Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and alcoholism

Abstract

Alcohol is widely consumed; however, excessive use creates serious physical, psychological and social problems and contributes to the pathogenesis of many diseases. Alcohol use disorders (that is, alcohol dependence and alcohol abuse) are maladaptive patterns of excessive drinking that lead to serious problems. Abundant evidence indicates that alcohol dependence (alcoholism) is a complex genetic disease, with variations in a large number of genes affecting a person's risk of alcoholism. Some of these genes have been identified, including two genes involved in the metabolism of alcohol (ADH1B and ALDH2) that have the strongest known affects on the risk of alcoholism. Studies continue to reveal other genes in which variants affect the risk of alcoholism or related traits, including GABRA2, CHRM2, KCNJ6 and AUTS2. As more variants are analysed and studies are combined for meta-analysis to achieve increased sample sizes, an improved picture of the many genes and pathways that affect the risk of alcoholism will be possible.

Key Points

  • Alcohol dependence is a common, complex genetic disease, with many variants in numerous genes contributing to the risk of developing this disorder

  • Genes involved in alcohol metabolism have strong effects on risk; functional variants of ADH1B and ALDH2 exist that protect against alcoholism, with ORs of 0.2–0.4

  • Several other genes, including GABRA2 and CHRM2, have been associated with alcohol dependence in many studies; evidence suggests numerous other genes affect the disease and traits associated with it

  • As samples of increased size are assembled for meta-analyses and an extended range of alleles are tested, the roles of many additional genes will probably be uncovered

  • Excessive alcohol consumption, particularly binge drinking, contributes to many other diseases, including cirrhosis and cancers of the upper aerodigestive tract, colon, rectum and liver

  • Genes that alter how much alcohol a person consumes and how often affect the risk of many of these diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major pathway of alcohol metabolism.

Similar content being viewed by others

References

  1. US Department of Agriculture, US Department of Health and Human Services. Dietary Guidelines for Americans 2010 [online], (2011).

  2. Rehm, J. et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. Addiction 105, 817–843 (2010).

    PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. Global status report on alcohol and health (WHO, 2011).

  4. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (Text Revision) (American Psychiatric Association, 2000).

  6. Hasin, D. S., Stinson, F. S., Ogburn, E. & Grant, B. F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry 64, 830–842 (2007).

    PubMed  Google Scholar 

  7. Dawson, D. A., Goldstein, R. B. & Grant, B. F. Differences in the Profiles of DSM-IV and DSM-5 Alcohol Use Disorders: Implications for Clinicians. Alcohol. Clin. Exp. Res. 37 (Suppl. 1), E305–E313 (2013).

    PubMed  Google Scholar 

  8. Agrawal, A., Heath, A. C. & Lynskey, M. T. DSM-IV to DSM-5: the impact of proposed revisions on diagnosis of alcohol use disorders. Addiction 106, 1935–1943 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 (American Psychiatric Publishing, 2013).

  10. Mewton, L., Slade, T., McBride, O., Grove, R. & Teesson, M. An evaluation of the proposed DSM-5 alcohol use disorder criteria using Australian national data. Addiction 106, 941–950 (2011).

    PubMed  Google Scholar 

  11. Heath, A. C. et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol. Med. 27, 1381–1396 (1997).

    CAS  PubMed  Google Scholar 

  12. Goodwin, D. W. The cause of alcoholism and why it runs in families. Br. J. Addict. Alcohol Other Drugs 74, 161–164 (1979).

    CAS  PubMed  Google Scholar 

  13. Heath, A. C. Genetic influences on alcoholism risk: a review of adoption and twin studies. Alc. Health. Res. World 19, 166–171 (1995).

    Google Scholar 

  14. Sigvardsson, S., Bohman, M. & Cloninger, C. R. Replication of the Stockholm Adoption Study of alcoholism. Confirmatory cross-fostering analysis. Arch. Gen. Psychiatry 53, 681–687 (1996).

    CAS  PubMed  Google Scholar 

  15. Cloninger, C. R., Bohman, M. & Sigvardsson, S. Inheritance of alcohol abuse: Cross-fostering analysis of adopted men. Arch. Gen. Psychiatry 38, 861–868 (1981).

    CAS  PubMed  Google Scholar 

  16. Bohman, M., Sigvardsson, S. & Cloninger, C. R. Maternal inheritance of alcohol abuse. Cross-fostering analysis of adopted women. Arch. Gen. Psychiatry 38, 965–969 (1981).

    CAS  PubMed  Google Scholar 

  17. Prescott, C. A. & Kendler, K. S. Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am. J. Psychiatry 156, 34–40 (1999).

    CAS  PubMed  Google Scholar 

  18. Kendler, K. S., Neale, M. C., Heath, A. C., Kessler, R. C. & Eaves, L. J. A twin-family study of alcoholism in women. Am. J. Psychiatry 151, 707–715 (1994).

    CAS  PubMed  Google Scholar 

  19. Pickens, R. W. et al. Heterogeneity in the inheritance of alcoholism: a study of male and female twins. Arch. Gen. Psychiatry 48, 19–28 (1991).

    CAS  PubMed  Google Scholar 

  20. McBride, W. J. & Li, T. K. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit. Rev. Neurobiol. 12, 339–369 (1998).

    CAS  PubMed  Google Scholar 

  21. Foroud, T., Edenberg, H. J. & Crabbe, J. C. Genetic research: who is at risk for alcoholism? Alcohol Res. Health 33, 64–75 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Hurley, T. D. & Edenberg, H. J. Genes encoding enzymes involved in ethanol metabolism. Alcohol Res. 34, 339–344 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737 (2012).

    CAS  PubMed  Google Scholar 

  24. Oota, H. et al. The evolution and population genetics of the ALDH2 locus: random genetic drift, selection, and low levels of recombination. Ann. Hum. Genet. 68, 93–109 (2004).

    CAS  PubMed  Google Scholar 

  25. Luczak, S. E., Glatt, S. J. & Wall, T. J. Meta-analyses of ALDH2 and ADH1B with alcohol dependence in Asians. Psychol. Bull. 132, 607–621 (2006).

    PubMed  Google Scholar 

  26. Larson, H. N., Weiner, H. & Hurley, T. D. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J. Biol. Chem. 280, 30550–30556 (2005).

    CAS  PubMed  Google Scholar 

  27. Crabb, D. W., Edenberg, H. J., Bosron, W. F. & Li, T. K. Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J. Clin. Invest. 83, 314–316 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomasson, H. R. et al. Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am. J. Hum. Genet. 48, 677–681 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eng, M. Y., Luczak, S. E. & Wall, T. L. ALDH2, ADH1B, and ADH1C genotypes in Asians: a literature review. Alcohol Res. Health 30, 22–27 (2007).

    PubMed  PubMed Central  Google Scholar 

  30. Higuchi, S. Polymorphisms of ethanol metabolizing enzyme genes and alcoholism. Alcohol Alcohol. Suppl. 2, 29–34 (1994).

    CAS  PubMed  Google Scholar 

  31. Edenberg, H. J. & Bosron, W. F. in Comprehensive Toxicology (ed. McQueen, C. A.) 111–130 (Academic Press, 2010).

    Google Scholar 

  32. Yokoyama, A. et al. Contribution of the alcohol dehydrogenase-1B genotype and oral microorganisms to high salivary acetaldehyde concentrations in Japanese alcoholic men. Int. J. Cancer 121, 1047–1054 (2007).

    CAS  PubMed  Google Scholar 

  33. Chen, C.-C. et al. Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65, 795–807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bierut, L. J. et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol. Psychiatry 17, 445–50 (2012).

    CAS  PubMed  Google Scholar 

  35. Whitfield, J. B. Alcohol dehydrogenase and alcohol dependence: variation in genotype-associated risk between populations. Am. J. Hum. Genet. 71, 1247–1250 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Osier, M. V. et al. ALFRED: An allele frequency database for anthropology. Am. J. Phys. Anthropol. 119, 77–83 (2002).

    PubMed  Google Scholar 

  37. Li, H. et al. Geographically separate increases in the frequency of the derived ADH1B*47His allele in eastern and western Asia. Am. J. Hum. Genet. 81, 842–846 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Osier, M. V. et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Edenberg, H. J. et al. Association of alcohol dehydrogenase genes with alcohol dependence: a comprehensive analysis. Hum. Mol. Genet. 15, 1539–1549 (2006).

    CAS  PubMed  Google Scholar 

  40. Kuo, P. H. et al. Association of ADH and ALDH genes with alcohol dependence in the Irish Affected Sib Pair Study of alcohol dependence (IASPSAD) sample. Alcohol. Clin. Exp. Res. 32, 785–795 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo, X. et al. Multiple ADH genes modulate risk for drug dependence in both African- and European-Americans. Hum. Mol. Genet. 16, 380–390 (2007).

    CAS  PubMed  Google Scholar 

  42. Reich, T. et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. Med. Genet. 81, 207–215 (1998).

    CAS  PubMed  Google Scholar 

  43. Long, J. C. et al. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from and autosome-wide scan in an American Indian population. Am. J. Med. Genet. 81, 216–221 (1998).

    CAS  PubMed  Google Scholar 

  44. Edenberg, H. J. et al. Variations in GABRA2, encoding the α 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet. 74, 705–714 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M. & Kranzler, H. R. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 129, 104–109 (2004).

    Google Scholar 

  46. Fehr, C. et al. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr. Genet. 16, 9–17 (2006).

    PubMed  Google Scholar 

  47. Lappalainen, J. et al. Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population. Alcohol. Clin. Exp. Res. 29, 493–498 (2005).

    CAS  PubMed  Google Scholar 

  48. Villafuerte, S. et al. Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Mol. Psychiatry 17, 511–519 (2012).

    CAS  PubMed  Google Scholar 

  49. Ittiwut, C. et al. GABRG1 and GABRA2 variation associated with alcohol dependence in African Americans. Alcohol. Clin. Exp. Res. 36, 588–593 (2012).

    CAS  PubMed  Google Scholar 

  50. Covault, J., Gelernter, J., Jensen, K., Anton, R. & Kranzler, H. R. Markers in the 5′-region of GABRG1 associate to alcohol dependence and are in linkage disequilibrium with markers in the adjacent GABRA2 gene. Neuropsychopharmacology 33, 837–848 (2008).

    CAS  PubMed  Google Scholar 

  51. Enoch, M. A. et al. GABRG1 and GABRA2 as independent predictors for alcoholism in two populations. Neuropsychopharmacology 34, 1245–1254 (2009).

    CAS  PubMed  Google Scholar 

  52. Luo, X. et al. CHRM2 gene predisposes to alcohol dependence, drug dependence and affective disorders: results from an extended case–control structured association study. Hum. Mol. Genet. 14, 2421–2434 (2005).

    CAS  PubMed  Google Scholar 

  53. Agrawal, A. et al. Association of GABRA2 with drug dependence in the collaborative study of the genetics of alcoholism sample. Behav. Genet. 36, 640–650 (2006).

    PubMed  Google Scholar 

  54. Costa, L. & Bauer, L. Quantitative electroencephalographic differences associated with alcohol, cocaine, heroin and dual-substance dependence. Drug Alcohol Depend. 46, 87–93 (1997).

    CAS  PubMed  Google Scholar 

  55. Rangaswamy, M. et al. Beta power in the EEG of alcoholics. Biol. Psychiatry 52, 831–842 (2002).

    PubMed  Google Scholar 

  56. Rangaswamy, M. et al. Resting EEG in offspring of male alcoholics: beta frequencies. Int. J. Psychophysiol. 51, 239–251 (2004).

    PubMed  Google Scholar 

  57. Bauer, L. O. & Hesselbrock, V. EEG, autonomic, and subjective correlates of the risk for alcoholism. J. Stud. Alcohol 54, 577–589 (1993).

    CAS  PubMed  Google Scholar 

  58. Porjesz, B. et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl Acad. Sci. USA 99, 3729–3733 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghosh, S. et al. Linkage mapping of β2 EEG waves via non-parametric regression. Am. J. Med. Genet. 118B, 166–1671 (2003).

    Google Scholar 

  60. Lydall, G. J. et al. Genetic association study of GABRA2 single nucleotide polymorphisms and electroencephalography in alcohol dependence. Neurosci. Lett. 500, 162–166 (2011).

    CAS  PubMed  Google Scholar 

  61. Wang, J. C. et al. Evidence of common and specific genetic effects: association of the muscarinic acetylcholine receptor M2 (CHRM2) gene with alcohol dependence and major depressive syndrome. Hum. Mol. Genet. 13, 1903–1911 (2004).

    CAS  PubMed  Google Scholar 

  62. Dick, D. M. et al. Alcohol dependence with comorbid drug dependence: genetic and phenotypic associations suggest a more severe form of the disorder with stronger genetic contribution to risk. Addiction 102, 1131–1139 (2007).

    PubMed  Google Scholar 

  63. Jones, K. A. et al. A cholinergic receptor gene (CHRM2) affects event-related oscillations. Behav. Genet. 36, 627–639 (2006).

    PubMed  Google Scholar 

  64. Jones, K. A. et al. Linkage and linkage disequilibrium of evoked EEG oscillations with CHRM2 receptor gene polymorphisms: implications for human brain dynamics and cognition. Int. J. Psychophysiol. 53, 75–90 (2004).

    PubMed  Google Scholar 

  65. Rietschel, M. & Treutlein, J. The genetics of alcohol dependence. Ann. NY Acad. Sci. 1282, 39–70 (2013).

    CAS  PubMed  Google Scholar 

  66. Treutlein, J. et al. Genome-wide association study of alcohol dependence. Arch. Gen. Psychiatry 66, 773–784 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hill, S. Y. et al. A genome wide search for alcoholism susceptibility genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 128B, 102–113 (2004).

    PubMed  PubMed Central  Google Scholar 

  68. Nurnberger, J. I. Jr et al. Evidence for a locus on chromosome 1 that influences vulnerability to alcoholism and affective disorder. Am. J. Psychiatry 158, 718–724 (2001).

    PubMed  Google Scholar 

  69. Schuckit, M. A. et al. A genome-wide search for genes that relate to a low level of response to alcohol. Alcohol. Clin. Exp. Res. 25, 323–329 (2001).

    CAS  PubMed  Google Scholar 

  70. Begleiter, H. et al. Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroencephalogr. Clin. Neurophysiol. 108, 244–250 (1998).

    CAS  PubMed  Google Scholar 

  71. Porjesz, B. et al. Linkage and linkage disequilibrium mapping of ERP and EEG phenotypes. Biol. Psychol. 61, 229–248 (2002).

    PubMed  Google Scholar 

  72. Kang, S. J. et al. Family-based genome-wide association study of frontal theta oscillations identifies potassium channel gene KCNJ6. Genes Brain Behav. 11, 712–719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    CAS  PubMed  Google Scholar 

  74. Blednov, Y. A., Stoffel, M., Chang, S. R. & Harris, R. A. Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice. J. Pharmacol. Exp. Ther. 298, 521–530 (2001).

    CAS  PubMed  Google Scholar 

  75. Lotsch, J., Pruss, H., Veh, R. W. & Doehring, A. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet. Genomics 20, 291–297 (2010).

    PubMed  Google Scholar 

  76. Ikeda, K. et al. Molecular mechanisms of analgesia induced by opioids and ethanol: isthe GIRK channel one of the keys? Neurosci. Res. 44, 121–131 (2002).

    CAS  PubMed  Google Scholar 

  77. Schumann, G. et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc. Natl Acad. Sci. USA 108, 7119–7124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y.-H., Liao, D.-L., Lai, C.-H. & Chen, C.-H. Genetic analysis of AUTS2 as a susceptibility gene of heroin dependence. Drug Alcohol Depend. 128, 238–242 (2013).

    CAS  PubMed  Google Scholar 

  79. Zuo, L. et al. Genome-wide significant association signals in IPO11-HTR1A region specific for alcohol and nicotine codependence. Alcohol. Clin. Exp. Res. 37, 730–739 (2013).

    CAS  PubMed  Google Scholar 

  80. Overstreet, D. H., Knapp, D. J., Moy, S. S. & Breese, G. R. A 5-HT1A agonist and a 5-HT2c antagonist reduce social interaction deficit induced by multiple ethanol withdrawals in rats. Psychopharmacology (Berl.) 167, 344–352 (2003).

    CAS  Google Scholar 

  81. Lewis, S. J. & Smith, G. D. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol. Biomarkers Prev. 14, 1967–1971 (2005).

    CAS  PubMed  Google Scholar 

  82. Gupta, S., Wang, F., Holly, E. A. & Bracci, P. M. Risk of pancreatic cancer by alcohol dose, duration, and pattern of consumption, including binge drinking: a population-based study. Cancer Causes Control 21, 1047–1059 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Yokoyama, A. et al. Esophageal squamous cell carcinoma and aldehyde dehydrogenase-2 genotypes in Japanese females. Alcohol. Clin. Exp. Res. 30, 491–500 (2006).

    PubMed  Google Scholar 

  84. Yokoyama, A. et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis 23, 1851–1859 (2002).

    CAS  PubMed  Google Scholar 

  85. Seitz, H. K. & Meier, P. The role of acetaldehyde in upper digestive tract cancer in alcoholics. Transl Med. 149, 293–297 (2007).

    CAS  Google Scholar 

  86. Seitz, H. K. & Homann, N. The role of acetaldehyde in alcohol-associated cancer of the gastrointestinal tract. Novartis Found. Symp. 285, 110–119 (2007).

    CAS  PubMed  Google Scholar 

  87. Seitz, H. K. & Becker, P. Alcohol metabolism and cancer risk. Alcohol Res. Health 30, 38–41 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Ruidavets, J. B. et al. Patterns of alcohol consumption and ischaemic heart disease in culturally divergent countries: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). BMJ 341, c6077 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Graff-Iversen, S. et al. Divergent associations of drinking frequency and binge consumption of alcohol with mortality within the same cohort. J. Epidemiol. Community Health 67, 350–357 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

Related work in the authors' laboratories is supported by grants from the National Institutes of Health, AA008401, AA006460, AA020892, AA007611.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Howard J. Edenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edenberg, H., Foroud, T. Genetics and alcoholism. Nat Rev Gastroenterol Hepatol 10, 487–494 (2013). https://doi.org/10.1038/nrgastro.2013.86

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.86

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing