Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Growth problems in children with IBD

Key Points

  • Depending on the definition used, growth retardation occurs in approximately one-third of children presenting with Crohn's disease

  • Low energy intake and direct effects of inflammation contribute to low height velocity

  • Compared with the whole paediatric population with Crohn's disease, children carrying Crohn's susceptibility genes do not have increased risk of growth retardation

  • Inflammatory mediators affect growth by causing growth hormone resistance; resistance is caused by IL-6 and TNF impairing hepatic growth hormone signal transduction and by inhibiting cell proliferation at the growth plate

  • Medical or surgical resolution of inflammation is the cornerstone of growth retardation treatment; treating inflammation with infliximab or by resection has little efficacy in late puberty (Tanner stage IV or beyond)

  • Preliminary studies are being carried out on the use of growth hormone and insulin-like growth factor 1 treatment for children whose inflammation proves intractable to medical or surgical intervention

Abstract

Crohn's disease in childhood causes linear growth retardation, which has a substantial effect on management of this disease. By contrast, growth is rarely a problem in children presenting with ulcerative colitis. Depending on how growth failure is defined, approximately one-third of children with Crohn's disease have growth retardation at diagnosis. Although corticosteroids can suppress growth, decreased height at diagnosis demonstrates that this finding is a consequence of the disease and not merely an adverse effect of treatment. Both inflammation and undernutrition contribute to decreased height velocity. Increased cytokine production acts both on the hepatic expression of insulin-like growth factor 1 (IGF-1) and at chondrocytes of the growth plates of long bones. Growth hormone insensitivity caused by deranged immune function is a major mechanism in growth retardation. Resolution of inflammation is the cornerstone of treatment, but current studies on growth hormone and IGF-1 might yield therapies for those children whose inflammation is refractory to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The growth hormone–IGF-1 axis regulates linear growth.
Figure 2: Effects of inflammation and undernutrition on linear growth retardation.
Figure 3: Effect of infliximab therapy on height in children with Crohn's disease.

Similar content being viewed by others

References

  1. Sanderson, I. R., Risdon, R. A. & Walker-Smith, J. A. Intractable ulcerating enterocolitis of infancy. Arch. Dis. Child. 66, 295–299 (1991).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sawczenko, A. et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet 357, 1093–1094 (2001).

    PubMed  CAS  Google Scholar 

  4. Lowe, A. M. et al. Epidemiology of Crohn's disease in Quebec, Canada. Inflamm. Bowel Dis. 15, 429–435 (2009).

    PubMed  Google Scholar 

  5. Henderson, P. et al. Rising incidence of pediatric inflammatory bowel disease in Scotland. Inflamm. Bowel Dis. 18, 999–1005 (2012).

    PubMed  Google Scholar 

  6. Van Limbergen, J. et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 135, 1114–1122 (2008).

    PubMed  Google Scholar 

  7. Ballinger, A. B., Savage, M. O. & Sanderson, I. R. Delayed puberty associated with inflammatory bowel disease. Pediatr. Res. 53, 205–210 (2003).

    PubMed  Google Scholar 

  8. Shamir, R., Phillip, M. & Levine, A. Growth retardation in pediatric Crohn's disease: pathogenesis and interventions. Inflamm. Bowel Dis. 13, 620–628 (2007).

    PubMed  Google Scholar 

  9. Snapper, J., Gruen, J. & Foyer, A. Observations sur l'ileite regionale. In Proc. 2nd International Congress of Gastroenterology 935–937 (Societé of Internationale Gastroenterologie, 1937).

    Google Scholar 

  10. Logan, A. H. & Brown, P. W. Intestinal infantilism as a result of regional enteritis. Proc. Mayo Clin. 13, 335–336 (1938).

    Google Scholar 

  11. Pozler, O. et al. Incidence of Crohn disease in the Czech Republic in the years 1990 to 2001 and assessment of pediatric population with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 42, 186–189 (2006).

    PubMed  Google Scholar 

  12. Fallahi, G. H. et al. Clinical characteristics of Iranian pediatric patients with inflammatory bowel disease. Acta Gastroenterol. Belg. 72, 230–234 (2009).

    PubMed  Google Scholar 

  13. Kim, B. J. et al. Characteristics and trends in the incidence of inflammatory bowel disease in Korean children: a single-center experience. Dig. Dis. Sci. 55, 1989–1995 (2010).

    PubMed  Google Scholar 

  14. El-Hodhod, M. A., Hamdy, A. M., Abbas, A. A., Moftah, S. G. & Ramadan, A. A. Fibroblast growth factor 23 contributes to diminished bone mineral density in childhood inflammatory bowel disease. BMC Gastroenterol. 12, 44 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Maisawa, S. et al. Characteristics of inflammatory bowel disease with an onset before eight years of age: a multicenter epidemiological survey in Japan. J. Gastroenterol. Hepatol. 28, 499–504 (2013).

    PubMed  Google Scholar 

  16. Sawczenko, A., Ballinger, A. B., Savage, M. O. & Sanderson, I. R. Clinical features affecting final adult height in patients with pediatric-onset Crohn's disease. Pediatrics 118, 124–129 (2006).

    PubMed  Google Scholar 

  17. Griffiths, A. M., Nguyen, P., Smith, C., MacMillan, J. H. & Sherman, P. M. Growth and clinical course of children with Crohn's disease. Gut 34, 939–943 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Markowitz, J., Grancher, K., Rosa, J., Aiges, H. & Daum, F. Growth failure in pediatric inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 16, 373–380 (1993).

    PubMed  CAS  Google Scholar 

  19. Hildebrand, H., Karlberg, J. & Kristiansson, B. Longitudinal growth in children and adolescents with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 18, 165–173 (1994).

    PubMed  CAS  Google Scholar 

  20. Motil., K. J., Grand, R. J., Davis-Kraft, L., Ferlic, L. L. & Smith, E. O. Growth failure in children with inflammatory bowel disease: a prospective study. Gastroenterology 105, 681–691 (1993).

    PubMed  CAS  Google Scholar 

  21. Lee, J. J. et al. Final adult height of children with inflammatory bowel disease is predicted by parental height and patient minimum height Z-score. Inflamm. Bowel Dis. 16, 1669–1677 (2010).

    PubMed  Google Scholar 

  22. Alemzadeh, N. et al. Adult height in patients with early onset of Crohn's disease. Gut 51, 26–29 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Pfefferkorn, M. et al. Growth abnormalities persist in newly diagnosed children with crohn disease despite current treatment paradigms. J. Pediatr. Gastroenterol. Nutr. 48, 168–174 (2009).

    PubMed  CAS  Google Scholar 

  24. DeBoer, M. D. & Denson, L. A. Delays in puberty, growth, and accrual of bone mineral density in pediatric Crohn's disease: despite temporal changes in disease severity, the need for monitoring remains. J. Pediatr. 163, 17–22 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Thayu, M. et al. Determinants of changes in linear growth and body composition in incident pediatric Crohn's disease. Gastroenterology 139, 430–438 (2010).

    PubMed  Google Scholar 

  26. Abraham, B. P., Mehta, S. & El-Serag, H. B. Natural history of pediatric-onset inflammatory bowel disease: a systematic review. J. Clin. Gastroenterol. 46, 581–589 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Sawczenko, A. & Sandhu, B. K. Presenting features of inflammatory bowel disease in Great Britain and Ireland. Arch. Dis. Child. 88, 995–1000 (2003).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Vasseur, F. et al. Nutritional status and growth in pediatric Crohn's disease: a population-based study. Am. J. Gastroenterol. 105, 1893–1900 (2010).

    PubMed  Google Scholar 

  29. Turunen, P. et al. Long-term health outcomes in pediatric inflammatory bowel disease: a population-based study. Inflamm. Bowel Dis. 15, 56–62 (2009).

    PubMed  Google Scholar 

  30. Mason, A. et al. Impact of inflammatory bowel disease on pubertal growth. Horm. Res. Paediatr. 76, 293–299 (2011).

    PubMed  CAS  Google Scholar 

  31. Timmer, A. et al. Childhood onset inflammatory bowel disease: predictors of delayed diagnosis from the CEDATA German-language pediatric inflammatory bowel disease registry. J. Pediatr. 158, 467–473 (2011).

    PubMed  Google Scholar 

  32. Crohn, B. B. Regional Ileitis (Grune & Stratton, 1949).

    Google Scholar 

  33. Gupta, N. et al. Gender differences in presentation and course of disease in pediatric patients with Crohn disease. Pediatrics 120, e1418–e1425 (2007).

    PubMed  Google Scholar 

  34. Lee, G. J. et al. Role of sex in the treatment and clinical outcomes of pediatric patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 55, 701–706 (2012).

    PubMed  CAS  Google Scholar 

  35. Hill, R. J. et al. Ability of commonly used prediction equations to predict resting energy expenditure in children with inflammatory bowel disease. Inflamm. Bowel Dis. 17, 1587–1593 (2011).

    PubMed  Google Scholar 

  36. Pons, R. et al. Dietary intakes of children with Crohn's disease. Br. J. Nutr. 102, 1052–1057 (2009).

    PubMed  CAS  Google Scholar 

  37. Gerasimidis, K., McGrogan, P. & Edwards, C. A. The aetiology and impact of malnutrition in paediatric inflammatory bowel disease. J. Hum. Nutr. Diet 24, 313–326 (2011).

    PubMed  CAS  Google Scholar 

  38. El-Haj, T., Poole, S., Farthing, M. J. & Ballinger, A. B. Anorexia in a rat model of colitis: interaction of interleukin-1 and hypothalamic serotonin. Brain Res. 927, 1–7 (2002).

    PubMed  CAS  Google Scholar 

  39. Ates, Y., Degertekin, B., Erdil, A., Yaman, H. & Dagalp, K. Serum ghrelin levels in inflammatory bowel disease with relation to disease activity and nutritional status. Dig. Dis. Sci. 53, 2215–2221 (2008).

    PubMed  CAS  Google Scholar 

  40. Moran, G. W., Leslie, F. C. & McLaughlin, J. T. Crohn's disease affecting the small bowel is associated with reduced appetite and elevated levels of circulating gut peptides. Clin. Nutr. 32, 404–411 (2013).

    PubMed  CAS  Google Scholar 

  41. Gerasimidis, K., McGrogan, P., Hassan, K. & Edwards, C. A. Dietary modifications, nutritional supplements and alternative medicine in paediatric patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 27, 155–165 (2008).

    PubMed  CAS  Google Scholar 

  42. Hill, R. J. et al. Resting energy expenditure in children with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 45, 342–346 (2007).

    PubMed  CAS  Google Scholar 

  43. Varille, V. et al. Resting energy expenditure before and after surgical resection of gut lesions in pediatric Crohn's disease. J. Pediatr. Gastroenterol. Nutr. 23, 13–19 (1996).

    PubMed  CAS  Google Scholar 

  44. Wiskin, A. E. et al. Impact of disease activity on resting energy expenditure in children with inflammatory bowel disease. Clin. Nutr. 28, 652–656 (2009).

    PubMed  Google Scholar 

  45. Wiskin, A. E., Davies, J. H., Wootton, S. A. & Beattie, R. M. Energy expenditure, nutrition and growth. Arch. Dis. Child. 96, 567–572 (2011).

    PubMed  CAS  Google Scholar 

  46. Winter, T. A., O'Keefe S. J., Callanan, M. & Marks, T. Impaired gastric acid and pancreatic enzyme secretion in patients with Crohn's disease may be a consequence of a poor nutritional state. Inflamm. Bowel Dis. 10, 618–625 (2004).

    PubMed  CAS  Google Scholar 

  47. Ballinger, A. B., Azooz, O., El-Haj, T., Poole, S. & Farthing, M. J. Growth failure occurs through a decrease in insulin-like growth factor 1 which is independent of undernutrition in a rat model of colitis. Gut 46, 694–700 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Daughaday, W. H. A personal history of the origin of the somatomedin hypothesis and recent challenges to its validity. Perspect. Biol. Med. 32, 194–211 (1989).

    PubMed  CAS  Google Scholar 

  49. Thomas, M. J. The molecular basis of growth hormone action. Growth Horm. IGF Res. 8, 3–11 (1998).

    PubMed  CAS  Google Scholar 

  50. Lupu, F., Terwilliger, J. D., Lee, K., Segre, G. V. & Efstratiadis, A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev. Biol. 229, 141–162 (2001).

    PubMed  CAS  Google Scholar 

  51. Pass, C., MacRae, V. E., Ahmed, S. F. & Farquharson, C. Inflammatory cytokines and the GH/IGF-I axis: novel actions on bone growth. Cell Biochem. Funct. 27, 119–127 (2009).

    PubMed  CAS  Google Scholar 

  52. Liu, J. L., Yakar, S. & LeRoith, D. Conditional knockout of mouse insulin-like growth factor-1 gene using the Cre/loxP system. Proc. Soc. Exp. Biol. Med. 223, 344–351 (2000).

    PubMed  CAS  Google Scholar 

  53. Isaksson, O. G., Jansson, J. O. & Gause, I. A. Growth hormone stimulates longitudinal bone growth directly. Science 216, 1237–1239 (1982).

    PubMed  CAS  Google Scholar 

  54. Zezulak, K. M. & Green, H. The generation of insulin-like growth factor-1—sensitive cells by growth hormone action. Science 233, 551–553 (1986).

    PubMed  CAS  Google Scholar 

  55. Wang, J., Zhou, J. & Bondy, C. A. Igf1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB J. 13, 1985–1990 (1999).

    PubMed  CAS  Google Scholar 

  56. Madsen, K., Friberg, U., Roos, P., Eden, S. & Isaksson, O. Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 304, 545–547 (1983).

    PubMed  CAS  Google Scholar 

  57. Hutchison, M. R., Bassett, M. H. & White, P. C. Insulin-like growth factor-I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation. Endocrinology 148, 3122–3130 (2007).

    PubMed  CAS  Google Scholar 

  58. Thomas, A. G., Holly, J. M., Taylor, F. & Miller, V. Insulin like growth factor-I, insulin like growth factor binding protein-1, and insulin in childhood Crohn's disease. Gut 34, 944–947 (1993).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Bannerjee, K. et al. Anti-inflammatory and growth-stimulating effects precede nutritional restitution during enteral feeding in Crohn disease. J. Pediatr. Gastroenterol. Nutr. 38, 270–275 (2004).

    PubMed  CAS  Google Scholar 

  60. Sawczenko, A. et al. Intestinal inflammation-induced growth retardation acts through IL-6 in rats and depends on the -174 IL-6 G/C polymorphism in children. Proc. Natl Acad. Sci. USA 102, 13260–13265 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. De Benedetti, F. et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Denson, L. A. et al. Interleukin-6 inhibits hepatic growth hormone signalling via upregulation of Cis and Socs-3. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G646–G654 (2003).

    PubMed  CAS  Google Scholar 

  63. Wong, S. C., Macrae, V. E., McGrogan, P. & Ahmed, S. F. The role of pro-inflammatory cytokines in inflammatory bowel disease growth retardation. J. Pediatr. Gastroenterol. Nutr. 43, 144–155 (2006).

    PubMed  CAS  Google Scholar 

  64. Braegger, C. P. et al. Urinary growth hormone in growth-impaired children with chronic inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 16, 49–52 (1993).

    PubMed  CAS  Google Scholar 

  65. Farthing, M. J. et al. Nocturnal growth hormone and gonadotrophin secretion in growth retarded children with Crohn's disease. Gut 22, 933–938 (1981).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Beattie, R. M. et al. Responsiveness of IGF-I and IGFBP-3 to therapeutic intervention in children and adolescents with Crohn's disease. Clin. Endocrinol. (Oxf.) 49, 483–489 (1998).

    CAS  Google Scholar 

  67. Denson, L. A. et al. TNF-α downregulates murine hepatic growth hormone receptor expression by inhibiting Sp1 and Sp3 binding. J. Clin. Invest. 107, 1451–1458 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. D'Mello, S. et al. Innate dysfunction promotes linear growth failure in pediatric Crohn's disease and growth hormone resistance in murine ileitis. Inflamm. Bowel Dis. 18, 236–245 (2012).

    PubMed  Google Scholar 

  69. Fernandez-Vojvodich, P., Zaman, F. & Savendahl, L. Interleukin-6 acts locally on the growth plate to impair bone growth. Ann. Rheum. Dis. 72, e24 (2013).

    PubMed  Google Scholar 

  70. MacRae, V. E., Farquharson, C. & Ahmed, S. F. The restricted potential for recovery of growth plate chondrogenesis and longitudinal bone growth following exposure to pro-inflammatory cytokines. J. Endocrinol. 189, 319–328 (2006).

    CAS  PubMed  Google Scholar 

  71. Oguchi, S., Walker, W. A. & Sanderson, I. R. Profile of IGF-binding proteins secreted by intestinal epithelial cells changes with differentiation. Am. J. Physiol. 267, G843–G850 (1994).

    PubMed  CAS  Google Scholar 

  72. De Benedetti, F. et al. Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142, 4818–4826 (2001).

    PubMed  CAS  Google Scholar 

  73. Savage, M. O. et al. IGFs and IGFBPs in GH insensitivity. Endocr. Dev. 9, 100–106 (2005).

    PubMed  CAS  Google Scholar 

  74. Rao, A., Standing, J. F., Naik, S., Savage, M. O. & Sanderson, I. R. Mathematical modelling to restore circulating IGF-1 concentrations in children with Crohn's disease-induced growth failure: a pharmacokinetic study. BMJ Open 3, e002737 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Street, M. E. et al. Relationships between serum IGF-1, IGFBP-2, interleukin-1β and interleukin-6 in inflammatory bowel disease. Horm. Res. 61, 159–164 (2004).

    PubMed  CAS  Google Scholar 

  76. Smith, W. J., Underwood, L. E. & Clemmons, D. R. Effects of caloric or protein restriction on insulin-like growth factor-I (IGF-I) and IGF-binding proteins in children and adults. J. Clin. Endocrinol. Metab. 80, 443–449 (1995).

    PubMed  CAS  Google Scholar 

  77. Gupta, N., Lustig, R. H., Kohn, M. A., McCracken, M. & Vittinghoff, E. Sex differences in statural growth impairment in Crohn's disease: role of IGF-1. Inflamm. Bowel Dis. 17, 2318–2325 (2011).

    PubMed  Google Scholar 

  78. Palmert, M. R. & Dunkel, L. Clinical practice. Delayed puberty. N. Engl. J. Med. 366, 443–453 (2012).

    PubMed  CAS  Google Scholar 

  79. Gupta, N., Lustig, R. H., Kohn, M. A. & Vittinghoff, E. Menarche in pediatric patients with Crohn's disease. Dig. Dis. Sci. 57, 2975–2981 (2012).

    PubMed  Google Scholar 

  80. Azooz, O. G., Farthing, M. J., Savage, M. O. & Ballinger, A. B. Delayed puberty and response to testosterone in a rat model of colitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R1483–R1491 (2001).

    PubMed  CAS  Google Scholar 

  81. DeBoer, M. D., Li, Y. & Cohn, S. Colitis causes delay in puberty in female mice out of proportion to changes in leptin and corticosterone. J. Gastroenterol. 45, 277–284 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Deboer, M. D. & Li, Y. Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin. Pediatr. Res. 69, 34–39 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Deboer, M. D., Steinman, J. & Li, Y. Partial normalization of pubertal timing in female mice with DSS colitis treated with anti TNF α antibody. J. Gastroenterol. 47, 647–654 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. DeBoer, M. D., Barnes, B. H., Stygles, N. A., Sutphen, J. L. & Borowitz, S. M. Changes in inflammation and QoL after a single dose of infliximab during ongoing IBD treatment. J. Pediatr. Gastroenterol. Nutr. 54, 486–490 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Henderson, P., van Limbergen, J. E., Wilson, D. C., Satsangi, J. & Russell, R. K. Genetics of childhood-onset inflammatory bowel disease. Inflamm. Bowel Dis. 17, 346–361 (2011).

    PubMed  Google Scholar 

  86. Wine, E. et al. Pediatric Crohn's disease and growth retardation: the role of genotype, phenotype, and disease severity. Pediatrics 114, 1281–1286 (2004).

    PubMed  Google Scholar 

  87. Lee, J. J. et al. Association of linear growth impairment in pediatric Crohn's disease and a known height locus: a pilot study. Ann. Hum. Genet. 74, 489–497 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Rioux, J. D. et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Russell, R. K. et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth indices in early onset inflammatory bowel disease. Gut 55, 1114–1123 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Levine, A. et al. TNF promoter polymorphisms and modulation of growth retardation and disease severity in pediatric Crohn's disease. Am. J. Gastroenterol. 100, 1598–1604 (2005).

    PubMed  CAS  Google Scholar 

  91. Heuschkel, R. et al. Guidelines for the management of growth failure in childhood inflammatory bowel disease. Inflamm. Bowel Dis. 14, 839–849 (2008).

    PubMed  Google Scholar 

  92. Alperstein, G. et al. Linear growth following surgery in children and adolescents with Crohn's disease: relationship to pubertal status. J. Pediatr. Surg. 20, 129–133 (1985).

    PubMed  CAS  Google Scholar 

  93. Lipson, A. B. et al. Acceleration of linear growth following intestinal resection for Crohn disease. Eur. J. Pediatr. 149, 687–690 (1990).

    PubMed  CAS  Google Scholar 

  94. Sanderson, I. R., Udeen, S., Davies, P. S., Savage, M. O. & Walker-Smith, J. A. Remission induced by an elemental diet in small bowel Crohn's disease. Arch. Dis. Child. 62, 123–127 (1987).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Thomas, A. G., Taylor, F. & Miller, V. Dietary intake and nutritional treatment in childhood Crohn's disease. J. Pediatr. Gastroenterol. Nutr. 17, 75–81 (1993).

    PubMed  CAS  Google Scholar 

  96. Newby, E. A., Sawczenko, A., Thomas, A. G. & Wilson, D. Interventions for growth failure in childhood Crohn's disease. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD003873 (2005). http://dx.doi.org/10.1002/14651858.CD003873.pub2.

  97. Borrelli, O. et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn's disease: a randomized controlled open-label trial. Clin. Gastroenterol. Hepatol. 4, 744–753 (2006).

    PubMed  Google Scholar 

  98. Heuschkel, R. B., Menache, C. C., Megerian, J. T. & Baird, A. E. Enteral nutrition and corticosteroids in the treatment of acute Crohn's disease in children. J. Pediatr. Gastroenterol. Nutr. 31, 8–15 (2000).

    PubMed  CAS  Google Scholar 

  99. Sanderson, I. R. The Role of an Elemental Diet in the Management of Children with Crohn's Disease. Thesis, University of London (1989).

    Google Scholar 

  100. Lambert, B., Lemberg, D. A., Leach, S. T. & Day, A. S. Longer-term outcomes of nutritional management of Crohn's disease in children. Dig. Dis. Sci. 57, 2171–2177 (2012).

    PubMed  CAS  Google Scholar 

  101. Cameron, F. L. et al. Clinical progress in the two years following a course of exclusive enteral nutrition in 109 paediatric patients with Crohn's disease. Aliment. Pharmacol. Ther. 37, 622–629 (2013).

    PubMed  CAS  Google Scholar 

  102. Mushtaq, T., Farquharson, C., Seawright, E. & Ahmed, S. F. Glucocorticoid effects on chondrogenesis, differentiation and apoptosis in the murine ATDC5 chondrocyte cell line. J. Endocrinol. 175, 705–713 (2002).

    PubMed  CAS  Google Scholar 

  103. Hokken-Koelega, A. C., Stijnen, T., de Muinck Keizer-Schrama, S. M., Blum, W. F. & Drop, S. L. Levels of growth hormone, insulin-like growth factor-I (IGF-I) and -II, IGF-binding protein-1 and -3, and cortisol in prednisone-treated children with growth retardation after renal transplantation. J. Clin. Endocrinol. Metab. 77, 932–938 (1993).

    PubMed  CAS  Google Scholar 

  104. Leonard, M. B. et al. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N. Engl. J. Med. 351, 868–875 (2004).

    PubMed  CAS  Google Scholar 

  105. Markowitz, J., Grancher, K., Kohn, N., Lesser, M. & Daum, F. A multicenter trial of 6-mercaptopurine and prednisone in children with newly diagnosed Crohn's disease. Gastroenterology 119, 895–902 (2000).

    PubMed  CAS  Google Scholar 

  106. Modigliani, R. et al. Clinical, biological, and endoscopic picture of attacks of Crohn's disease. Evolution on prednisolone. Groupe d'Etude Therapeutique des Affections Inflammatoires Digestives. Gastroenterology 98, 811–818 (1990).

    PubMed  CAS  Google Scholar 

  107. D'Haens, G. et al. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn's disease: a European multicenter trial. Gastroenterology 116, 1029–1034 (1999).

    PubMed  CAS  Google Scholar 

  108. Borrelli, O. et al. Infliximab heals intestinal inflammatory lesions and restores growth in children with Crohn's disease. Dig. Liver Dis. 36, 342–347 (2004).

    PubMed  CAS  Google Scholar 

  109. Hyams, J. et al. Induction and maintenance infliximab therapy for the treatment of moderate to severe Crohn's disease in children. Gastroenterology 132, 863–873 (2007).

    PubMed  CAS  Google Scholar 

  110. Hyams, J. S. et al. Safety and efficacy of adalimumab for moderate to severe Crohn's disease in children. Gastroenterology 143, 365–374 (2012).

    PubMed  CAS  Google Scholar 

  111. Malik, S. et al. The effects of anti TNF α treatment with adalimumab on growth in children with Crohn's disease (CD). J. Crohns Colitis 6, 337–344 (2012).

    PubMed  CAS  Google Scholar 

  112. Assa, A. et al. Long-term outcome of tumor necrosis factor alpha antagonist's treatment in pediatric Crohn's disease. J. Crohns Colitis 7, 369–376 (2013).

    PubMed  Google Scholar 

  113. Crombe, V. et al. Long-term outcome of treatment with infliximab in pediatric-onset Crohn's disease: a population-based study. Inflamm. Bowel Dis. 17, 2144–2152 (2011).

    PubMed  Google Scholar 

  114. Walters, T. D., Gilman, A. R. & Griffiths, A. M. Linear growth improves during infliximab therapy in children with chronically active severe Crohn's disease. Inflamm. Bowel Dis. 13, 424–430 (2007).

    PubMed  Google Scholar 

  115. Malik, S. et al. Improvement in growth of children with Crohn disease following anti TNF alpha therapy can be independent of pubertal progress and glucocorticoid reduction. J. Pediatr. Gastroenterol. Nutr. 52, 31–37 (2011).

    PubMed  CAS  Google Scholar 

  116. Walters, T. D. et al. Increased effectiveness of early therapy with anti-tumor necrosis factor-α vs an immunomodulator in children with Crohn's disease. Gastroenterology 146, 383–391 (2014).

    PubMed  CAS  Google Scholar 

  117. Mason, A., Wong, S. C., McGrogan, P. & Ahmed, S. F. Effect of testosterone therapy for delayed growth and puberty in boys with inflammatory bowel disease. Horm. Res. Paediatr. 75, 8–13 (2011).

    PubMed  CAS  Google Scholar 

  118. McCaffery, T. D. Jr, Nasr, K., Lawrence, A. M. & Kirsner, J. B. Effect of administered human growth hormone on growth retardation in inflammatory bowel disease. Am. J. Dig. Dis. 19, 411–416 (1974).

    PubMed  Google Scholar 

  119. Redmond, G. P., Wylie, R. & Michener, W. M. Endocrine therapy in adolescents with Crohns-disease. J. Adolesc. Health 6, 345–345 (1985).

    Google Scholar 

  120. Henker, J. Therapy with recombinant growth hormone in children with Crohn disease and growth failure. Eur. J. Pediatr. 155, 1066–1067 (1996).

    PubMed  CAS  Google Scholar 

  121. Heyman, M. B. et al. Growth hormone treatment for growth failure in pediatric patients with Crohn's disease. J. Pediatr. 153, 651–658 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Calenda, K. A., Schornagel, I. L., Sadeghi-Nejad, A. & Grand, R. J. Effect of recombinant growth hormone treatment on children with Crohn's disease and short stature: a pilot study. Inflamm. Bowel Dis. 11, 435–441 (2005).

    PubMed  Google Scholar 

  123. Vortia, E., Kay, M. & Wyllie, R. The role of growth hormone and insulin-like growth factor-1 in Crohn's disease: implications for therapeutic use of human growth hormone in pediatric patients. Curr. Opin. Pediatr. 23, 545–551 (2011).

    PubMed  CAS  Google Scholar 

  124. Denson, L. A. et al. A randomized controlled trial of growth hormone in active pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 51, 130–139 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Wong, S. C. et al. A preliminary trial of the effect of recombinant human growth hormone on short-term linear growth and glucose homeostasis in children with Crohn's disease. Clin. Endocrinol. (Oxf.) 74, 599–607 (2011).

    CAS  Google Scholar 

  126. Jenkins, P. J. et al. Insulin-like growth factor I and the development of colorectal neoplasia in acromegaly. J. Clin. Endocrinol. Metab. 85, 3218–3221 (2000).

    PubMed  CAS  Google Scholar 

  127. Bortvedt, S. F. & Lund, P. K. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors. Curr. Opin. Gastroenterol. 28, 89–98 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  128. Slonim, A. E. et al. A preliminary study of growth hormone therapy for Crohn's disease. N. Engl. J. Med. 342, 1633–1637 (2000).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of the author is supported by grants from the National Institutes of Health (P30-DK040561), Crohn's and Colitis Foundation of America (1774) and the Crohn's in Childhood Research Association. The author is grateful to N. Croft, S. Naik and D. van Heel for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Sanderson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanderson, I. Growth problems in children with IBD. Nat Rev Gastroenterol Hepatol 11, 601–610 (2014). https://doi.org/10.1038/nrgastro.2014.102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2014.102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing