Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging roles of microvesicles in liver diseases

Key Points

  • Microvesicles (MVs) are 0.1–1.0 μm vesicles containing lipids, proteins, RNAs and microRNAs; they are formed by budding from the cellular plasma membrane

  • Circulating levels of several subpopulations of MVs are increased in patients with liver diseases, probably due to enhanced MV production and decreased MV clearance, related to the individual liver disorder

  • MVs are now implicated at many stages of liver disease progression, including liver fibrogenesis, portal hypertension and activation of coagulation

  • Several results suggest that MVs have a role in hepatocellular carcinoma by conveying information between tumour cells and between tumour and neighbouring cells

  • High levels of circulating procoagulant MVs have been found in patients with acute liver failure and might contribute to normal or hypercoagulable global haemostasis in this setting

  • MVs have promise as diagnostic and prognostic biomarkers in patients with liver diseases

Abstract

Microvesicles (MVs) are extracellular vesicles released by virtually all cells, under both physiological and pathological conditions. They contain lipids, proteins, RNAs and microRNAs and act as vectors of information that regulate the function of target cells. This Review provides an overview of the studies assessing circulating MV levels in patients with liver diseases, together with an insight into the mechanisms that could account for these changes. We also present a detailed analysis of the implication of MVs in key processes of liver diseases. MVs have a dual role in fibrosis as certain types of MVs promote fibrolysis by increasing expression of matrix metalloproteinases, whereas others promote fibrosis by stimulating processes such as angiogenesis. MVs probably enhance portal hypertension by contributing to intrahepatic vasoconstriction, splanchnic vasodilation and angiogenesis. As MVs can modulate vascular permeability, vascular tone and angiogenesis, they might contribute to several complications of cirrhosis including hepatic encephalopathy, hepatopulmonary syndrome and hepatorenal syndrome. Several results also suggest that MVs have a role in hepatocellular carcinoma. Although MVs represent promising biomarkers in patients with liver disease, methods of isolation and subsequent analysis must be standardized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Definitions of microvesicles.
Figure 2: Microvesicles in liver diseases.
Figure 3: Microvesicles in liver fibrosis.
Figure 4: Microvesicles in portal hypertension.
Figure 5: Microvesicles in hepatocellular carcinoma.

Similar content being viewed by others

References

  1. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Article  CAS  Google Scholar 

  2. van der Pol, E., Boing, A. N., Harrison, P., Sturk, A. & Nieuwland, R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Connor, D. E., Exner, T., Ma, D. D. & Joseph, J. E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Mause, S. F. & Weber, C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 107, 1047–1057 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Rautou, P. E. & Mackman, N. Deletion of microvesicles from the circulation. Circulation 125, 1601–1604 (2012).

    Article  PubMed  Google Scholar 

  6. Bernimoulin, M. et al. Differential stimulation of monocytic cells results in distinct populations of microparticles. J. Thromb. Haemost. 7, 1019–1028 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leroyer, A. S. et al. CD40 ligand microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J. Am. Coll. Cardiol. 52, 1302–1311 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Berckmans, R. J., Sturk, A., van Tienen, L. M., Schaap, M. C. & Nieuwland, R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117, 3172–3180 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Rood, I. M. et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int. 78, 810–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Witek, R. P. et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 136, 320–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chahed, S. et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 59, 694–701 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Franz, C. et al. Procoagulant tissue factor-exposing vesicles in human seminal fluid. J. Reprod. Immunol. 98, 45–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Leroyer, A. S. et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation 119, 2808–2817 (2009).

    Article  PubMed  Google Scholar 

  15. Baron, M. et al. PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH. Atherosclerosis 218, 69–76 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Amabile, N., Rautou, P. E., Tedgui, A. & Boulanger, C. M. Microparticles: key protagonists in cardiovascular disorders. Semin. Thromb. Hemost. 36, 907–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Rautou, P. E. & Mackman, N. Microvesicles as risk markers for venous thrombosis. Expert Rev. Hematol. 6, 91–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Zahra, S., Anderson, J. A., Stirling, D. & Ludlam, C. A. Microparticles, malignancy and thrombosis. Br. J. Haematol. 152, 688–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Fusegawa, H. et al. Platelet activation in patients with chronic hepatitis C. Tokai J. Exp. Clin. Med. 27, 101–106 (2002).

    PubMed  Google Scholar 

  20. Brodsky, S. V. et al. Dynamics of circulating microparticles in liver transplant patients. J. Gastrointestin. Liver Dis. 17, 261–268 (2008).

    PubMed  Google Scholar 

  21. Sayed, D., Amin, N. F. & Galal, G. M. Monocyte-platelet aggregates and platelet micro-particles in patients with post-hepatitic liver cirrhosis. Thromb. Res. 125, e228–e233 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Kornek, M., Popov, Y., Libermann, T. A., Afdhal, N. H. & Schuppan, D. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells. Hepatology 53, 230–242 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Ogasawara, F. et al. Platelet activation in patients with alcoholic liver disease. Tokai J. Exp. Clin. Med. 30, 41–48 (2005).

    PubMed  Google Scholar 

  24. Rautou, P. E. et al. Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis. Gastroenterology 143, 166–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Kornek, M. et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 143, 448–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Esch, J. S. et al. Platelet activation and increased tissue factor expression on monocytes in reperfusion injury following orthotopic liver transplantation. Platelets 21, 348–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal, B. et al. Evaluation of coagulation abnormalities in acute liver failure. J. Hepatol. 57, 780–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal, B. et al. Hemostasis in patients with acute kidney injury secondary to acute liver failure. Kidney Int. 84, 158–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Stravitz, R. T. et al. Role of procoagulant microparticles in mediating complications and outcome of acute liver injury/acute liver failure. Hepatology 58, 304–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Schmelzle, M. et al. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplantation 95, 63–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y., Davis-Gorman, G., Watson, R. R. & McDonagh, P. F. Platelet CD62p expression and microparticle in murine acquired immune deficiency syndrome and chronic ethanol consumption. Alcohol 38, 25–30 (2003).

    Article  CAS  Google Scholar 

  32. Meckes, D. G. Jr & Raab-Traub, N. Microvesicles and viral infection. J. Virol. 85, 12844–12854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diamant, M. et al. Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106, 2442–2447 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Esposito, K. et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J. Clin. Endocrinol. Metab. 91, 3676–3679 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira, A. C. et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation 110, 3599–3603 (2004).

    Article  PubMed  Google Scholar 

  36. Navasiolava, N. M. et al. Enforced physical inactivity increases endothelial microparticle levels in healthy volunteers. Am. J. Physiol. Heart Circ. Physiol. 299, H248–H256 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Guicciardi, M. E. & Gores, G. J. Apoptosis as a mechanism for liver disease progression. Semin. Liver Dis. 30, 402–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Violi, F. et al. Patients with liver cirrhosis suffer from primary haemostatic defects? Fact or fiction? J. Hepatol. 55, 1415–1427 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Miyoshi, H. et al. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. Gastroenterology 110, 1897–1904 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Cazzaniga, M. et al. Increased flow-mediated vasodilation in cirrhotic patients with ascites: relationship with renal resistive index. Liver Int. 28, 1396–1401 (2008).

    Article  PubMed  Google Scholar 

  41. Tazi, K. A. et al. Role of shear stress in aortic eNOS up-regulation in rats with biliary cirrhosis. Gastroenterology 122, 1869–1877 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Rasaratnam, B., Kaye, D., Jennings, G., Dudley, F. & Chin-Dusting, J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. A randomized trial. Ann. Intern. Med. 139, 186–193 (2003).

    Article  PubMed  Google Scholar 

  43. Nomura, S., Nakamura, T., Cone, J., Tandon, N. N. & Kambayashi, J. Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 40, 173–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Abid Hussein, M. N. et al. Cell-derived microparticles contain caspase 3 in vitro and in vivo. J. Thromb. Haemost. 3, 888–896 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Essayagh, S. et al. Microparticles from apoptotic vascular smooth muscle cells induce endothelial dysfunction, a phenomenon prevented by β3-integrin antagonists. Thromb. Haemost. 94, 853–858 (2005).

    CAS  PubMed  Google Scholar 

  46. Szotowski, B. et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc. Res. 73, 806–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, M. L., Reilly, M. P., Casasanto, P., McKenzie, S. E. & Williams, K. J. Cholesterol enrichment of human monocyte/macrophages induces surface exposure of phosphatidylserine and the release of biologically-active tissue factor-positive microvesicles. Arterioscler. Thromb. Vasc. Biol. 27, 430–435 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Li, D. et al. TLR4 signaling induces the release of microparticles by tumor cells that regulate inflammatory cytokine IL-6 of macrophages via microRNA let-7b. Oncoimmunology 1, 687–693 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Povero, D. et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require vanin-1 for uptake by endothelial cells. Sci. Signal. 6, ra88 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Al Faraj, A. et al. Endothelial cell-derived microparticles loaded with iron oxide nanoparticles: feasibility of MR imaging monitoring in mice. Radiology 263, 169–178 (2012).

    Article  PubMed  Google Scholar 

  51. Willekens, F. L. et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors. Blood 105, 2141–2145 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Gomez, F., Ruiz, P. & Schreiber, A. D. Impaired function of macrophage Fc γ receptors and bacterial infection in alcoholic cirrhosis. N. Engl. J. Med. 331, 1122–1128 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, L., Pan, D. D., Zhou, J. & Jiang, Y. Z. Protective effect of selenium-enriched Lactobacillus on CCl4-induced liver injury in mice and its possible mechanisms. World J. Gastroenterol. 11, 5795–5800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rimola, A. et al. Reticuloendothelial system phagocytic activity in cirrhosis and its relation to bacterial infections and prognosis. Hepatology 4, 53–58 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Tanimoto, A. et al. Superparamagnetic iron oxide-mediated hepatic signal intensity change in patients with and without cirrhosis: pulse sequence effects and Kupffer cell function. Radiology 222, 661–666 (2002).

    Article  PubMed  Google Scholar 

  56. Dasgupta, S. K., Le, A., Chavakis, T., Rumbaut, R. E. & Thiagarajan, P. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium. Circulation 125, 1664–1672 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Distler, J. H. et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles. Proc. Natl Acad. Sci. USA 102, 2892–2897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taraboletti, G. et al. Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am. J. Pathol. 160, 673–680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gasser, O. et al. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp. Cell. Res. 285, 243–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Szabo, G. & Bala, S. MicroRNAs in liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 542–552 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Diehl, P. et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc. Res. 93, 633–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cantaluppi, V. et al. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82, 412–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Thabut, D. & Shah, V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J. Hepatol. 53, 976–980 (2010).

    Article  PubMed  Google Scholar 

  65. Mause, S. F. et al. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation 122, 495–506 (2010).

    Article  PubMed  Google Scholar 

  66. Benameur, T., Soleti, R., Porro, C., Andriantsitohaina, R. & Martinez, M. C. Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PLoS ONE 5, e12688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Deregibus, M. C. et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110, 2440–2448 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Thabut, D. et al. High-density lipoprotein administration attenuates liver proinflammatory response, restores liver endothelial nitric oxide synthase activity, and lowers portal pressure in cirrhotic rats. Hepatology 46, 1893–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Aram, G., Potter, J. J., Liu, X., Torbenson, M. S. & Mezey, E. Lack of inducible nitric oxide synthase leads to increased hepatic apoptosis and decreased fibrosis in mice after chronic carbon tetrachloride administration. Hepatology 47, 2051–2058 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Nieuwland, R. et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 95, 930–935 (2000).

    CAS  PubMed  Google Scholar 

  72. Owens, A. P. 3rd & Mackman, N. Microparticles in hemostasis and thrombosis. Circ. Res. 108, 1284–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Valla, D. C. Thrombosis and anticoagulation in liver disease. Hepatology 47, 1384–1393 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Teoh, N. C. et al. Diannexin, a novel annexin V homodimer, provides prolonged protection against hepatic ischemia–reperfusion injury in mice. Gastroenterology 133, 632–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Garcia-Pagan, J. C., Gracia-Sancho, J. & Bosch, J. Functional aspects on the pathophysiology of portal hypertension in cirrhosis. J. Hepatol. 57, 458–461 (2012).

    Article  PubMed  Google Scholar 

  76. Lemoinne, S. et al. Portal myofibroblasts promote liver angiogenesis through the release of microparticles and interaction with cholangiocytes. Hepatology 56, 304A–305A (2012).

    Google Scholar 

  77. Schwartz, D. et al. Inhibition of constitutive nitric oxide synthase (NOS) by nitric oxide generated by inducible NOS after lipopolysaccharide administration provokes renal dysfunction in rats. J. Clin. Invest. 100, 439–448 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mostefai, H. A. et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am. J. Respir. Crit. Care Med. 178, 1148–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Melgar-Lesmes, P. et al. Vascular endothelial growth factor and angiopoietin-2 play a major role in the pathogenesis of vascular leakage in cirrhotic rats. Gut 58, 285–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Densmore, J. C. et al. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26, 464–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Perez-Casal, M. et al. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 94, 387–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tripodi, A. & Mannucci, P. M. The coagulopathy of chronic liver disease. N. Engl. J. Med. 365, 147–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Press, J. Z. et al. Microparticles from ovarian carcinomas are shed into ascites and promote cell migration. Int. J. Gynecol. Cancer 22, 546–552 (2012).

    Article  PubMed  Google Scholar 

  84. Ginestra, A., Miceli, D., Dolo, V., Romano, F. M. & Vittorelli, M. L. Membrane vesicles in ovarian cancer fluids: a new potential marker. Anticancer Res. 19, 3439–3445 (1999).

    CAS  PubMed  Google Scholar 

  85. Choi, D. S. et al. Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics 11, 2745–2751 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Cejudo-Martin, P. et al. Hypoxia is an inducer of vasodilator agents in peritoneal macrophages of cirrhotic patients. Hepatology 36, 1172–1179 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Jimenez, W. et al. Nitric oxide production and inducible nitric oxide synthase expression in peritoneal macrophages of cirrhotic patients. Hepatology 30, 670–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Morales-Ruiz, M. et al. Ascites from cirrhotic patients induces angiogenesis through the phosphoinositide 3-kinase/Akt signaling pathway. J. Hepatol. 43, 85–91 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Wright, G. & Jalan, R. Ammonia and inflammation in the pathogenesis of hepatic encephalopathy: Pandora's box? Hepatology 46, 291–294 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Wright, G. et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Jayakumar, A. R., Tong, X. Y., Ospel, J. & Norenberg, M. D. Role of cerebral endothelial cells in the astrocyte swelling and brain edema associated with acute hepatic encephalopathy. Neuroscience 218, 305–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Rodriguez-Roisin, R. & Krowka, M. J. Hepatopulmonary syndrome—a liver-induced lung vascular disorder. N. Engl. J. Med. 358, 2378–2387 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Amabile, N. et al. Cellular microparticles in the pathogenesis of pulmonary hypertension. Eur. Respir. J. 42, 272–279 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Camus, S. M. et al. Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 120, 5050–5058 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Tripodi, A. et al. An imbalance of pro- vs anti-coagulation factors in plasma from patients with cirrhosis. Gastroenterology 137, 2105–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Tripodi, A., Anstee, Q. M., Sogaard, K. K., Primignani, M. & Valla, D. C. Hypercoagulability in cirrhosis: causes and consequences. J. Thromb. Haemost. 9, 1713–1723 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Tripodi, A., Primignani, M., Lemma, L., Chantarangkul, V. & Mannucci, P. M. Evidence that low protein C contributes to the procoagulant imbalance in cirrhosis. J. Hepatol. 59, 265–270 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wiest, R. & Garcia-Tsao, G. Bacterial translocation (BT) in cirrhosis. Hepatology 41, 422–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Rautou, P.-E., Vion, A.-C., Luyendyk, J. P. & Mackman, N. Microparticle tissue factor activity is increased in patients with cirrhosis. Hepatology (in press).

  100. Stravitz, R. T. et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J. Hepatol. 56, 129–136 (2012).

    Article  PubMed  Google Scholar 

  101. Ganey, P. E. et al. Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 46, 1177–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Zafrani, L. et al. Calpastatin controls polymicrobial sepsis by limiting procoagulant microparticle release. Am. J. Respir. Crit. Care Med. 185, 744–755 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thaler, J. et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J. Thromb. Haemost. 10, 1363–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Rak, J. Microparticles in cancer. Semin. Thromb. Hemost. 36, 888–906 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Al-Nedawi, K., Meehan, B., Kerbel, R. S., Allison, A. C. & Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl Acad. Sci. USA 106, 3794–3799 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Jaiswal, R. et al. Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J. 26, 420–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Shedden, K., Xie, X. T., Chandaroy, P., Chang, Y. T. & Rosania, G. R. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 63, 4331–4337 (2003).

    CAS  PubMed  Google Scholar 

  109. Sidhu, S. S., Mengistab, A. T., Tauscher, A. N., LaVail, J. & Basbaum, C. The microvesicle as a vehicle for EMMPRIN in tumor–stromal interactions. Oncogene 23, 956–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Ma, J. et al. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β(2) to tumor cells. J. Immunol. 191, 3453–3461 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Fonsato, V. et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30, 1985–1998 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Villa, E. et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology 143, 1253–1260 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Hu, J. et al. Plasma microRNA, a potential biomarker for acute rejection after liver transplantation. Transplantation 95, 991–999 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Lacroix, R. et al. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 11, 1190–1193 (2013).

    Article  Google Scholar 

  115. European Association of National Metrology Institutes (EURA-MET). Metrological characterisation of micro-vesicles from body fluids as non-invasive diagnostic biomarkers [online], (2014).

  116. European Cooperation in Science and Technology (COST). European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD) [online], (2012).

  117. Herrera, M. B. et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J. Cell. Mol. Med. 14, 1605–1618 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This authors of this Review receive funding for laboratory research from the Société Nationale Française de Gastroentérologie (SNFGE), the Association Française pour l'Étude du Foie (AFEF) and the Agence Nationale pour la Recherche (ANR-12-EMMA-0012-03).

Author information

Authors and Affiliations

Authors

Contributions

S. Lemoinne and P.-E. Rautou contributed to all aspects of the preparation of this manuscript. D. Thabut, C. Housset, R. Moreau, D. Valla and C. M. Boulanger contributed to discussion of content and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Pierre-Emmanuel Rautou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoinne, S., Thabut, D., Housset, C. et al. The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol 11, 350–361 (2014). https://doi.org/10.1038/nrgastro.2014.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research