Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosing coeliac disease and the potential for serological markers

Key Points

  • Coeliac disease presents in many different ways at any age

  • All initial testing, except HLA genotyping, should be done whilst patients are on a gluten-containing diet

  • Coeliac-specific serological tests have improved and now rival the accuracy of biopsy results in many circumstances

  • Duodenal biopsies can be avoided in a minority of patients when specific serological, HLA and clinical criteria are met

  • The negative predictive value of HLA genotype risk determination is a useful adjunct to coeliac disease diagnosis, especially in those already on a gluten-free diet

  • Biopsies remain an important part of the diagnosis for coeliac disease in the majority of patients

Abstract

The diagnosis of coeliac disease has advanced in the past decade owing to increased clinical awareness and improved tests. Coeliac disease is now regarded as a common disease presenting at any age with a broad spectrum of symptoms. Previous guidelines on diagnosis relied on the histological analysis of duodenal biopsy samples. However, contemporary antibody analysis is a diagnostic tool with a comparatively high accuracy that has reduced reliance on performing biopsies. Furthermore, determination of HLA-based genetic susceptibility to coeliac disease has become routine. European and North American guidelines utilize symptoms, coeliac antibodies (primarily tissue transglutaminase 2 IgA and endomysial IgA antibodies), HLA determination and histological analysis of biopsy tissue for diagnosis. Some guidelines conclude that the diagnostic accuracy of tissue transglutaminase 2 IgA antibodies is sufficient to omit duodenal biopsies in selected children with very high antibody levels, in the presence of clear symptom response as well as a positive endomysial antibody test and confirmation of genetic susceptibility. This Review discusses if such a strategy is appropriate for children and adults in all populations. The performance characteristics of antibody tests (particularly of the tissue transglutaminase 2 IgA test) including quality control and characterisation of the population in whom testing is performed are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical patterns of coeliac disease.
Figure 2: Histological features of coeliac disease.
Figure 3: Increasing titres of coeliac-disease-specific antibodies, specifically tTG2 IgA correlates with increasing certainty of the presence of coeliac disease.

Similar content being viewed by others

References

  1. Jabri, B. & Sollid, L. M. Tissue-mediated control of immunopathology in coeliac disease. Nat. Rev. Immunol. 9, 858–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Rewers, M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease? Gastroenterology 128, S47–S51 (2005).

    Article  PubMed  Google Scholar 

  3. Nistico, L. et al. Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55, 803–808 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Murray, J. A. et al. HLA DQ gene dosage and risk and severity of celiac disease. Clin. Gastroenterol. Hepatol. 5, 1406–1412 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mearin, M. L. et al. HLA-DR phenotypes in Spanish coeliac children: their contribution to the understanding of the genetics of the disease. Gut 24, 532–537 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sollid, L. M. et al. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J. Exp. Med. 169, 345–350 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Karell, K. et al. HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum. Immunol. 64, 469–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, D. et al. Clinical benefit of a gluten-free diet in type 1 diabetic children with screening-detected celiac disease: a population-based screening study with 2 years' follow-up. Diabetes Care 29, 2452–2456 (2006).

    Article  PubMed  Google Scholar 

  9. Valentino, R. et al. Prevalence of coeliac disease in patients with thyroid autoimmunity. Horm. Res. 51, 124–127 (1999).

    CAS  PubMed  Google Scholar 

  10. Iltanen, S. et al. Celiac disease and markers of celiac disease latency in patients with primary Sjögren's syndrome. Am. J. Gastroenterol. 94, 1042–1046 (1999).

    CAS  PubMed  Google Scholar 

  11. Bonamico, M. et al. Prevalence and clinical picture of celiac disease in Turner syndrome. J. Clin. Endocrinol. Metab. 87, 5495–5498 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hill, P. G. & Holmes, G. K. Coeliac disease: a biopsy is not always necessary for diagnosis. Aliment. Pharmacol. Ther. 27, 572–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Hogberg, L. & Stenhammar, L. Celiac disease: Pediatric celiac disease—is a diagnostic biopsy necessary? Nat. Rev. Gastroenterol. Hepatol. 9, 127–128 (2012).

    Article  PubMed  Google Scholar 

  14. Bottaro, G. et al. Changes in coeliac disease behaviour over the years. Acta Paediatr. 82, 566–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Garampazzi, A. et al. Clinical pattern of celiac disease is still changing. J. Pediatr. Gastroenterol. Nutr. 45, 611–614 (2007).

    Article  PubMed  Google Scholar 

  16. Ferrara, M., Coppola, L., Coppola, A. & Capozzi, L. Iron deficiency in childhood and adolescence: retrospective review. Hematology 11, 183–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Collin, P., Vilska, S., Heinonen, P. K., Hallstrom, O. & Pikkarainen, P. Infertility and coeliac disease. Gut 39, 382–384 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zugna, D., Richiardi, L., Akre, O., Stephansson, O. & Ludvigsson, J. F. A nationwide population-based study to determine whether coeliac disease is associated with infertility. Gut 59, 1471–1475 (2010).

    Article  PubMed  Google Scholar 

  19. Zugna, D., Richiardi, L., Akre, O., Stephansson, O. & Ludvigsson, J. F. Celiac disease is not a risk factor for infertility in men. Fertil. Steril. 95, 1709–1713 (2011).

    Article  PubMed  Google Scholar 

  20. Salmi, T. T., Hervonen, K., Kautiainen, H., Collin, P. & Reunala, T. Prevalence and incidence of dermatitis herpetiformis: a 40-year prospective study from Finland. Br. J. Dermatol. 165, 354–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Ivarsson, A. et al. High prevalence of undiagnosed coeliac disease in adults: a Swedish population-based study. J. Intern. Med. 245, 63–68 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Virta, L. J., Kaukinen, K. & Collin, P. Incidence and prevalence of diagnosed coeliac disease in Finland: results of effective case finding in adults. Scand. J. Gastroenterol. 44, 933–938 (2009).

    Article  PubMed  Google Scholar 

  23. Rubio-Tapia, A., Ludvigsson, J. F., Brantner, T. L., Murray, J. A. & Everhart, J. E. The prevalence of celiac disease in the United States. Am. J. Gastroenterol. 107, 1538–1544 (2012).

    Article  PubMed  Google Scholar 

  24. Marsh, M. N. Grains of truth: evolutionary changes in small intestinal mucosa in response to environmental antigen challenge. Gut 31, 111–114 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ravelli, A. et al. How patchy is patchy villous atrophy?: distribution pattern of histological lesions in the duodenum of children with celiac disease. Am. J. Gastroenterol. 105, 2103–2110 (2010).

    Article  PubMed  Google Scholar 

  26. Vogelsang, H., Hanel, S., Steiner, B. & Oberhuber, G. Diagnostic duodenal bulb biopsy in celiac disease. Endoscopy 33, 336–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rubio-Tapia, A., Hill, I. D., Kelly, C. P., Calderwood, A. H. & Murray, J. A. ACG clinical guidelines: diagnosis and management of celiac disease. Am. J. Gastroenterol. 108, 656–676 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hudacko, R., Kathy Zhou, X. & Yantiss, R. K. Immunohistochemical stains for CD3 and CD8 do not improve detection of gluten-sensitive enteropathy in duodenal biopsies. Mod. Pathol. 26, 1241–1245 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch. Dis. Child. 65, 909–911 (1990).

  31. Oberhuber, G., Granditsch, G. & Vogelsang, H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur. J. Gastroenterol. Hepatol. 11, 1185–1194 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. McNeish, A. S. et al. The diagnosis of coeliac disease. A commentary on the current practices of members of the European Society for Paediatric Gastroenterology and Nutrition (ESPGAN). Arch. Dis. Child. 54, 783–786 (1979).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pellegrino, S. et al. Redefining the intraepithelial lymphocytes threshold to diagnose gluten sensitivity in patients with architecturally normal duodenal histology. Aliment. Pharmacol. Ther. 33, 697–706 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Biagi, F. et al. Intraepithelial lymphocytes in the villous tip: do they indicate potential coeliac disease? J. Clin. Pathol. 57, 835–839 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Walker, M. M. et al. Detection of celiac disease and lymphocytic enteropathy by parallel serology and histopathology in a population-based study. Gastroenterology 139, 112–119 (2010).

    Article  PubMed  Google Scholar 

  36. Spencer, J., Isaacson, P. G., MacDonald, T. T., Thomas, A. J. & Walker-Smith, J. A. Gamma/delta T cells and the diagnosis of coeliac disease. Clin. Exp. Immunol. 85, 109–113 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kaukinen, K. et al. Small-bowel mucosal transglutaminase 2-specific IgA deposits in coeliac disease without villous atrophy: a prospective and randomized clinical study. Scand. J. Gastroenterol. 40, 564–572 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Rathsman, S. et al. Elution of antitransglutaminase antibodies from duodenal biopsies: a novel approach in the diagnosis of celiac disease. APMIS 120, 666–674 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Tosco, A. et al. Immunoglobulin A anti-tissue transglutaminase antibody deposits in the small intestinal mucosa of children with no villous atrophy. J. Pediatr. Gastroenterol. Nutr. 47, 293–298 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Weile, B., Hansen, B. F., Hagerstrand, I., Hansen, J. P. & Krasilnikoff, P. A. Interobserver variation in diagnosing coeliac disease. A joint study by Danish and Swedish pathologists. APMIS 108, 380–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Corazza, G. R. et al. Comparison of the interobserver reproducibility with different histologic criteria used in celiac disease. Clin. Gastroenterol. Hepatol. 5, 838–843 (2007).

    Article  PubMed  Google Scholar 

  42. Mubarak, A., Nikkels, P., Houwen, R. & ten Kate, F. Reproducibility of the histological diagnosis of celiac disease. Scand. J. Gastroenterol. 46, 1065–1073 (2011).

    Article  PubMed  Google Scholar 

  43. Rubio-Tapia, A. et al. Severe spruelike enteropathy associated with olmesartan. Mayo Clin. Proc. 87, 732–738 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Seah, P. P., Fry, L., Rossiter, M. A., Hoffbrand, A. V. & Holborow, E. J. Anti-reticulin antibodies in childhood coeliac disease. Lancet 2, 681–682 (1971).

    Article  CAS  PubMed  Google Scholar 

  45. Harewood, G. C. & Murray, J. A. Diagnostic approach to a patient with suspected celiac disease: a cost analysis. Dig. Dis. Sci. 46, 2510–2514 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rostom, A., Murray, J. A. & Kagnoff, M. F. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology 131, 1981–2002 (2006).

    Article  PubMed  Google Scholar 

  47. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Maki, M. et al. Prevalence of Celiac disease among children in Finland. N. Engl. J. Med. 348, 2517–2524 (2003).

    Article  PubMed  Google Scholar 

  49. Simell, S. et al. Fate of five celiac disease-associated antibodies during normal diet in genetically at-risk children observed from birth in a natural history study. Am. J. Gastroenterol. 102, 2026–2035 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Salardi, S. et al. Prevalence of celiac disease in children with type 1 diabetes mellitus increased in the mid-1990 s: an 18-year longitudinal study based on anti-endomysial antibodies. J. Pediatr. Gastroenterol. Nutr. 46, 612–614 (2008).

    Article  PubMed  Google Scholar 

  51. Kurppa, K., Collin, P., Lindfors, K., Maki, M. & Kaukinen, K. Spontaneous negative seroconversion of endomysial antibodies does not exclude subsequent celiac disease. J. Pediatr. Gastroenterol. Nutr. 53, 576–579 (2011).

    Article  PubMed  Google Scholar 

  52. Li, M. et al. A report on the International Transglutaminase Autoantibody Workshop for Celiac Disease. Am. J. Gastroenterol. 104, 154–163 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kurppa, K. et al. Endomysial antibodies predict celiac disease irrespective of the titers or clinical presentation. World J. Gastroenterol. 18, 2511–2516 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Giersiepen, K. et al. Accuracy of diagnostic antibody tests for coeliac disease in children: summary of an evidence report. J. Pediatr. Gastroenterol. Nutr. 54, 229–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Toftedal, P. et al. Positive predictive value of serological diagnostic measures in celiac disease. Clin. Chem. Lab. Med. 48, 685–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Kurppa, K. et al. Utility of the new ESPGHAN criteria for the diagnosis of celiac disease in at-risk groups. J. Pediatr. Gastroenterol. Nutr. 54, 387–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Vermeersch, P. et al. Defining thresholds of antibody levels improves diagnosis of celiac disease. Clin. Gastroenterol. Hepatol. 11, 398–403; quiz e332 (2013).

    Article  PubMed  Google Scholar 

  58. Egner, W., Shrimpton, A., Sargur, R., Patel, D. & Swallow, K. ESPGHAN guidance on coeliac disease 2012: multiples of ULN for decision making do not harmonise assay performance across centres. J. Pediatr. Gastroenterol. Nutr. 55, 733–735 (2012).

    Article  PubMed  Google Scholar 

  59. Swallow, K. et al. Quality not quantity for transglutaminase antibody 2: the performance of an endomysial and tissue transglutaminase test in screening coeliac disease remains stable over time. Clin. Exp. Immunol. 171, 100–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Raivio, T. et al. Comparison of a novel whole blood transglutaminase-based ELISA with a whole blood rapid antibody test and established conventional serological celiac disease assays. J. Pediatr. Gastroenterol. Nutr. 47, 562–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Dahlbom, I. et al. Prediction of clinical and mucosal severity of coeliac disease and dermatitis herpetiformis by quantification of IgA/IgG serum antibodies to tissue transglutaminase. J. Pediatr. Gastroenterol. Nutr. 50, 140–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Chow, M. A., Lebwohl, B., Reilly, N. R. & Green, P. H. Immunoglobulin A deficiency in celiac disease. J. Clin. Gastroenterol. 46, 850–854 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Prause, C. et al. Antibodies against deamidated gliadin as new and accurate biomarkers of childhood coeliac disease. J. Pediatr. Gastroenterol. Nutr. 49, 52–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Amarri, S. et al. Antibodies to deamidated gliadin peptides: an accurate predictor of coeliac disease in infancy. J. Clin. Immunol. 33, 1027–1030 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Villalta, D. et al. IgG antibodies against deamidated gliadin peptides for diagnosis of celiac disease in patients with IgA deficiency. Clin. Chem. 56, 464–468 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Bienvenu, F. et al. Evaluation of a point-of-care test based on deamidated gliadin peptides for celiac disease screening in a large pediatric population. Eur. J. Gastroenterol. Hepatol. 24, 1418–1423 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Korponay-Szabo, I. R. et al. Population screening for coeliac disease in primary care by district nurses using a rapid antibody test: diagnostic accuracy and feasibility study. BMJ 335, 1244–1247 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Margaritte-Jeannin, P. et al. HLA-DQ relative risks for coeliac disease in European populations: a study of the European Genetics Cluster on Coeliac Disease. Tissue Antigens 63, 562–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, E. et al. Risk of pediatric celiac disease according to HLA haplotype and country. N. Engl. J. Med. 371, 42–49 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Madsen, M. et al. HLA-B, -DR haplotype frequencies and gametic association in 1,204 unrelated Danes. Tissue Antigens 18, 276–279 (1981).

    Article  CAS  PubMed  Google Scholar 

  71. Hadithi, M. et al. Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease. Ann. Intern. Med. 147, 294–302 (2007).

    Article  PubMed  Google Scholar 

  72. Bai, J. C. et al. World Gastroenterology Organisation global guidelines on celiac disease. J. Clin. Gastroenterol. 47, 121–126 (2013).

    Article  PubMed  Google Scholar 

  73. Ludvigsson, J. F. et al. The Oslo definitions for coeliac disease and related terms. Gut 62, 43–52 (2013).

    Article  PubMed  Google Scholar 

  74. Junker, Y. et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of Toll-like receptor 4. J. Exp. Med. 209, 2395–2408 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Biesiekierski, J. R. et al. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145, 320–328 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Di Niro, R. et al. High abundance of plasma cells secreting transglutaminase 2-specific IgA autoantibodies with limited somatic hypermutation in celiac disease intestinal lesions. Nat. Med. 18, 441–445 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Iversen, R. et al. Transglutaminase 2-specific autoantibodies in celiac disease target clustered, N-terminal epitopes not displayed on the surface of cells. J. Immunol. 190, 5981–5991 (2013).

    Article  PubMed  CAS  Google Scholar 

  78. Simon-Vecsei, Z. et al. A single conformational transglutaminase 2 epitope contributed by three domains is critical for celiac antibody binding and effects. Proc. Natl Acad. Sci. USA 109, 431–436 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Spatola, B. N., Murray, J. A., Kagnoff, M., Kaukinen, K. & Daugherty, P. S. Antibody repertoire profiling using bacterial display identifies reactivity signatures of celiac disease. Anal. Chem. 85, 1215–1222 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Dubois, P. C. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Koskinen, L. L. et al. Association study of the IL18RAP locus in three European populations with coeliac disease. Hum. Mol. Genet. 18, 1148–1155 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Romanos, J. et al. Analysis of HLA and non-HLA alleles can identify individuals at high risk for celiac disease. Gastroenterology 137, 834–840. e1–e3 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cotsapas, C. et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 7, e1002254 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Romanos, J. et al. Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut 63, 415–422 (2014).

    Article  PubMed  Google Scholar 

  86. Auricchio, R. et al. Potential celiac children: 9 years follow-up on a gluten-containing diet. A long follow-up of potential celiac children. Am. J. Gastroenterol. 109, 913–921 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Cash, B. D. et al. The prevalence of celiac disease among patients with nonconstipated irritable bowel syndrome is similar to controls. Gastroenterology 141, 1187–1193 (2011).

    Article  PubMed  Google Scholar 

  88. Sanders, D. S. et al. Association of adult coeliac disease with irritable bowel syndrome: a case-control study in patients fulfilling ROME II criteria referred to secondary care. Lancet 358, 1504–1508 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Spiegel, B. M., DeRosa, V. P., Gralnek, I. M., Wang, V. & Dulai, G. S. Testing for celiac sprue in irritable bowel syndrome with predominant diarrhea: a cost-effectiveness analysis. Gastroenterology 126, 1721–1732 (2004).

    Article  PubMed  Google Scholar 

  90. Pietzak, M. M., Schofield, T. C., McGinniss, M. J. & Nakamura, R. M. Stratifying risk for celiac disease in a large at-risk United States population by using HLA alleles. Clin. Gastroenterol. Hepatol. 7, 966–971 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.H. and J.A.M. contributed equally to this manuscript.

Corresponding author

Correspondence to Joseph A. Murray.

Ethics declarations

Competing interests

J.A.M. declares the following support and associations: grant support from Alba Therapeutics, Alvine Pharmaceuticals, Inc. Member of the advisory board for Alvine Pharmaceuticals Inc. and is a consultant for AMAG Pharmaceuticals, Entera Health Inc., Sonomaceuticals LLC, BioLineRx and GlaxoSmithKline. S.H. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husby, S., Murray, J. Diagnosing coeliac disease and the potential for serological markers. Nat Rev Gastroenterol Hepatol 11, 655–663 (2014). https://doi.org/10.1038/nrgastro.2014.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing