Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mycobiota in gastrointestinal diseases

Key Points

  • The mycobiome (the resident fungal community and their genome), is a key component of the human microbiome

  • Within a microbiome, there are interactions between and within species or genera among fungi and bacteria

  • Alterations within the mycobiota are associated with different diseases

  • The mycobiota might directly or indirectly interact with the host immune system

  • Interactions between the mycobiota and host immune system can lead to exacerbation of gastrointestinal diseases such as IBD

Abstract

New insights gained through the use of state-of-the-art technologies, including next-generation sequencing, are starting to reveal that the association between the gastrointestinal tract and the resident mycobiota (fungal community) is complex and multifaceted, in which fungi are active participants influencing health and disease. Characterizing the human mycobiome (the fungi and their genome) in healthy individuals showed that the gastrointestinal tract contains 66 fungal genera and 184 fungal species, with Candida as the dominant fungal genera. Although fungi have been associated with a number of gastrointestinal diseases, characterization of the mycobiome has mainly been focused on patients with IBD and graft-versus-host disease. In this Review, we summarize the findings from studies investigating the relationship between the gut mycobiota and gastrointestinal diseases, which indicate that fungi contribute to the aggravation of the inflammatory response, leading to increased disease severity. A model explaining the mechanisms underlying the role of the mycobiota in gastrointestinal diseases is also presented. Our understanding of the contribution of the mycobiota to health and disease is still in its infancy and leaves a number of questions to be addressed. Answering these questions might lead to novel approaches to prevent and/or manage acute as well as chronic gastrointestinal disease.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Normal and abnormal interactions between fungi and the host immune system in gastrointestinal tissue.

References

  1. Odds, F. C. in Candida and Candidosis 156–163 (Bailliere Tindall, 1988).

    Google Scholar 

  2. Parrot, J. Note sur un cas de muguet du gros intestin. Archives de Physiologie Normale et Pathologique 3, 621–625 (1870).

    Google Scholar 

  3. Parrot, J. Du muguet gastrique et de quelques autres localisations de ce parasite. Archives de Physiologie Normale et Pathologique 2, 579–599 (1869).

    Google Scholar 

  4. Ludlam, G. & Henderson, J. Neonatal thrush in a maternity hospital. Lancet 239, 64–70 (1942).

    Article  Google Scholar 

  5. Goodrich, J. K. et al. Conducting a Microbiome Study. Cell 158, 250–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norman, J. M., Handley, S. A. & Virgin, H. W. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146, 1459–1469 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Morgan, X. C. & Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput. Biol. 8, e1002808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gencosmanoglu, R. et al. Mid-esophageal ulceration and candidiasis-associated distal esophagitis as two distinct clinical patterns of tetracycline or doxycycline-induced esophageal injury. J. Clin. Gastroenterol. 38, 484–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sano, T., Ozaki, K., Kodama, Y., Matsuura, T. & Narama, I. Antimicrobial agent, tetracycline, enhanced upper alimentary tract Candida albicans infection and its related mucosal proliferation in alloxan-induced diabetic rats. Toxicol. Pathol. 40, 1014–1019 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Wiesner, S. M., Jechorek, R. P., Garni, R. M., Bendel, C. M. & Wells, C. L. Gastrointestinal colonization by Candida albicans mutant strains in antibiotic-treated mice. Clin. Diagn. Lab. Immunol. 8, 192–195 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mellado, E. et al. Sustained gastrointestinal colonization and systemic dissemination by Candida albicans, Candida tropicalis and Candida parapsilosis in adult mice. Diagn. Microbiol. Infect. Dis. 38, 21–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. DeMaria, A., Buckley, H. & von Lichtenberg, F. Gastrointestinal candidiasis in rats treated with antibiotics, cortisone, and azathioprine. Infect. Immun. 13, 1761–1770 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Helstrom, P. B. & Balish, E. Effect of oral tetracycline, the microbial flora, and the athymic state on gastrointestinal colonization and infection of BALB/c mice with Candida albicans. Infect. Immun. 23, 764–774 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark, J. D. Influence of antibiotics or certain intestinal bacteria on orally administered Candida albicans in germ-free and conventional mice. Infect. Immun. 4, 731–737 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dollive, S. et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE 8, e71806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 10, e1003996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Navazesh, M. et al. The effect of HAART on salivary microbiota in the Women's Interagency HIV Study (WIHS). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 100, 701–708 (2005).

    Article  PubMed  Google Scholar 

  19. Cruz, M. R., Graham, C. E., Gagliano, B. C., Lorenz, M. C. & Garsin, D. A. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect. Immun. 81, 189–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm Bowel Dis. 17, 185–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042 (2010).

    Article  PubMed  Google Scholar 

  22. Workman, S. N., Been, F. E., Crawford, S. R. & Lavoie, M. C. Bacteriocin-like inhibitory substances from Campylobacter spp. Antonie Van Leeuwenhoek 93, 435–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jawhara, S. et al. Modulation of intestinal inflammation by yeasts and cell wall extracts: strain dependence and unexpected anti-inflammatory role of glucan fractions. PLoS ONE 7, e40648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jawhara, S. & Poulain, D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med. Mycol. 45, 691–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Samonis, G. et al. Saccharomyces boulardii and Candida albicans experimental colonization of the murine gut. Med. Mycol. 49, 395–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Demirel, G. et al. Prophylactic Saccharomyces boulardii versus nystatin for the prevention of fungal colonization and invasive fungal infection in premature infants. Eur. J. Pediatr. 172, 1321–1326 (2013).

    Article  PubMed  Google Scholar 

  28. Nasidze, I., Li, J., Quinque, D., Tang, K. & Stoneking, M. Global diversity in the human salivary microbiome. Genome Res. 19, 636–643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dollive, S. et al. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol. 13, R60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8, e66019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sartor, R. B. Gut microbiota: Diet promotes dysbiosis and colitis in susceptible hosts. Nat. Rev. Gastroenterol. Hepatol. 9, 561–562 (2012).

    Article  PubMed  Google Scholar 

  32. Goldsmith, J. R. & Sartor, R. B. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J. Gastroenterol. 49, 785–798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Angebault, C. et al. Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J. Infect. Dis. 208, 1705–1716 (2013).

    Article  PubMed  Google Scholar 

  34. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ramaswamy, K., Correa, M. & Koshy, A. Non-healing gastric ulcer associated with Candida infection. Indian J. Med. Microbiol. 25, 57–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Santelmann, H. & Howard, J. M. Yeast metabolic products, yeast antigens and yeasts as possible triggers for irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol. 17, 21–26 (2005).

    Article  PubMed  Google Scholar 

  37. Krause, R. & Reisinger, E. C. Candida and antibiotic-associated diarrhoea. Clin. Microbiol. Infect. 11, 1–2 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Stringer, A. M. et al. Gastrointestinal microflora and mucins may play a critical role in the development of 5-Fluorouracil-induced gastrointestinal mucositis. Exp. Biol. Med. (Maywood) 234, 430–441 (2009).

    Article  CAS  Google Scholar 

  39. Cominelli, F. Inhibition of leukocyte trafficking in inflammatory bowel disease. N. Engl. J. Med. 369, 775–776 (2013).

    Article  PubMed  Google Scholar 

  40. Nielsen, O. H. & Ainsworth, M. A. Tumor necrosis factor inhibitors for inflammatory bowel disease. N. Engl. J. Med. 369, 754–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker's and brewer's yeast) and Candida albicans in Crohn's disease. Gut 31, 536–538 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poulain, D. et al. Yeasts: neglected pathogens. Dig. Dis. 27 (Suppl. 1), 104–110 (2009).

    Article  PubMed  Google Scholar 

  44. Colombel, J. F., Sendid, B., Jouault, T. & Poulain, D. Secukinumab failure in Crohn's disease: the yeast connection? Gut 62, 800–801 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Sendid, B. et al. Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn's disease. Am. J. Gastroenterol. 93, 1306–1310 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Standaert-Vitse, A. et al. Candida albicans colonization and ASCA in familial Crohn's disease. Am. J. Gastroenterol. 104, 1745–1753 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Sendid, B. et al. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on, C. albicans mannan. Clin. Vaccine Immunol. 15, 1868–1877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vasseur, F. et al. Variants of NOD1 and NOD2 genes display opposite associations with familial risk of Crohn's disease and anti-saccharomyces cerevisiae antibody levels. Inflamm. Bowel Dis. 18, 430–438 (2012).

    Article  PubMed  Google Scholar 

  49. Standaert-Vitse, A. et al. Candida albicans is an immunogen for anti-Saccharomyces cerevisiae antibody markers of Crohn's disease. Gastroenterology 130, 1764–1775 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Quinton, J. F. et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 42, 788–791 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seow, C. H. et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am. J. Gastroenterol. 104, 1426–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Dotan, I. et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. Gastroenterology 131, 366–378 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56, 1394–1403 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kaul, A. et al. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm. Bowel Dis. 18, 1872–1884 (2012).

    Article  PubMed  Google Scholar 

  55. Jawhara, S. et al. Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J. Infect. Dis. 197, 972–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Trojanowska, D. et al. The role of Candida in inflammatory bowel disease. Estimation of transmission of C. albicans fungi in gastrointestinal tract based on genetic affinity between strains. Med. Sci. Monit. 16, 451–457 (2010).

    Google Scholar 

  57. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, G. D. et al. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marr, K. A. et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood 96, 2055–2061 (2000).

    CAS  PubMed  Google Scholar 

  60. de Vries, H. S. et al. Genetic association analysis of the functional c.714T>G. polymorphism and mucosal expression of dectin-1 in inflammatory bowel disease. PLoS ONE 4, e7818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. & Rescigno, M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2, 340–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Penack, O., Holler, E. & van den Brink, M. R. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors. Blood 115, 1865–1872 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Shlomchik, W. D. Graft-versus-host disease. Nat. Rev. Immunol. 7, 340–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. van der Velden, W. J. et al. Role of the mycobiome in human acute graft-versus-host disease. Biol. Blood Marrow Transplant 19, 329–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Tawara, I. et al. Influence of donor microbiota on the severity of experimental graft-versus-host-disease. Biol. Blood Marrow Transplant 19, 164–168 (2013).

    Article  PubMed  Google Scholar 

  66. Holler, E. et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol. Blood Marrow Transplant 20, 640–645 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, Y. et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn. Microbiol. Infect. Dis. 70, 492–498 (2011).

    Article  PubMed  Google Scholar 

  68. Brown, K. S., Ryder, S. D., Irving, W. L., Sim, R. B. & Hickling, T. P. Mannan binding lectin and viral hepatitis. Immunol. Lett. 108, 34–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Knoke, M. Gastrointestinal microecology of humans and Candida [German]. Mycoses 42 (Suppl. 1), 30–34 (1999).

    Article  PubMed  Google Scholar 

  70. Thomas, H. C. et al. Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet 348, 1417–1419 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Ashman, R. B. & Papadimitriou, J. M. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol. Rev. 59, 646–672 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Romani, L. Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr. Opin. Microbiol. 2, 363–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Nelson, R. D., Shibata, N., Podzorski, R. P. & Herron, M. J. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin. Microbiol. Rev. 4, 1–19 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Quintin, J. et al. Differential role of NK cells against Candida albicans infection in immunocompetent or immunocompromised mice. Eur. J. Immunol. 44, 2405–2414 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Netea, M. G., Brown, G. D., Kullberg, B. J. & Gow, N. A. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Hernandez-Santos, N. et al. Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol. 6, 900–910 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zelante, T. et al. Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat. Commun. 3, 683 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Dominguez-Villar, M. & Hafler, D. A. An Innate Role for IL-17. Science 332, 47–48 (2011).

    Article  PubMed  Google Scholar 

  80. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Underhill, D. M. & Iliev, I. D. The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14, 405–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Romani, L. et al. Indoleamine 2, 3-dioxygenase (IDO) in inflammation and allergy to Aspergillus. Med. Mycol. 47 (Suppl. 1), 154–161 (2009).

    Article  CAS  Google Scholar 

  83. Zelante, T., Fallarino, F., Bistoni, F., Puccetti, P. & Romani, L. Indoleamine 2, 3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect. 11, 133–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Bonifazi, P. et al. Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol. 2, 362–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Sendid, B. et al. Anti-glycan antibodies establish an unexpected link between C. albicans and Crohn disease [French]. Med. Sci. (Paris) 25, 473–481 (2009).

    Article  Google Scholar 

  86. Gerard, R., Sendid, B., Colombel, J. F., Poulain, D. & Jouault, T. An immunological link between Candida albicans colonization and Crohn's disease. Crit. Rev. Microbiol. http://dx.doi.org/10.3109/1040841X.2013.810587.

  87. Mora-Montes, H. M. et al. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect. Immun. 79, 1961–1970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boudeau, J., Glasser, A. L., Masseret, E., Joly, B. & Darfeuille-Michaud, A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun. 67, 4499–4509 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Barnich, N. & Darfeuille-Michaud, A. Adherent-invasive Escherichia coli and Crohn's disease. Curr. Opin. Gastroenterol. 23, 16–20 (2007).

    Article  PubMed  Google Scholar 

  90. Clarke, D. J. et al. Complete genome sequence of the Crohn's disease-associated adherent-invasive Escherichia coli strain HM605. J. Bacteriol. 193, 4540 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mpofu, C. M. et al. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn's disease. Gastroenterology 133, 1487–1498 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. d'Ostiani, C. F. et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Monk, C. E., Hutvagner, G. & Arthur, J. S. Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS ONE 5, e13669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nemeth, T. et al. Transcriptome profile of the murine macrophage cell response to Candida parapsilosis. Fungal Genet. Biol. 65, 48–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Ghannoum, M. A. & Mukherjee, P. K. The microbiome: more than bacteria (letter). Microbe 5, 459 (2010).

    Google Scholar 

Download references

Acknowledgements

Funding support is acknowledged from the NIH/NIDCR [RO1DE17846, R01DE024228 and the Oral HIV AIDS Research Alliance (BRS-ACURE-S-11-000049-110229 and AI-U01-68636) to M.A.G. Support from NIH/NEI and NIH/NIAID (R21EY021303 and R21AI074077), pilot funding from the Infectious Diseases Drug Development Center (IDDDC, Case), the National Eczema Association (Research Grant) and the National Psoriasis Foundation (Discovery Award) to P.K.M. Support from the CWRU/UH Center for AIDS Research (CFAR, NIH grant number P30 AI036219) and funding from the European Community's Seventh Framework Programme (FP7-2007-2013) under HEALTH-F2-2010-260338-ALLFUN and by the Programme Hospitalier de Recherche Clinique du Ministère des Affaires Sociales, de la Santé et de la Ville PHRC 1918, 2011 Candigène, France, to B.S.

Author information

Authors and Affiliations

Authors

Contributions

M.A.G., P.K.M. and B.S. contributed to researching data, substantial discussion of content, writing, reviewing and editing the manuscript. G.H., J.-F.C. and D.P. substantially contributed to discussion of content, reviewing and editing the manuscript.

Corresponding author

Correspondence to Mahmoud A. Ghannoum.

Ethics declarations

Competing interests

J.-F.C. has served as consultant, advisory board member or speaker for Abbvie, ABScience, Amgen, Bristol–Meyers Squibb, Celltrion, Danone, Ferring, Genentech, Giuliani SPA, Given Imaging, Janssen, Immune Pharmaceuticals, Merck, Millenium Pharmaceuticals, Nutrition Science Partners, Pfizer, Prometheus Laboratories, Protagonist Therapeutics, Receptos, Sanofi, Schering Plough, Second Genome, Takeda, Teva Pharmaceuticals, UCB Pharma, Vertex and Dr August Wolff. P.K.M., B.S., G.H., D.P. and M.A.G. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Sendid, B., Hoarau, G. et al. Mycobiota in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 12, 77–87 (2015). https://doi.org/10.1038/nrgastro.2014.188

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.188

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing