Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in IBD genetics

Key Points

  • The Immunochip project has identified >160 loci containing IBD genes and 70% of these loci are shared with other immune-mediated inflammatory diseases

  • Similar to other complex polygenic diseases, only a small fraction of heritability is explained by the genetic loci identified in IBD

  • Hypothesis-free genetic association studies in IBD have identified key pathways involved in innate immunity, autophagy, lymphocyte differentiation and chemotaxis

  • Genetic corroboration is now available for novel treatment strategies targeting IL-12–IL-23 signalling, JAK–STAT signalling and leukocyte chemotaxis

  • The paradigm of personalized IBD care will probably only be achieved if we succeed in integrating the genetic and basic science advances with insights into the ecology of the gut microbiota

Abstract

IBD is a spectrum of chronic disorders that constitute an important health problem worldwide. The hunt for genetic determinants of disease onset and course has culminated in the Immunochip project, which has identified >160 loci containing IBD susceptibility genes. In this Review, we highlight how genetic association studies have informed our understanding of the pathogenesis of IBD by focusing research efforts on key pathways involved in innate immunity, autophagy, lymphocyte differentiation and chemotaxis. Several of these novel genetic markers and cellular pathways are promising candidates for patient stratification and therapeutic targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complex polygenic pathogenesis of IBD.
Figure 2: NOD2 structure and position of the most common variants with Crohn's disease.71
Figure 3: Paneth cells as the site of origin of intestinal crypt inflammation as well as crypt homeostasis.

Similar content being viewed by others

References

  1. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54 (2012).

    Article  PubMed  Google Scholar 

  2. Jess, T., Frisch, M. & Simonsen, J. Trends in overall and cause-specific mortality among patients with inflammatory bowel disease from 1982 to 2010. Clin. Gastroenterol. Hepatol. 11, 43–48 (2013).

    Article  PubMed  Google Scholar 

  3. van Heel, D. A. et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum. Mol. Genet. 13, 763–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Van Limbergen, J. et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 135, 1114–1122 (2008).

    Article  PubMed  Google Scholar 

  5. Satsangi, J., Kennedy, N. A., Henderson, P., Wilson, D. C. & Nimmo, E. R. Exploring the hidden heritability of inflammatory bowel disease. Gut 60, 1447–1448 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Halfvarson, J. Genetics in twins with Crohn's disease: less pronounced than previously believed? Inflamm. Bowel Dis. 17, 6–12 (2011).

    Article  PubMed  Google Scholar 

  8. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  10. Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muise, A. M., Snapper, S. B. & Kugathasan, S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology 143, 285–288 (2012).

    Article  PubMed  Google Scholar 

  13. Christodoulou, K. et al. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 62, 977–984 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Muise, A. M. et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut 61, 1028–1035 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Tyler, A. D. et al. The NOD2insC polymorphism is associated with worse outcome following ileal pouch-anal anastomosis for ulcerative colitis. Gut 62, 1433–1439 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Eglinton, T. W. et al. Clinical and genetic risk factors for perianal Crohn's disease in a population-based cohort. Am. J. Gastroenterol. 107, 589–596 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Speckmann, C. & Ehl, S. XIAP deficiency is a mendelian cause of late-onset IBD. Gut http://dx.doi.org/10.1136/gutjnl-2013-306474.

  18. Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2014.01.015.

  19. Uhlig, H. H. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 62, 1795–1805 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. NEOPICS. NEOPICS [online], (2014).

  21. Momozawa, Y. et al. Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat. Genet. 43, 43–47 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hunt, K. A. et al. Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature 498, 232–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beaudoin, M. et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 9, e1003723 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellinghaus, D. et al. Association between variants of PRDM1 and NDP52 and Crohn's disease, based on exome sequencing and functional studies. Gastroenterology 145, 339–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, K. et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am. J. Hum. Genet. 84, 399–405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van Limbergen, J., Philpott, D. & Griffiths, A. M. Genetic profiling in inflammatory bowel disease: from association to bedside. Gastroenterology 141, 1566–1571 (2011).

    Article  PubMed  Google Scholar 

  29. Rossin, E. J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ng, S. C. et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62, 630–649 (2013).

    Article  PubMed  Google Scholar 

  31. Wang, M. H. et al. Gene–gene and gene–environment interactions in ulcerative colitis. Hum. Genet. http://dx.doi.org/10.1007/s00439-013-1395-z.

  32. Hansen, R. et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am. J. Gastroenterol. 107, 1913–1922 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Small, C. L., Reid-Yu, S. A., McPhee, J. B. & Coombes, B. K. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat. Commun. 4, 1957 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut http://dx.doi.org/10.1136/gutjnl-2013-304833.

  35. Boon, E. et al. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol. Rev. 38, 90–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Chassaing, B., Koren, O., Carvalho, F. A., Ley, R. E. & Gewirtz, A. T. AIEC pathobiont instigates chronic colitis in susceptible hosts by altering microbiota composition. Gut http://dx.doi.org/10.1136/gutjnl-2013-304909.

  37. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biedermann, L. et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS ONE 8, e59260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, E. et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE 7, e26284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, M.-H. et al. A novel approach to detect cumulative genetic effects and genetic interactions in Crohn's Disease. Inflamm. Bowel Dis. 19, 1799–1808 (2013).

    Article  PubMed  Google Scholar 

  41. Cleynen, I. et al. Genetic factors conferring an increased susceptibility to develop Crohn's disease also influence disease phenotype: results from the IBDchip European Project. Gut 62, 1556–1565 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Van Limbergen, J., Wilson, D. C. & Satsangi, J. The genetics of Crohn's disease. Annu. Rev. Genomics Hum. Genet. 10, 89–116 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Imielinski, M. et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 41, 1335–1340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sherlock, M. E. et al. Infliximab-induced psoriasis and psoriasiform skin lesions in pediatric Crohn disease and a potential association with IL-23 receptor polymorphisms. J. Pediatr. Gastroenterol. Nutr. 56, 512–518 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Cleynen, I. & Vermeire, S. Paradoxical inflammation induced by anti-TNF agents in patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 9, 496–503 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Clarke, L. et al. The 1000 Genomes Project: data management and community access. Nat. Methods 9, 459–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Van Limbergen, J. et al. Haplotype-tagging analysis of common variants of the IL23R gene demonstrates gene-wide extent of association with IBD. Inflamm. Bowel Dis. 19, E79–E80 (2013).

    Article  PubMed  Google Scholar 

  52. Van Limbergen, J. et al. Hypothesis-free analysis of ATG16L1 demonstrates gene-wide extent of association with Crohn's disease susceptibility. Gut 62, 331–333 (2013).

    Article  PubMed  Google Scholar 

  53. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21, 1109–1121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sorbara, M. T. et al. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 39, 858–873 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Sabbah, A. et al. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 10, 1073–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Adler, J., Rangwalla, S. C., Dwamena, B. A. & Higgins, P. D. The prognostic power of the NOD2 genotype for complicated Crohn's disease: a meta-analysis. Am. J. Gastroenterol. 106, 699–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Gutierrez, A. et al. Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn's disease. Gut 63, 272–280 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Mo, J. et al. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J. Biol. Chem. 287, 23057–23067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coulombe, F. et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206, 1709–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype–phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest. 123, 700–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schirbel, A. et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144, 613–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Bevins, C. L., Stange, E. F. & Wehkamp, J. Decreased Paneth cell defensin expression in ileal Crohn's disease is independent of inflammation, but linked to the NOD2 1007fs genotype. Gut 58, 882–883 (2009).

    CAS  PubMed  Google Scholar 

  68. Simms, L. A. et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57, 903–910 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Shanahan, M. T. et al. Mouse Paneth cell antimicrobial function is independent of Nod2. Gut http://dx.doi.org/10.1136/gutjnl-2012-304190.

  70. Lipinski, S. et al. RNAi screening identifies mediators of NOD2 signaling: Implications for spatial specificity of MDP recognition. Proc. Natl Acad. Sci U.S.A. 109, 21426–21431 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Philpott, D. J., Sorbara, M. T., Roberston, S. J., Croitoru, K. & Girardin, S. E. NOD proteins: regulators of inflammation in health and disease. Nat. Rev. Immunol. 14, 9–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Billmann-Born, S. et al. Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn's disease-associated NOD2 variant L1007fsinsC. J. Immunol. 186, 4027–4038 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Corridoni, D. et al. Dysregulated NOD2 predisposes SAMP1/YitFc mice to chronic intestinal inflammation. Proc. Natl Acad. Sci. USA 110, 16999–17004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Noguchi, E., Homma, Y., Kang, X., Netea, M. G. & Ma, X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat. Immunol. 10, 471–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nimmo, E. R. et al. TLE1 modifies the effects of NOD2 in the pathogenesis of Crohn's disease. Gastroenterology 141, 972–981. e1–e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Spalinger, M. R. et al. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS ONE 8, e72384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ghorpade, D. S., Kaveri, S. V., Bayry, J. & Balaji, K. N. Cooperative regulation of NOTCH1 protein-phosphatidylinositol 3-kinase (PI3K) signaling by NOD1, NOD2, and TLR2 receptors renders enhanced refractoriness to transforming growth factor-β (TGF-β)- or cytotoxic T-lymphocyte antigen 4 (CTLA-4)-mediated impairment of human dendritic cell maturation. J. Biol. Chem. 286, 31347–31360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheon, J. H. Genetics of inflammatory bowel diseases: A comparison between Western and Eastern perspectives. J. Gastroenterol. Hepatol. 28, 220–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Brain, O. et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity 39, 521–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Stevens, C. et al. The intermediate filament protein, vimentin, is a regulator of NOD2 activity. Gut 62, 695–707 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Krishnaswamy, J. K., Chu, T. & Eisenbarth, S. C. Beyond pattern recognition: NOD-like receptors in dendritic cells. Trends Immunol. 34, 224–233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Stuart, L. M., Paquette, N. & Boyer, L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat. Rev. Immunol. 13, 199–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boyer, L. et al. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35, 536–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82, 1202–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cooke, J. et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 2128–2137 (2012).

    Article  PubMed  Google Scholar 

  87. Gross, O. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, H. et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am. J. Hum. Genet. 91, 935–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Henckaerts, L. & Vermeire, S. NOD2/CARD15 disease associations other than Crohn's disease. Inflamm. Bowel Dis. 13, 235–241 (2007).

    Article  PubMed  Google Scholar 

  93. Kotlarz, D. et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 143, 347–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Stepensky, P. et al. Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J. Allergy Clin. Immunol. 131, 477–485. e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Molinero, L. L., Cubre, A., Mora-Solano, C., Wang, Y. & Alegre, M. L. T cell receptor/CARMA1/NF-κB signaling controls T-helper (Th) 17 differentiation. Proc. Natl Acad. Sci. USA 109, 18529–18534 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Drewniak, A. A. et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121, 2385–2392 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Hara, H. & Saito, T. CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 30, 234–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Pelzer, C. et al. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat. Immunol. 14, 337–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Pariente, B. et al. Activation of the receptor NKG2D leads to production of TH17 cytokines in CD4+ T cells of patients with Crohn's disease. Gastroenterology 141, 217–226 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Iliev, I. D. et al. Interactions between commensal fungi and the c-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Arijs, I. et al. Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment. Am. J. Gastroenterol. 106, 748–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, W., Hsu, Y. M., Bi, L., Songyang, Z. & Lin, X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI–Rac1 complex. Nat. Immunol. 10, 1208–1214 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Gianni, T., Leoni, V., Chesnokova, L. S., Hutt-Fletcher, L. M. & Campadelli-Fiume, G. αvβ3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1. Proc. Natl Acad. Sci. USA 109, 19792–19797 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Hsu, Y. M. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 8, 198–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Molinero, L. L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Rioux, J. D. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van Limbergen, J. E., Stevens, C., Nimmo, E. R., Wilson, D. C. & Satsangi, J. Autophagy: from basic science to clinical application. Mucosal Immunol. 2, 315–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Tattoli, I. et al. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11, 563–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113–117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16l1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Kuballa, P., Huett, A., Rioux, J. D., Daly, M. J. & Xavier, R. J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3, e3391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Plantinga, T. S. et al. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60, 1229–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Fujita, N. et al. Differential Involvement of Atg16L1 in Crohn Disease and Canonical Autophagy: analysis of the organization of the ATG16l1 complex in fibroblasts. J. Biol. Chem. 284, 32602–32609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thachil, E. et al. Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 142, 1097–1099. e4 (2012).

    Article  PubMed  Google Scholar 

  119. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16l1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Georges, M. The long and winding road from correlation to causation. Nat. Genet. 43, 180–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Van Limbergen, J. et al. Germline variants of IRGM in childhood-onset Crohn's disease. Gut 58, 610–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat. Genet. 43, 242–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Yang, S. K. et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations. Gut 63, 80–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Ishibashi, K. et al. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy 7, 1500–1513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Deuring, J. J. et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut http://dx.doi.org/10.1136/gutjnl-2012-303527.

  131. Vandussen, K. L. et al. Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohn's Disease. Gastroenterology 146, 200–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704–1712 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. D'Haens, G. et al. Challenges to the design, execution, and analysis of randomized controlled trials for inflammatory bowel disease. Gastroenterology 143, 1461–1469 (2012).

    Article  PubMed  Google Scholar 

  134. Lichtenstein, G. R. et al. Combination of genetic and quantitative serological immune markers are associated with complicated Crohn's disease behavior. Inflamm. Bowel Dis. 17, 2488–2496 (2011).

    Article  PubMed  Google Scholar 

  135. Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).

    Article  PubMed  Google Scholar 

  136. Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Vermeire, S. & Rutgeerts, P. IBD in 2012: Pathogenesis and management of IBD-thinking outside the box. Nat. Rev. Gastroenterol. Hepatol. 10, 67–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Sandborn, W. J. et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N. Engl. J. Med. 367, 1519–1528 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Takahashi, R. et al. SOCS1 is essential for regulatory T cell functions by preventing loss of Foxp3 expression as well as IFN-γ and IL-17A production. J. Exp. Med. 208, 2055–2067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yao, R. et al. MicroRNA-155 modulates TREG and TH17 cells differentiation and TH17 cell function by targeting SOCS1. PLoS ONE 7, e46082 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Henderson, P. et al. Variation in ICOSLG influences Crohn's disease susceptibility. Gut 60, 1444 (2011).

    Article  PubMed  Google Scholar 

  144. Marks, D. J. et al. Defective acute inflammation in Crohn's disease: a clinical investigation. Lancet 367, 668–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Segal, A. W. & Loewi, G. Neutrophil dysfunction in Crohn's disease. Lancet 2, 219–221 (1976).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, Y. et al. A chemokine receptor CXCR2 macromolecular complex regulates neutrophil functions in inflammatory Diseases. J. Biol. Chem. 287, 5744–5755 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Van Assche, G. et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn's disease. N. Engl. J. Med. 353, 362–368 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Sandborn, W. J. et al. Vedolizumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 369, 711–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Feagan, B. G. et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 369, 699–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Rutgeerts, P. J. et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut 62, 1122–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Vermeire, S. et al. The mucosal addressin cell adhesion molecule antibody PF-00547659 in ulcerative colitis: a randomised study. Gut 60, 1068–1075 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Krishnaprasad, K. et al. Inter-observer agreement for Crohn's disease sub-phenotypes using the Montreal Classification: how good are we? A multi-centre Australasian study. J. Crohns Colitis 6, 287–293 (2012).

    Article  PubMed  Google Scholar 

  153. Sackett, D. L. & Whelan, G. Cancer risk in ulcerative colitis: scientific requirements for the study of prognosis. Gastroenterology 78, 1632–1635 (1980).

    Article  CAS  PubMed  Google Scholar 

  154. Walsh, A. J. & Radford-Smith, G. in IBD—Translating Basic Science into Clinical Practice (eds Targan, S. R., Shanahan, F., Karp, L. C) 212–227 (Wiley-Blackwell, 2010).

    Google Scholar 

  155. Weersma, R. K. et al. Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort. Gut 58, 388–395 (2008).

    Article  PubMed  Google Scholar 

  156. Papa, E. et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE 7, e39242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Janczewska, I. et al. Clinical application of the multigene analysis test in discriminating between ulcerative colitis and Crohn's disease: a retrospective study. Scand. J. Gastroenterol. 47, 162–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Crohn's and Colitis Foundation of Canada Inflammatory Bowel Disease GEM Project. The GEM Project [online], (2014).

  160. Silverberg, M. S., Xu, W., Paterson, A. D. & Croitoru, K. Increased frequency of risk alleles in a cohort of healthy first degree relatives of Crohn's Disease patients—a report from the Michael J. Howorth/CCFC GEM Project. Gastroenterology 140, S268 (2011).

    Article  Google Scholar 

  161. Abreu, M. T. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123, 679–688 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Brant, S. R. et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn's disease phenotypes. Inflamm. Bowel Dis. 9, 281–289 (2003).

    Article  PubMed  Google Scholar 

  163. Fowler, E. V. et al. ATG16L1 T300A shows strong associations with disease subgroups in a large Australian IBD population: further support for significant disease heterogeneity. Am. J. Gastroenterol. 103, 2519–2526 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Van Limbergen, J. et al. Autophagy gene ATG16L1 influences susceptibility and disease location but not childhood-onset in Crohn's disease in Northern Europe. Inflamm. Bowel Dis. 14, 338–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Crohn, B. B., Ginzburg, L. & Oppenheimer, G. D. Landmark article Oct 15, 1932. Regional ileitis. A pathological and clinical entity. By Burril B. Crohn, Leon Ginzburg, and Gordon D. Oppenheimer. JAMA 251, 73–79 (1984).

    Article  CAS  PubMed  Google Scholar 

  166. Hancock, L. et al. Clinical and molecular characteristics of isolated colonic Crohn's disease. Inflamm. Bowel Dis. 14, 1667–1677 (2008).

    Article  PubMed  Google Scholar 

  167. Hume, G. E. et al. Novel NOD2 haplotype strengthens the association between TLR4 Asp299Gly and Crohn's disease in an Australian population. Inflamm. Bowel Dis. 14, 585–590 (2008).

    Article  PubMed  Google Scholar 

  168. Silverberg, M. S. et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm. Bowel Dis. 9, 1–9 (2003).

    Article  PubMed  Google Scholar 

  169. Lees, C. W. Characterization of the 40,000 patient cohort of the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). J. Crohns Colitis 7 (Suppl. 1), S4 (2013).

    Article  Google Scholar 

  170. Beaugerie, L., Seksik, P., Nion-Larmurier, I., Gendre, J. P. & Cosnes, J. Predictors of Crohn's disease. Gastroenterology 130, 650–656 (2006).

    Article  PubMed  Google Scholar 

  171. Lazarev, M. et al. Relationship between proximal Crohn's disease location and disease behavior and surgery: A Cross-Sectional Study of the IBD Genetics Consortium. Am. J. Gastroenterol. 108, 106–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Henckaerts, L. et al. Genetic risk profiling and prediction of disease course in Crohn's disease patients. Clin. Gastroenterol. Hepatol. 7, 972–980. e2 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Ryan, J. D. et al. Predicting complicated Crohn's disease and surgery: phenotypes, genetics, serology and psychological characteristics of a population-based cohort. Aliment. Pharmacol. Ther. 38, 274–283 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Dubinsky, M. C. et al. Multidimensional prognostic risk assessment identifies association between IL12B variation and surgery in Crohn's disease. Inflamm. Bowel Dis. 19, 1662–1670 (2013).

    Article  PubMed  Google Scholar 

  175. Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Haritunians, T. et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm. Bowel Dis. 16, 1830–1840 (2010).

    Article  PubMed  Google Scholar 

  177. Radford-Smith, G. et al. Clinical and molecular characterization of medically refractory acute, severe colitis: preliminary results from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) Immunochip Study [abstract]. Gastroenterology 144, S470 (2013).

    Article  Google Scholar 

  178. Meier, C. B. et al. Innate immune receptor genetic polymorphisms in pouchitis: is CARD15 a susceptibility factor? Inflamm. Bowel Dis. 11, 965–971 (2005).

    Article  PubMed  Google Scholar 

  179. Sehgal, R. et al. Genetic risk profiling and gene signature modeling to predict risk of complications after IPAA. Dis. Colon Rectum 55, 239–248 (2012).

    Article  PubMed  Google Scholar 

  180. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Torok, H. P., Goke, B. & Konrad, A. Pharmacogenetics of Crohn's disease. Pharmacogenomics 9, 881–893 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Pierik, M. et al. Tumour necrosis factor-α receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment. Pharmacol. Ther. 20, 303–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Matsukura, H., Ikeda, S., Yoshimura, N., Takazoe, M. & Muramatsu, M. Genetic polymorphisms of tumour necrosis factor receptor superfamily 1A and 1B affect responses to infliximab in Japanese patients with Crohn's disease. Aliment. Pharmacol. Ther. 27, 765–770 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Steenholdt, C. et al. Genetic polymorphisms of tumour necrosis factor receptor superfamily 1b and fas ligand are associated with clinical efficacy and/or acute severe infusion reactions to infliximab in Crohn's disease. Aliment. Pharmacol. Ther. 36, 650–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  185. Asakura, H. et al. Association of the human lymphocyte-DR2 antigen with Japanese ulcerative colitis. Gastroenterology 82, 413–418 (1982).

    CAS  PubMed  Google Scholar 

  186. Yamazaki, K. et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum. Mol. Genet. 14, 3499–3506 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Ng, S. C. et al. Genetics of inflammatory bowel disease in Asia: systematic review and meta-analysis. Inflamm. Bowel Dis. 18, 1164–1176 (2012).

    Article  PubMed  Google Scholar 

  188. Thia, K. T., Loftus, E. V. Jr, Sandborn, W. J. & Yang, S. K. An update on the epidemiology of inflammatory bowel disease in Asia. Am. J. Gastroenterol. 103, 3167–3182 (2008).

    Article  PubMed  Google Scholar 

  189. Ng, S. C. et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia–Pacific Crohn's and colitis epidemiology study. Gastroenterology 145, 158–165 (2013).

    Article  PubMed  Google Scholar 

  190. Kugathasan, S. et al. Epidemiologic and clinical characteristics of children with newly diagnosed inflammatory bowel disease in Wisconsin: a statewide population-based study. J. Pediatr. 143, 525–531 (2003).

    Article  PubMed  Google Scholar 

  191. Sakamoto, N. et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm. Bowel Dis. 11, 154–163 (2005).

    Article  PubMed  Google Scholar 

  192. Koloski, N. A., Bret, L. & Radford-Smith, G. Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J. Gastroenterol. 14, 165–173 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chua, K. H. et al. Identification of NOD2/CARD15 mutations in Malaysian patients with Crohn's disease. J. Dig. Dis. 10, 124–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Lv, C. et al. Confirmation of three inflammatory bowel disease susceptibility loci in a Chinese cohort. Int. J. Colorectal Dis. 27, 1465–1472 (2012).

    Article  PubMed  Google Scholar 

  195. Sugimura, K. et al. A novel NOD2/CARD15 haplotype conferring risk for Crohn disease in Ashkenazi Jews. Am. J. Hum. Genet. 72, 509–518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Asano, K. et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 41, 1325–1329 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Okada, Y. et al. HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn's disease. Gastroenterology 141, 864–871. e1–e5 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Yamazaki, K. et al. A genome-wide association study identifies 2 susceptibility loci for Crohn's disease in a Japanese population. Gastroenterology 144, 781–788 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Hirano, A. et al. Association study of 71 European Crohn's disease susceptibility loci in a Japanese population. Inflamm. Bowel Dis. 19, 526–533 (2013).

    Article  PubMed  Google Scholar 

  200. Moon, C. M. et al. Associations between genetic variants in the IRGM gene and inflammatory bowel diseases in the Korean population. Inflamm. Bowel Dis. 19, 106–114 (2013).

    Article  PubMed  Google Scholar 

  201. Yamazaki, K. et al. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn's disease in Japanese patients. J. Hum. Genet. 52, 575–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Yang, S. K. et al. Contribution of IL23R but not ATG16L1 to Crohn's disease susceptibility in Koreans. Inflamm. Bowel Dis. 15, 1385–1390 (2009).

    Article  PubMed  Google Scholar 

  203. Bin, C. et al. Contribution of rs11465788 in IL23R gene to Crohn's disease susceptibility and phenotype in Chinese population. J. Genet. 88, 191–196 (2009).

    Article  PubMed  Google Scholar 

  204. Yang, S. K. et al. Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm. Bowel Dis. 19, 954–966 (2013).

    Article  PubMed  Google Scholar 

  205. Adeyanju, O. et al. Common NOD2 risk variants in African Americans with Crohn's disease are due exclusively to recent Caucasian admixture. Inflamm. Bowel Dis. 18, 2357–2359 (2012).

    Article  PubMed  Google Scholar 

  206. Wang, M. H. et al. Contribution of higher risk genes and European admixture to Crohn's disease in African Americans. Inflamm. Bowel Dis. 18, 2277–2287 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Ventham, N. T., Kennedy, N. A., Nimmo, E. R. & Satsangi, J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 145, 293–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  208. Nguyen, H. T. et al. Crohn's disease-associated adherent invasive Escherichia coli modulate levels of micrornas in intestinal epithelial cells to reduce autophagy. Gastroenterology 146, 508–519 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Lu, C. et al. MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology 146, 188–199 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Yilmaz, O. H. et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 486, 490–495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.V.L. acknowledges support from the North American Society for Paediatric Gastroenterology, Hepatology and Nutrition Foundation and Crohn's & Colitis Foundation of America Young Investigator Development Award 2013.

Author information

Authors and Affiliations

Authors

Contributions

All authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to Johan Van Limbergen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Prioritized candidate genes on IBD susceptibility loci. (DOC 40 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Limbergen, J., Radford-Smith, G. & Satsangi, J. Advances in IBD genetics. Nat Rev Gastroenterol Hepatol 11, 372–385 (2014). https://doi.org/10.1038/nrgastro.2014.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing