dis. 15, 261–274 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yeruva, S. et al. Preserved Na+/H+ exchanger isoform 3 expression and localization, but decreased NHE3 function indicate regulatory sodium transport defect in ulcerative colitis. Inflamm. Bowel Dis. 16, 1149–1161 (2010).

    Article  PubMed  Google Scholar 

  68. Sun, X. & Hirota, S. A. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol. Immunol. 63, 193–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Bruzzese, E., Lo Vecchio, A. & Guarino, A. Hospital management of children with acute gastroenteritis. Curr. Opin. Gastroenterol. 29, 23–30 (2013).

    Article  PubMed  Google Scholar 

  70. Sentongo, T. A. The use of oral rehydration solutions in children and adults. Curr. Gastroenterol. Rep. 6, 307–313 (2004).

    Article  PubMed  Google Scholar 

  71. McMahan, Z. H. & DuPont, H. L. Review article: the history of acute infectious diarrhoea management—from poorly focused empiricism to fluid therapy and modern pharmacotherapy. Aliment. Pharmacol. Ther. 25, 759–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Johnson, J. R. et al. Similarity between human and chicken Escherichia coli isolates in relation to ciprofloxacin resistance status. J. Infect. Dis. 194, 71–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Gallay, A. et al. Campylobacter antimicrobial drug resistance among humans, broiler chickens, and pigs, France. Emerg. Infect. Dis. 13, 259–266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Binder, H. J., Brown, I., Ramakrishna, B. S. & Young, G. P. Oral rehydration therapy in the second decade of the twenty-first century. Curr. Gastroenterol. Rep. 16, 376 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Das, J. K., Salam, R. A. & Bhutta, Z. A. Global burden of childhood diarrhea and interventions. Curr. Opin. Infect. Dis. 27, 451–458 (2014).

    Article  PubMed  Google Scholar 

  76. Unger, C. C. et al. Treating diarrhoeal disease in children under five: the global picture. Arch. Dis. Child. 99, 273–278 (2014).

    Article  PubMed  Google Scholar 

  77. Santosham, M. et al. Progress and barriers for the control of diarrhoeal disease. Lancet 376, 63–67 (2010).

    Article  PubMed  Google Scholar 

  78. Raghupathy, P. et al. Amylase-resistant starch as adjunct to oral rehydration therapy in children with diarrhea. J. Pediatr. Gastroenterol. Nutr. 42, 362–368 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Subramanya, S., Ramakrishna, B. S., Binder, H. J., Farthing, M. J. & Young, G. P. Evaluation of oral rehydration solution by whole-gut perfusion in rats: effect of osmolarity, sodium concentration and resistant starch. J. Pediatr. Gastroenterol. Nutr. 43, 568–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Lamberti, L. M., Walker, C. L., Chan, K. Y., Jian, W.-Y. & Black, R. E. Oral zinc supplementation for the treatment of acute diarrhea in children: a systematic review and meta-analysis. Nutrients 5, 4715–4740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hoque, K. M., Sarker, R., Guggino, S. E. & Tse, C.-M. A new insight into pathophysiological mechanisms of zinc in diarrhea. Ann. NY Acad. Sci. 1165, 279–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hoque, K. M., Rajendran, V. M. & Binder, H. J. Zinc inhibits cAMP-stimulated Cl secretion via basolateral K-channel blockade in rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G956–G963 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Karim, A., Ranney, R. E., Evensen, K. L. & Clark, M. L. Pharmacokinetics and metabolism of diphenoxylate in man. Clin. Pharmacol. Ther. 13, 407–419 (1972).

    Article  CAS  PubMed  Google Scholar 

  84. Camilleri, M. et al. Efficacy and safety of alosetron in women with irritable bowel syndrome: a randomised, placebo-controlled trial. Lancet 355, 1035–1040 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. DuPont, H. L. et al. Comparative efficacy of loperamide hydrochloride and bismuth subsalicylate in the management of acute diarrhea. Am. J. Med. 88, 15S–19S (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Powell, D. W., Tapper, E. J. & Morris, S. M. Aspirin-stimulated intestinal electrolyte transport in rabbit ileum in vitro. Gastroenterology 76, 1429–1437 (1979).

    Article  CAS  PubMed  Google Scholar 

  87. Hamza, H., Ben Khalifa, H., Baumer, P., Berard, H. & Lecomte, J. M. Racecadotril versus placebo in the treatment of acute diarrhoea in adults. Aliment. Pharmacol. Ther. 13 (Suppl. 6), 15–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Alam, N. H., Ashraf, H., Khan, W. A., Karim, M. M. & Fuchs, G. J. Efficacy and tolerability of racecadotril in the treatment of cholera in adults: a double blind, randomised, controlled clinical trial. Gut 52, 1419–1423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Macarthur, R. D. et al. Efficacy and safety of crofelemer for noninfectious diarrhea in HIV-seropositive individuals (ADVENT trial): a randomized, double-blind, placebo-controlled, two-stage study. HIV Clin. Trials 14, 261–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Tradtrantip, L., Namkung, W. & Verkman, A. S. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol. Pharmacol. 77, 69–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Szajewska, H. & Mrukowicz, J. Z. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J. Pediatr. Gastroenterol. Nutr. 33 (Suppl. 2), S17–S25 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Sazawal, S. et al. Efficacy of probiotics in prevention of acute diarrhoea: a meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect. Dis. 6, 374–382 (2006).

    Article  PubMed  Google Scholar 

  93. Allen, S. J., Martinez, E. G., Gregorio, G. V. & Dans, L. F. Probiotics for treating acute infectious diarrhoea. Cochrane Database of Systematic Reviews, Issue 11. Art. No.: CD003048 http://dx.doi.org/10.1002/14651858.CD003048.pub3.

  94. Borthakur, A. et al. The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J. Nutr. 138, 1355–1359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raheja, G. et al. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G395–G401 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Resta-Lenert, S. & Barrett, K. E. Probiotics and commensals reverse TNF-α- and IFN-γ-induced dysfunction in human intestinal epithelial cells. Gastroenterology 130, 731–746 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Agustina, R. et al. Randomized trial of probiotics and calcium on diarrhea and respiratory tract infections in Indonesian children. Pediatrics 129, e1155–e1164 (2012).

    Article  PubMed  Google Scholar 

  98. Donowitz, M. et al. Translational approaches for pharmacotherapy development for acute diarrhea. Gastroenterology 142, e1–e9 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Thiagarajah, J. R., Broadbent, T., Hsieh, E. & Verkman, A. S. Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. Gastroenterology 126, 511–519 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Grubb, B. R. Ion transport across the jejunum in normal and cystic fibrosis mice. Am. J. Physiol. 268, G505–G513 (1995).

    CAS  PubMed  Google Scholar 

  101. O'Loughlin, E. V. et al. Abnormal epithelial transport in cystic fibrosis jejunum. Am. J. Physiol. 260, G758–G763 (1991).

    CAS  PubMed  Google Scholar 

  102. Caci, E. et al. Evidence for direct CFTR inhibition by CFTRinh-172 based on Arg347 mutagenesis. Biochem. J. 413, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, T. et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Invest. 110, 1651–1658 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Snyder, D. S., Tradtrantip, L., Yao, C., Kurth, M. J. & Verkman, A. S. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. J. Med. Chem. 54, 5468–5477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tradtrantip, L., Sonawane, N. D., Namkung, W. & Verkman, A. S. Nanomolar potency pyrimido-pyrrolo-quinoxalinedione CFTR inhibitor reduces cyst size in a polycystic kidney disease model. J. Med. Chem. 52, 6447–6455 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Muanprasat, C. et al. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J. Gen. Physiol. 124, 125–137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. de Hostos, E. L., Choy, R. K. & Nguyen, T. Developing novel antisecretory drugs to treat infectious diarrhea. Future Med. Chem. 3, 1317–1325 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Jin, B.-J., Thiagarajah, J. R. & Verkman, A. S. Convective washout reduces the antidiarrheal efficacy of enterocyte surface-targeted antisecretory drugs. J. Gen. Physiol. 141, 261–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sonawane, N. D., Zhao, D., Zegarra-Moran, O., Galietta, L. J. & Verkman, A. S. Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology 132, 1234–1244 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Sonawane, N. D., Zhao, D., Zegarra-Moran, O., Galietta, L. J. & Verkman, A. S. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. Chem. Biol. 15, 718–728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Singh, R. D. et al. Ano1, a Ca2+-activated Cl channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J. Physiol. 592, 4051–4068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Namkung, W., Phuan, P.-W. & Verkman, A. S. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J. Biol. Chem. 286, 2365–2374 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. De La Fuente, R., Namkung, W., Mills, A. & Verkman, A. S. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol. Pharmacol. 73, 758–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Ko, E.-A. et al. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice. Gut 63, 1120–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Tradtrantip, L., Ko, E.-A. & Verkman, A. S. Antidiarrheal efficacy and cellular mechanisms of a Thai herbal remedy. PLoS Negl. Trop. Dis. 8, e2674 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Delpire, E., Lu, J., England, R., Dull, C. & Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat. Genet. 22, 192–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Chattopadhyay, N. et al. Identification and localization of extracellular Ca2+-sensing receptor in rat intestine. Am. J. Physiol. 274, G122–G130 (1998).

    CAS  PubMed  Google Scholar 

  118. Jouret, F. et al. Activation of the Ca2+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J. Cell Sci. 126, 5132–5142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. MacVinish, L. J., Hickman, M. E., Mufti, D. A., Durrington, H. J. & Cuthbert, A. W. Importance of basolateral K+ conductance in maintaining Cl secretion in murine nasal and colonic epithelia. J. Physiol. 510, 237–247 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rufo, P. A. et al. The antifungal antibiotic, clotrimazole, inhibits chloride secretion by human intestinal T84 cells via blockade of distinct basolateral K+ conductances. Demonstration of efficacy in intact rabbit colon and in an in vivo mouse model of cholera. J. Clin. Invest. 100, 3111–3120 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wulff, H. & Castle, N. A. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev. Clin. Pharmacol. 3, 385–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yeo, C. J., Barry, K., Gontarek, J. D. & Donowitz, M. Na+/H+ exchange mediates meal-stimulated ileal absorption. Surgery 116, 388–394 (1994).

    CAS  PubMed  Google Scholar 

  123. Gill, R. K. et al. Serotonin inhibits Na+/H+ exchange activity via 5-HT4 receptors and activation of PKCα in human intestinal epithelial cells. Gastroenterology 128, 962–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Li, X. et al. Carbachol regulation of rabbit ileal brush border Na+-H+ exchanger 3 (NHE3) occurs through changes in NHE3 trafficking and complex formation and is Src dependent. J. Physiol. 556, 791–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Booth, I. W., Stange, G., Murer, H., Fenton, T. R. & Milla, P. J. Defective jejunal brush-border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet 1, 1066–1069 (1985).

    Article  CAS  PubMed  Google Scholar 

  126. Foulke-Abel, J. et al. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. (Maywood) 239, 1124–1134 (2014).

    Article  CAS  Google Scholar 

  127. Johansson, E. et al. Molecular cloning and expression of a pituitary gland protein modulating intestinal fluid secretion. J. Biol. Chem. 270, 20615–20620 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Lange, S. & Lönnroth, I. The antisecretory factor: synthesis, anatomical and cellular distribution, and biological action in experimental and clinical studies. Int. Rev. Cytol. 210, 39–75 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Zaman, S. et al. Antisecretory factor effectively and safely stops childhood diarrhoea: a placebo-controlled, randomised study. Acta Paediatr. Oslo Nor. 103, 659–664 (2014). (1992).

    Article  CAS  Google Scholar 

  130. Li, C. et al. Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J. Exp. Med. 202, 975–986 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Murtazina, R. et al. NHERF2 is necessary for basal activity, second messenger inhibition, and LPA stimulation of NHE3 in mouse distal ileum. Am. J. Physiol. Cell Physiol. 301, C126–C136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dove, L. S. et al. Eluxadoline benefits patients with irritable bowel syndrome with diarrhea in a phase 2 study. Gastroenterology 145, 329–338.e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Brown, P. M. et al. The tryptophan hydroxylase inhibitor LX1031 shows clinical benefit in patients with nonconstipating irritable bowel syndrome. Gastroenterology 141, 507–516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Walters, J. R. et al. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid. Aliment. Pharmacol. Ther. 41, 54–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Koch, K. M. et al. Alosetron repeat dose pharmacokinetics, effects on enzyme activities, and influence of demographic factors. Aliment. Pharmacol. Ther. 20, 223–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Hofmann, A. F. & Poley, J. R. Cholestyramine treatment of diarrhea associated with ileal resection. N. Engl. J. Med. 281, 397–402 (1969).

    Article  CAS  PubMed  Google Scholar 

  137. Ericsson, C. D. & Johnson, P. C. Safety and efficacy of loperamide. Am. J. Med. 88, 10S–14S (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.R.T. has received a grant from the National Institute of Child Health and Human Development (HD00085), M.D. has received grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK089502, DK061765, DK026532, DK072084, DK099803) and a Gates Foundation Grand Challenges award, and A.S.V. has received grants from the National Institute of Diabetes and Digestive and Kidney Diseases (DK072517, DK035124, DK101373), the National Eye Institute (EY13574) and the National Institute of Biomedical Imaging and Bioengineering (EB000415).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects in the production of this article.

Corresponding author

Correspondence to Alan S. Verkman.

Ethics declarations

Competing interests

A.S.V. is a named inventor on several CFTR and CaCC inhibitor patents owned by the University of California, San Francisco. J.R.T. and M.D. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiagarajah, J., Donowitz, M. & Verkman, A. Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 12, 446–457 (2015). https://doi.org/10.1038/nrgastro.2015.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing