Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of gastric cancer

Key Points

  • Globally, gastric cancer is highly prevalent and accounts for a considerable amount of mortality around the world, with poor survival rates

  • Understanding the genetic basis of gastric cancer will offer insights into its pathogenesis, as well as the possibility of identifying new biomarkers and novel treatment targets

  • An inherited component is present in <3% of cases of gastric cancer

  • Most genetic changes associated with gastric cancer are acquired and are a result of chromosomal instability, microsatellite instability, changes in microRNA profile, somatic gene mutations or functional single nucleotide polymorphisms

Abstract

Gastric cancer remains highly prevalent and accounts for a notable proportion of global cancer mortality. This cancer is also associated with poor survival rates. Understanding the genetic basis of gastric cancer will offer insights into its pathogenesis, help identify new biomarkers and novel treatment targets, aid prognostication and could be central to developing individualized treatment strategies in the future. An inherited component contributes to <3% of gastric cancers; the majority of genetic changes associated with gastric cancer are acquired. Over the past few decades, advances in technology and high-throughput analysis have improved understanding of the molecular aspects of the pathogenesis of gastric cancer. These aspects are multifaceted and heterogeneous and represent a wide spectrum of several key genetic influences, such as chromosomal instability, microsatellite instability, changes in microRNA profile, somatic gene mutations or functional single nucleotide polymorphisms. These genetic aspects of the pathogenesis of gastric cancer will be addressed in this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gastric cancer is the fifth most common malignancy worldwide, and accounts for a notable proportion of cancer mortality.

Similar content being viewed by others

References

  1. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer [online], (2013).

  2. Arnold, M. et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur J Cancer. http://dx.doi.org/10.1016/j.ejca.2013.09.002.

  3. Shen, L. et al. Management of gastric cancer in Asia: resource-stratified Guidelines. Lancet Oncol. 14, e535–e547 (2013).

    Article  PubMed  Google Scholar 

  4. Lauren P. The two histological main types of gastric carcinoma: diffuse and so called intestinal-type carcinoma. Acta Pathol Microbiol Scand. 64, 31–49 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Correa P. Helicobacter pylori and gastric carcinogenesis. Am. J. Surg. Pathol. 19 (Suppl. 1), S37–S43 (1995).

    PubMed  Google Scholar 

  6. Yakirevich, E. & Resnick, M. B. Pathology of gastric cancer and its precursor lesions. Gastroenterol. Clin. North Am. 42, 261–284 (2013).

    Article  PubMed  Google Scholar 

  7. Piazuelo, M. B. & Correa, P. Gastric cancer: Overview. Colomb. Med. (Cali.) 44, 192–201 (2013).

    Google Scholar 

  8. Zanghieri, G. et al. Familial occurrence of gastric cancer in the 2-year experience of a population-based registry. Cancer 66, 2047–2051 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Sereno, M. et al. Gastric tumours in hereditary cancer syndromes: clinical features, molecular biology and strategies for prevention. Clin. Transl. Oncol. 13, 599–610 (2011).

    Article  PubMed  Google Scholar 

  10. Fitzgerald, R. C. et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J. Med. Genet. 47, 436–444 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Carneiro, F. Hereditary gastric cancer. Pathologe 33 (Suppl. 2), 231–234 (2012).

    Article  PubMed  Google Scholar 

  12. Oliveira, C., Pinheiro, H., Figueiredo, J., Seruca, R. & Carneiro, F. E-cadherin-alterations in hereditary disorders with emphasis on dereditary diffuse gastric cancer. Prog. Mol. Biol. Transl. Sci. 116, 337–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Paredes, J. et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim. Biophys. Acta 1826, 297–311 (2012).

    CAS  PubMed  Google Scholar 

  14. Van Roy, F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat. Rev. Cancer 14, 121–134 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Grady, W. M. et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet. 26, 16–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Oliveira, C. et al. Intragenic deletion of CDH1 as the inactivating mechanism of the wild-type allele in an HDGC tumour. Oncogene 23, 2236–2240 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira, C. et al. Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology 136, 2137–2148 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mimata, A., Fukamachi, H., Eishi, Y. & Yuasa, Y. Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci. 102, 942–950 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Majewski, I. J. et al. An α-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J. Pathol. 229, 621–629 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Schuetz, J. M. et al. Catenin family genes are not commonly mutated in hereditary diffuse gastric cancer. Cancer Epidemiol. Biomarkers Prev. 21, 2272–2274 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Worthley, D. L. et al. Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut 61, 774–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Caldas, C. et al. Familial gastric cancer: overview and guidelines for management. J. Med. Genet. 36, 873–880 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Watson, P. et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int. J. Cancer. 123, 444–449 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Masciari, S. et al. Gastric cancer in individuals with Li–Fraumeni syndrome. Genet. Med. 13, 651–657 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hearle, N. et al. Frequency and spectrum of cancers in the Peutz–Jeghers syndrome. Clin. Cancer Res. 12, 3209–3215 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. van Lier, M. G. et al. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am. J. Gastroenterol. 105, 1258–1264 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hirota, W. K. et al. ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest. Endosc. 63, 570–580 (2006).

    Article  PubMed  Google Scholar 

  28. Cairns S. R. et al. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). Gut 59, 666–689 (2010).

    Article  PubMed  Google Scholar 

  29. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Renovanz, M. & Kim, E. L. Intratumoral heterogeneity, its contribution to therapy resistance and methodological caveats to assessment. Front. Oncol. 4, 142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hudler, P. Genetic aspects of gastric cancer instability. ScientificWorldJournal http://dx.doi.org/10.1100/2012/761909.

  33. Knuutila, S. et al. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am. J. Pathol. 152, 1107–1123 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Wu, M. S. et al. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosomes Cancer 30, 80–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, K. M. et al. Genetic classification of intestinal-type and diffuse-type gastric cancers based on chromosomal loss and microsatellite instability. Virchows Arch. 443, 491–500 (2003).

    Article  PubMed  Google Scholar 

  36. Suzuki, K. et al. The genomic damage estimated by arbitrarily primed PCR DNA fingerprinting is useful for the prognosis of gastric cancer. Gastroenterology 125, 1330–1340 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Weiss, M. M. et al. Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell. Oncol. 26, 307–317 (2004).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Tsukamoto, Y. et al. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J. Pathol. 216, 471–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Tomioka, N. et al. Array comparative genomic hybridization analysis revealed four genomic prognostic biomarkers for primary gastric cancers. Cancer Genet. Cytogenet. 201, 6–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Grabsch, H. I. & Tan, P. Gastric cancer pathology and underlying molecular mechanisms. Dig. Surg. 30, 150–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Buffart, T. E. et al. Gastric cancers of Western European and African patients show different patterns of genomic instability. BMC Med. Genomics 4, 7 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tao, J. et al. CD44–SLC1A2 gene fusions in gastric cancer. Sci. Transl. Med. 3, 77ra30 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J. et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 119, 1627–1635 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Davies, K. D. & Doebele, R. C. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res. 19, 4040–4045 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gazvoda, B. et al. Genetic changes in Slovenian patients with gastric adenocarcinoma evaluated in terms of microsatellite DNA. Eur. J. Gastroenterol. Hepatol. 19, 1082–1089 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kaur, A. & Dasanu, C. A. Targeting the HER2 pathway for the therapy of lower esophageal and gastric adenocarcinoma. Expert. Opin. Pharmacother. 12, 2493–2503 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Pazo Cid, R. A. & Antón, A. Advanced HER2-positive gastric cancer: current and future targeted therapies. Crit. Rev. Oncol. Hematol. 85, 350–362 (2013).

    Article  PubMed  Google Scholar 

  48. Okines A. F. & Cunningham D. Trastuzumab: a novel standard option for patients with HER-2-positive advanced gastric or gastro-oesophageal junction cancer. Therap. Adv. Gastroenterol. 5, 301–318 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gunturu, K. S. et al. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Ther. Adv. Med. Oncol. 5, 143–151 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bang Y. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto, H., Imai, K. & Perucho, M. Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J. Gastroenterol. 37, 153–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Ottini, L. et al. Patterns of genomic instability in gastric cancer: clinical implications and perspectives. Ann. Oncol. 17 (Suppl. 7), vii97–vii102 (2006).

    Article  PubMed  Google Scholar 

  53. Falchetti, M. et al. Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival. Hum. Pathol. 39, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Chung, Y. J. et al. Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Res. 56, 4662–4665 (1996).

    CAS  PubMed  Google Scholar 

  55. Yamamoto, H. et al. Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology. 116, 1348–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Wu, M. S. et al. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer 27, 403–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fang, W. L. et al. Microsatellite instability is associated with a better prognosis for gastric cancer patients after curative surgery. World J. Surg. 36, 2131–2138 (2012).

    Article  PubMed  Google Scholar 

  58. Choi, Y. Y. et al. Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J. Surg. Oncol. 110, 129–135 (2014).

    Article  PubMed  Google Scholar 

  59. McColl, K. E. Clinical practice. Helicobacter pylori infection. N. Engl. J. Med. 362, 1597–1604 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).

    Article  PubMed  Google Scholar 

  61. Calvet, X., Ramírez Lázaro, M. J., Lehours, P. & Mégraud, F. Diagnosis and epidemiology of Helicobacter pylori infection. Helicobacter 18 (Suppl. 1), 5–11 (2013).

    Article  PubMed  Google Scholar 

  62. Malfertheiner, P., Link, A. & Selgrad, M. Helicobacter pylori: perspectives and time trends. Nat. Rev. Gastroenterol. Hepatol. http://dx.doi.org/10.1038/nrgastro.2014.99.

  63. El-Omar, E. M. et al. Helicobacter pylori infection and abnormalities of acid secretion in patients with duodenal ulcer disease. Gastroenterology 109, 681–691 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. El-Omar, E. M. et al. Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology 113, 15–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. El-Omar, E. M. The importance of interleukin 1β in Helicobacter pylori associated disease. Gut 48, 743–747 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Kimang'a, A. N. IL-1B-511 allele T and IL-1RN-L/L play a pathological role in Helicobacter pylori (H. pylori) disease outcome in the African population. Ethiop. J. Health Sci. 22, 163–169 (2012).

    PubMed  PubMed Central  Google Scholar 

  69. Zhao, J. D. et al. Associations between interleukin-1 polymorphisms and gastric cancers among three ethnicities. World J. Gastroenterol. 18, 7093–7099 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kato, S. et al. Association of the interleukin-1β genetic polymorphism and gastric cancer risk in Japanese. J. Gastroenterol. 36, 696–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kamangar, F., Cheng, C., Abnet, C. C. & Rabkin, C. S. Interleukin-1B polymorphisms and gastric cancer risk—a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 1920–1928 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Garcia-Gonzalez, M. A. et al. Gastric cancer susceptibility is not linked to pro-and anti-inflammatory cytokine gene polymorphisms in whites: a Nationwide Multicenter Study in Spain. Am. J. Gastroenterol. 102, 1878–1892 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Sitarz, R. et al. IL-1B-31T&gt;C promoter polymorphism is associated with gastric stump cancer but not with early onset or conventional gastric cancers. Virchows Arch. 453, 249–255 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Murphy, G. et al. Association of gastric disease with polymorphisms in the inflammatory-related genes IL-1B, IL-1RN, IL-10, TNF and TLR4. Eur. J. Gastroenterol. Hepatol. 21, 630–635 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Persson, C. et al. Interleukin 1-β gene polymorphisms and risk of gastric cancer in Sweden. Scand. J. Gastroenterol. 44, 339–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Wex, T. et al. Interleukin 1 β (IL1B) gene polymorphisms are not associated with gastric carcinogenesis in Germany. Anticancer Res. 30, 505–511 (2010).

    CAS  PubMed  Google Scholar 

  77. He, B. et al. Interleukin 1 β (IL1B) promoter polymorphism and cancer risk: evidence from 47 published studies. Mutagenesis 26, 637–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Camargo, M. C. et al. Interleukin-1β and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 1674–1687 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Vincenzi, B. et al. Interleukin 1β-511T gene (IL1β) polymorphism is correlated with gastric cancer in the Caucasian population: results from a meta-analysis. Oncol. Rep. 20, 1213–1220 (2008).

    PubMed  Google Scholar 

  80. Loh, M. et al. Meta-analysis of genetic polymorphisms and gastric cancer risk: variability in associations according to race. Eur. J. Cancer 45, 2562–2568 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Xue, H., Lin, B., Ni, P., Xu, H. & Huang, G. Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J. Gastroenterol. Hepatol. 25, 1604–1617 (2010).

    Article  PubMed  Google Scholar 

  82. Persson, C., Canedo, P., Machado, J. C., El-Omar, E. M. & Forman, D. Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. Am. J. Epidemiol. 173, 259–270 (2011).

    Article  PubMed  Google Scholar 

  83. Zou, W. & Restifo, N. P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10, 248–256 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Maruyama, T. et al. Distribution of TH17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci. 101, 1947–1954 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Iida, T. et al. Tumor-infiltrating CD4+ Th17 cells produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol. Rep. 25, 1271–1277 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Meng, X. Y., Zhou, C. H., Ma, J., Jiang, C. & Ji, P. Expression of interleukin-17 and its clinical significance in gastric cancer patients. Med. Oncol. 29, 3024–3028 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Zhuang, Y. et al. CD8+ T cells that produce interleukin-17 regulate myeloid-derived suppressor cells and are associated with survival time of patients with gastric cancer. Gastroenterology 143, 951–962 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Shibata, T., Tahara, T., Hirata, I. & Arisawa, T. Genetic polymorphism of interleukin-17A and -17 F genes in gastric carcinogenesis. Hum. Immunol. 70, 547–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Qinghai, Z., Yanying, W., Yunfang, C., Xukui, Z. & Xiaoqiao, Z. Effect of interleukin-17A and interleukin-17F gene polymorphisms on the risk of gastric cancer in a Chinese population. Gene 537, 328–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Rafiei, A. et al. Polymorphism in the interleukin-17A promoter contributes to gastric cancer. World J. Gastroenterol. 19, 5693–5699 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhang, X., Zheng, L., Sun, Y. & Zhang, X. Analysis of the association of interleukin-17 gene polymorphisms with gastric cancer risk and interaction with Helicobacter pylori infection in a Chinese population. Tumour Biol. 35, 1575–1580 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kabir, S. The role of interleukin-17 in the Helicobacter pylori induced infection and immunity. Helicobacter 16, 1–8 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, R. M. et al. Polymorphisms in promoter region of FAS and FASL gene and risk of cardia gastric adenocarcinoma. J. Gastroenterol. Hepatol. 25, 555–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Cui, Y., Xue, H., Lin, B., Ni, P. & Fang, J. Y. A meta-analysis of CDH1 C-160A genetic polymorphism and gastric cancer risk. DNA Cell Biol. 30, 937–945 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hyland, P. L. et al. Genetic variants in fas signaling pathway genes and risk of gastric cancer. Int. J. Cancer. 134, 822–831 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Xu, Q., Chen, M. Y., He, C. Y., Sun, L. P. & Yuan, Y. Promoter polymorphisms in trefoil factor 2 and trefoil factor 3 genes and susceptibility to gastric cancer and atrophic gastritis among Chinese population. Gene 529, 104–112 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Ng, M. T. et al. Increase in NF-κB binding affinity of the variant C allele of the toll-like receptor 9 −1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect. Immun. 78, 1345–1352 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Huang, L. et al. Polymorphisms of the TLR4 gene and risk of gastric cancer. Gene 537, 46–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Companioni, O. et al. Polymorphisms of Helicobacter pylori signaling pathway genes and gastric cancer risk in the European Prospective Investigation into Cancer-Eurgast cohort. Int. J. Cancer. 134, 92–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Sakamoto, H. et al. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet. 40, 730–740 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Matsuo, K. et al. Association of prostate stem cell antigen gene polymorphisms with the risk of stomach cancer in Japanese. Int. J. Cancer. 125, 1961–1964 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, C. et al. Two genetic variants in prostate stem cell antigen and gastric cancer susceptibility in a Chinese population. Mol. Carcinog. 48, 1131–1138 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Lu, Y. et al. Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinal-type gastric cancer in a Chinese population. Int. J. Cancer. 127, 2183–2189 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Zeng, Z. et al. Polymorphisms in prostate stem cell antigen gene rs2294008 increase gastric cancer risk in Chinese. Mol. Carcinog. 50, 353–358 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Lochhead, P. et al. Genetic variation in the prostate stem cell antigen gene and upper gastrointestinal cancer in white individuals. Gastroenterology 140, 435–441 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Sala, N. et al. Prostate stem-cell antigen gene is associated with diffuse and intestinal gastric cancer in Caucasians: results from the EPIC-EURGAST study. Int. J. Cancer 130, 2417–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Qiao, L. & Feng, Y. Genetic variations of prostate stem cell antigen (PSCA) contribute to the risk of gastric cancer for Eastern Asians: a meta-analysis based on 16792 individuals. Gene 493, 83–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Shi, D. et al. The PSCA polymorphisms derived from genome-wide association study are associated with risk of gastric cancer: a meta-analysis. J. Cancer Res. Clin. Oncol. 138, 1339–1345 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, T., Zhang, L., Li, H., Wang, B. & Chen, K. Prostate stem cell antigen polymorphisms and susceptibility to gastric cancer: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 21, 843–850 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, T., Chen, Y. N., Wang, Z., Chen, J. Q. & Huang, S. Effect of PSCA gene polymorphisms on gastric cancer risk and survival prediction: a meta-analysis. Exp. Ther. Med. 4, 158–164 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Gu, X., Zhang, W., Xu, L. & Cai, D. Quantitative assessment of the influence of prostate stem cell antigen polymorphisms on gastric cancer risk. Tumour Biol. 35, 2167–2174 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, M. et al. Genetic variant in PSCA predicts survival of diffuse-type gastric cancer in a Chinese population. Int. J. Cancer. 129, 1207–1213 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Kufe, D. W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer. 9, 874–885 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Senapati, S., Das, S. & Batra, S. K. Mucin-interacting proteins: from function to therapeutics. Trends Biochem. Sci. 35, 236–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Boltin, D. & Niv, Y. Mucins in gastric cancer—an update. J. Gastrointest. Dig. Syst. 3, 15519 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kufe, D. W. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene 32, 1073–1081 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Mukhopadhyay, P. et al. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta. 1815, 224–240 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  119. Roulois, D., Grégoire, M. & Fonteneau, J. F. MUC1-specific cytotoxic T lymphocytes in cancer therapy: induction and challenge. Biomed. Res. Int. 2013, 871936 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Namikawa, T. & Hanazaki, K. Mucin phenotype of gastric cancer and clinicopathology of gastric-type differentiated adenocarcinoma. World J. Gastroenterol. 16, 4634–4639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hwang, I. et al. Prognostic significance of membrane-associated mucins 1 and 4 in gastric adenocarcinoma. Exp. Ther. Med. 4, 311–316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Tamura, Y. et al. MUC4 and MUC1 expression in adenocarcinoma of the stomach correlates with vessel invasion and lymph node metastasis: an immunohistochemical study of early gastric cancer. PLoS ONE 7, e49251 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Xu, Q. et al. The co-expression of functional gastric proteins in dynamic gastric diseases and its clinical significance. BMC Clin. Pathol. 13, 21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Silva, F. et al. MUC1 gene polymorphism in the gastric carcinogenesis pathway. Eur. J. Hum. Genet. 9, 548–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Xu, Q. et al. Risk of gastric cancer is associated with the MUC1 568 A/G polymorphism. Int. J. Oncol. 35, 1313–1320 (2009).

    CAS  PubMed  Google Scholar 

  126. Abnet, C. C. et al. A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet. 42, 764–767 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Jia, Y. et al. A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Cancer Causes Control 21, 313–321 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Saeki, N. et al. A functional single nucleotide polymorphism in mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology 140, 892–902 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Zhang, H. et al. Genetic variants at 1q22 and 10q23 reproducibly associated with gastric cancer susceptibility in a Chinese population. Carcinogenesis 32, 848–852 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Palmer, A. J. et al. Genetic variation in C20orf54, PLCE1 and MUC1 and the risk of upper gastrointestinal cancers in Caucasian populations. Eur. J. Cancer Prev. 21, 541–544 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Song, H. R. et al. Common genetic variants at 1q22 and 10q23 and gastric cancer susceptibility in a Korean population. Tumour Biol. 35, 3133–3137 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Zheng, L. et al. Functional polymorphism rs4072037 in MUC1 gene contributes to the susceptibility to gastric cancer: evidence from pooled 6,580 cases and 10,324 controls. Mol. Biol. Rep. 40, 5791–5796 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Ng, W. et al. Genetic regulation of MUC1 alternative splicing in human tissues. Br. J. Cancer 99, 978–985 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Guang, W. et al. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J. Biol. Chem. 285, 20547–20557 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. He, C., Chen, M., Liu, J. & Yuan, Y. Host genetic factors respond to pathogenic step-specific virulence factors of Helicobacter pylori in gastric carcinogenesis. Mutat. Res. 759, 14–26 (2014).

    Article  CAS  Google Scholar 

  136. Ueno, K. et al. MUC1 mucin is a negative regulator of Toll-like receptor signaling. Am. J. Respir. Cell. Mol. Biol. 38, 263–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Sheng, Y. H. et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 6, 557–568 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Marín, F. et al. Genetic variation in MUC1, MUC2 and MUC6 genes and evolution of gastric cancer precursor lesions in a long-term follow-up in a high-risk area in Spain. Carcinogenesis 33, 1072–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Saeki, N., Ono, H., Sakamoto, H. & Yoshida, T. Genetic factors related to gastric cancer susceptibility identified using a genome-wide association study. Cancer Sci. 104, 1–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Shi, Y. et al. A genome-wide association study identifies new susceptibility loci for non-cardiagastric cancer at 3q13.31 and 5p13.1. Nat. Genet. 43, 1215–1218 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Kang, M. et al. Genetic variation rs10484761 on 6p21.1 derived from a genome-wide association study is associated with gastric cancer survival in a Chinese population. Gene 536, 59–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Liang, H. & Kim, Y. H. Identifying molecular drivers of gastric cancer through next generation sequencing. Cancer Letters 340, 241–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Wang K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Zang, Z. J. et al. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res. 71, 29–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Tan, I. B. et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141, 476–485 (2011).

    Article  PubMed  Google Scholar 

  147. Lei, Z. et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 145, 554–565 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Deng N. et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61, 673–684 (2012).

    Article  PubMed  CAS  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  150. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. The National Institutes of Health. The Cancer Genome Atlas [online], (2014).

  152. Wellcome Trust Sanger Institute. Cancer Genome Project [online], (2014).

  153. International Cancer Genome Consortium (ICGC). International Cancer Genome Projects [online], (2014).

  154. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature http://dx.doi.org/10.1038/nature13480.

  155. Gigek, C. O. et al. Epigenetic mechanisms in gastric cancer. Epigenomics 4, 279–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Zouridis, H. et al. Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci. Transl. Med. 4, 156ra140 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Calcagno, D. Q. et al. DNA and histone methylation in gastric carcinogenesis. World J. Gastroenterol. 19, 1182–1192 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Qu, Y., Dang, S. & Hou, P. Gene methylation in gastric cancer. Clin. Chim. Acta 424, 53–65 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Ling, H., Fabbri, M. & Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov. 12, 847–865 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wu, W. K. et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29, 5761–5771 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Link, A., Kupcinskas, J., Wex, T. & Malfertheiner, P. Macro-role of microRNA in gastric cancer. Dig. Dis. 30, 255–267 (2012).

    Article  PubMed  Google Scholar 

  162. Song, J. H. & Meltzer, S. J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 143, 35–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Song, S. & Ajani, J. A. The role of microRNAs in cancers of the upper gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 10, 109–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, X. et al. MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 33, 1589–1597 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Bou Kheir, T. et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 10, 29 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Li, X., Zhang, Y., Ding, J, Wu, K. & Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 59, 579–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Ueda, T. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 11, 136–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Wang, F. et al. MicroRNAs as promising biomarkers for gastric cancer. Cancer Biomark. 11, 259–267 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Xia, L. et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 123, 372–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Hummel, R., Hussey, D. J. & Haier, J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer 46, 298–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Wu, H. et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother. Pharmacol. 71, 1159–1171 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Q. et al. Polymorphisms at the microRNA binding-site of the stem cell marker gene CD133 modify susceptibility to and survival of gastric cancer. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22113.

  173. Xu, Y. et al. The miR-184 binding-site rs8126 T&gt;C polymorphism in TNFAIP2 is associated with risk of gastric cancer. PLoS ONE 8, e64973 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Mairi H. McLean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, M., El-Omar, E. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 11, 664–674 (2014). https://doi.org/10.1038/nrgastro.2014.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.143

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer