Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour progression and liver regeneration—insights from animal models

Abstract

Surgery remains the only curative treatment for colorectal liver metastases. For patients with multiple bilobar spread, extended hepatectomy might be required to achieve complete margin-free resection. In such cases, portal vein occlusion has been developed to induce preoperative hypertrophy of the future remnant liver and increase the resectability rate. Evidence now suggests that liver regeneration after hepatectomy and portal vein occlusion has a protumorigenic role, either through an upregulation of growth factors and cytokines or by haemodynamic changes in the blood supply to the liver. Experimental studies have reported a stimulatory effect of liver regeneration on the tumoral volume of liver metastases and on the metastatic potential of cells engrafted in the liver; this effect seems to depend on the timing of hepatectomy and portal vein occlusion. However, the variability of animal tumour models that are used for research in experimental colorectal liver metastases might account for some of the inconsistent and conflicting results. This Review presents clinical and experimental data pertaining to whether liver regeneration causes proliferation of tumour cells. We also analyse the different animal models of colorectal liver metastases in use and discuss current controversies in the field.

Key Points

  • Clinical data suggest that liver regeneration after partial hepatectomy and portal vein occlusion stimulates the growth of colorectal liver metastases, both in terms of metastatic recurrence and enhanced tumour growth

  • Relevant animal models are necessary to provide information on the pathophysiological mechanisms linking liver regeneration with tumour growth

  • An ideal animal model should be an immunocompetent rodent with established multiple bilobar liver metastases at the time of hepatectomy or portal vein occlusion, which represents the clinical situation faced by surgeons

  • Rodent models have provided reliable evidence that upregulation of circulating growth factors and cytokines, increased arterial blood supply to the liver and angiogenesis have a role in promoting the growth of liver metastases

  • The mechanism linking liver regeneration after portal vein occlusion with tumour growth is complex, and might vary according to the occlusion technique used

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common and specific mechanisms of liver regeneration affecting tumour progression.
Figure 2: Bilobar colorectal liver metastases in a 72-year-old man showing a tumoral volume increase in both lobes after portal vein embolization.
Figure 3: Theoretical basis for a rat model of colorectal liver metastasis for studying liver-regeneration-associated tumour growth.
Figure 4: Theoretical description of a stepwise model for studying the influence of partial hepatectomy on colorectal liver metastases growth.

Similar content being viewed by others

References

  1. Adam, R. Chemotherapy and surgery: new perspectives on the treatment of unresectable liver metastases. Ann. Oncol. 14 (Suppl. 2), ii13–ii16 (2003).

    PubMed  Google Scholar 

  2. Christophi, C., Harun, N. & Fifis, T. Liver regeneration and tumor stimulation-—a review of cytokine and angiogenic factors. J. Gastrointest. Surg. 12, 966–980 (2008).

    PubMed  Google Scholar 

  3. Eveno, C. et al. Tumor and non-tumor liver angiogenesis is traced and evaluated by hepatic arterial ultrasound in murine models. Ultrasound Med. Biol. 38, 1195–1204 (2012).

    PubMed  Google Scholar 

  4. Ferrara, N. VEGF as a therapeutic target in cancer. Oncology 69 (Suppl. 3), 11–16 (2005).

    CAS  PubMed  Google Scholar 

  5. Ishigami, S. I. et al. Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer 78, 1379–1384 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi, Y., Kitadai, Y., Bucana, C. D., Cleary, K. R. & Ellis, L. M. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55, 3964–3968 (1995).

    CAS  PubMed  Google Scholar 

  7. Takahashi, Y. et al. Vessel counts and expression of vascular endothelial growth factor as prognostic factors in node-negative colon cancer. Arch. Surg. 132, 541–546 (1997).

    CAS  PubMed  Google Scholar 

  8. Tokunaga, T. et al. Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br. J. Cancer 77, 998–1002 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding, B. S. et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468, 310–315 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Drixler, T. A. et al. Liver regeneration is an angiogenesis-associated phenomenon. Ann. Surg. 236, 703–711 (2002).

    PubMed  PubMed Central  Google Scholar 

  11. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1, 149–153 (1995).

    CAS  PubMed  Google Scholar 

  12. Murray, C. Tumour dormancy: not so sleepy after all. Nat. Med. 1, 117–118 (1995).

    CAS  PubMed  Google Scholar 

  13. Panis, Y., Ribeiro, J., Chretien, Y. & Nordlinger, B. Dormant liver metastases: an experimental study. Br. J. Surg. 79, 221–223 (1992).

    CAS  PubMed  Google Scholar 

  14. Michalopoulos, G. K. Liver regeneration. J. Cell. Physiol. 213, 286–300 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Paschos, K. A. & Bird, N. C. Liver regeneration and its impact on post-hepatectomy metastatic tumour recurrence. Anticancer Res. 30, 2161–2170 (2010).

    PubMed  Google Scholar 

  16. Lim, C. & Farges, O. Portal vein occlusion before major hepatectomy in patients with colorectal liver metastases: rationale, indications, technical aspects, complications and outcome. J. Visc. Surg. 149, e86–e96 (2012).

    CAS  PubMed  Google Scholar 

  17. Yokoyama, Y., Nagino, M. & Nimura, Y. Mechanisms of hepatic regeneration following portal vein embolization and partial hepatectomy: a review. World J. Surg. 31, 367–374 (2007).

    CAS  PubMed  Google Scholar 

  18. de Graaf, W., van den Esschert, J. W., van Lienden, K. P. & van Gulik, T. M. Induction of tumor growth after preoperative portal vein embolization: is it a real problem? Ann. Surg. Oncol. 16, 423–430 (2009).

    PubMed  Google Scholar 

  19. Gorden, D. L. et al. Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. Int. J. Cancer 121, 495–500 (2007).

    CAS  PubMed  Google Scholar 

  20. Michalopoulos, G. K. & Khan, Z. Liver regeneration, growth factors, and amphiregulin. Gastroenterology 128, 503–506 (2005).

    CAS  PubMed  Google Scholar 

  21. Tsushima, H. et al. Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin. Cancer Res. 7, 1258–1262 (2001).

    CAS  PubMed  Google Scholar 

  22. Yoon, S. S. et al. Profile of plasma angiogenic factors before and after hepatectomy for colorectal cancer liver metastases. Ann. Surg. Oncol. 13, 353–362 (2006).

    PubMed  Google Scholar 

  23. Kokudo, N. et al. Proliferative activity of intrahepatic colorectal metastases after preoperative hemihepatic portal vein embolization. Hepatology 34, 267–272 (2001).

    CAS  PubMed  Google Scholar 

  24. Shimizu, Y. et al. Elevated mitochondrial gene expression during rat liver regeneration after portal vein ligation. Hepatology 22, 1222–1229 (1995).

    CAS  PubMed  Google Scholar 

  25. Starkel, P. et al. After portal branch ligation in rat, nuclear factor κB, interleukin-6, signal transducers and activators of transcription 3, c-fos, c-myc, and c-jun are similarly induced in the ligated and nonligated lobes. Hepatology 29, 1463–1470 (1999).

    CAS  PubMed  Google Scholar 

  26. Bohm, F., Kohler, U. A., Speicher, T. & Werner, S. Regulation of liver regeneration by growth factors and cytokines. EMBO Mol. Med. 2, 294–305 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Homsi, J. & Daud, A. I. Spectrum of activity and mechanism of action of VEGF/PDGF inhibitors. Cancer Control 14, 285–294 (2007).

    PubMed  Google Scholar 

  28. Otte, J. M. et al. Functional expression of HGF and its receptor in human colorectal cancer. Digestion 61, 237–246 (2000).

    CAS  PubMed  Google Scholar 

  29. Brozek, W. et al. Differentiation-dependent expression and mitogenic action of interleukin-6 in human colon carcinoma cells: relevance for tumour progression. Eur. J. Cancer 41, 2347–2354 (2005).

    CAS  PubMed  Google Scholar 

  30. Nabeshima, K. et al. Hepatocyte growth factor/scatter factor induces not only scattering but also cohort migration of human colorectal-adenocarcinoma cells. Int. J. Cancer 78, 750–759 (1998).

    CAS  PubMed  Google Scholar 

  31. Byrne, A. M., Bouchier-Hayes, D. J. & Harmey, J. H. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J. Cell. Mol. Med. 9, 777–794 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Michalopoulos, G. K. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am. J. Pathol. 176, 2–13 (2009).

    PubMed  Google Scholar 

  33. Marubashi, S. et al. Effect of portal hemodynamics on liver regeneration studied in a novel portohepatic shunt rat model. Surgery 136, 1028–1037 (2004).

    PubMed  Google Scholar 

  34. Yarmenitis, S. D. et al. An experimental approach of the Doppler perfusion index of the liver in detecting occult hepatic metastases: histological findings related to the hemodynamic measurements in Wistar rats. Eur. Radiol. 10, 417–424 (2000).

    CAS  PubMed  Google Scholar 

  35. Eipel, C., Abshagen, K. & Vollmar, B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. World J. Gastroenterol. 16, 6046–6057 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Lautt, W. W. Regulatory processes interacting to maintain hepatic blood flow constancy: vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol. Res. 37, 891–903 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Lautt, W. W., D'Almeida, M. S., McQuaker, J. & D'Aleo, L. Impact of the hepatic arterial buffer response on splanchnic vascular responses to intravenous adenosine, isoproterenol, and glucagon. Can. J. Physiol. Pharmacol. 66, 807–813 (1988).

    CAS  PubMed  Google Scholar 

  38. Kollmar, O. et al. Tumour growth following portal branch ligation in an experimental model of liver metastases. Br. J. Surg. 97, 917–926 (2010).

    CAS  PubMed  Google Scholar 

  39. Kollmar, O. et al. Portal branch ligation induces a hepatic arterial buffer response, microvascular remodeling, normoxygenation, and cell proliferation in portal blood-deprived liver tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1534–G1542 (2007).

    CAS  PubMed  Google Scholar 

  40. Richter, S., Vollmar, B., Mucke, I., Post, S. & Menger, M. D. Hepatic arteriolo–portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J. Physiol. 531, 193–201 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yokoyama, Y. et al. Hepatic arterial flow becomes the primary supply of sinusoids following partial portal vein ligation in rats. J. Gastroenterol. Hepatol. 21, 1567–1574 (2006).

    PubMed  Google Scholar 

  42. Olle, E. W. et al. Matrix metalloproteinase-9 is an important factor in hepatic regeneration after partial hepatectomy in mice. Hepatology 44, 540–549 (2006).

    CAS  PubMed  Google Scholar 

  43. Illemann, M. et al. MMP-9 is differentially expressed in primary human colorectal adenocarcinomas and their metastases. Mol. Cancer Res. 4, 293–302 (2006).

    CAS  PubMed  Google Scholar 

  44. Matsuyama, Y., Takao, S. & Aikou, T. Comparison of matrix metalloproteinase expression between primary tumors with or without liver metastasis in pancreatic and colorectal carcinomas. J. Surg. Oncol. 80, 105–110 (2002).

    CAS  PubMed  Google Scholar 

  45. Alwayn, I. P. et al. A critical role for matrix metalloproteinases in liver regeneration. J. Surg. Res. 145, 192–198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mueller, L. et al. Tumor growth-promoting cellular host response during liver atrophy after portal occlusion. Liver Int. 25, 994–1001 (2005).

    CAS  PubMed  Google Scholar 

  47. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4, 923–928 (1998).

    CAS  PubMed  Google Scholar 

  48. Busserolles, J., Megias, J., Terencio, M. C. & Alcaraz, M. J. Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. Int. J. Biochem. Cell. Biol. 38, 1510–1517 (2006).

    CAS  PubMed  Google Scholar 

  49. Jozkowicz, A., Was, H. & Dulak, J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid. Redox Signal. 9, 2099–2117 (2007).

    CAS  PubMed  Google Scholar 

  50. Nylandsted, J. et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res. 62, 7139–7142 (2002).

    CAS  PubMed  Google Scholar 

  51. Tanaka, S. et al. Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br. J. Cancer 88, 902–909 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barbaro, B. et al. Preoperative right portal vein embolization in patients with metastatic liver disease. Metastatic liver volumes after RPVE. Acta Radiol. 44, 98–102 (2003).

    CAS  PubMed  Google Scholar 

  53. Elias, D. et al. During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma. Br. J. Surg. 86, 784–788 (1999).

    CAS  PubMed  Google Scholar 

  54. Hoekstra, L. T. et al. Tumor progression after preoperative portal vein embolization. Ann. Surg. 256, 812–817 (2012).

    PubMed  Google Scholar 

  55. Lindner, P. et al. Extended right-sided liver resection for colorectal liver metastases—impact of percutaneous portal venous embolisation. Eur. J. Surg. Oncol. 32, 292–296 (2006).

    CAS  PubMed  Google Scholar 

  56. Pamecha, V. et al. Long-term survival and disease recurrence following portal vein embolisation prior to major hepatectomy for colorectal metastases. Ann. Surg. Oncol. 16, 1202–1207 (2009).

    PubMed  Google Scholar 

  57. Wicherts, D. A. et al. Long-term results of two-stage hepatectomy for irresectable colorectal cancer liver metastases. Ann. Surg. 248, 994–1005 (2008).

    PubMed  Google Scholar 

  58. Brouquet, A. et al. High survival rate after two-stage resection of advanced colorectal liver metastases: response-based selection and complete resection define outcome. J. Clin. Oncol. 29, 1083–1090 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. Ribero, D. et al. Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br. J. Surg. 94, 1386–1394 (2007).

    CAS  PubMed  Google Scholar 

  60. Muratore, A. et al. Chemotherapy between the first and second stages of a two-stage hepatectomy for colorectal liver metastases: should we routinely recommend it? Ann. Surg. Oncol. 19, 1310–1315 (2012).

    PubMed  Google Scholar 

  61. Goere, D. et al. Chemotherapy does not impair hypertrophy of the left liver after right portal vein obstruction. J. Gastrointest. Surg. 10, 365–370 (2006).

    PubMed  Google Scholar 

  62. Aussilhou, B. et al. Preoperative liver hypertrophy induced by portal flow occlusion before major hepatic resection for colorectal metastases can be impaired by bevacizumab. Ann. Surg. Oncol. 16, 1553–1559 (2009).

    PubMed  Google Scholar 

  63. Zorzi, D., Chun, Y. S., Madoff, D. C., Abdalla, E. K. & Vauthey, J. N. Chemotherapy with bevacizumab does not affect liver regeneration after portal vein embolization in the treatment of colorectal liver metastases. Ann. Surg. Oncol. 15, 2765–2772 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Elias, D. et al. Simultaneous percutaneous right portal vein embolization and left liver tumor radiofrequency ablation prior to a major right hepatic resection for bilateral colorectal metastases. Hepatogastroenterology 51, 1788–1791 (2004).

    PubMed  Google Scholar 

  65. Selzner, N. et al. Downstaging colorectal liver metastases by concomitant unilateral portal vein ligation and selective intra-arterial chemotherapy. Br. J. Surg. 93, 587–592 (2006).

    CAS  PubMed  Google Scholar 

  66. Hwang, S. et al. Sequential preoperative ipsilateral hepatic vein embolization after portal vein embolization to induce further liver regeneration in patients with hepatobiliary malignancy. Ann. Surg. 249, 608–616 (2009).

    PubMed  Google Scholar 

  67. Schnitzbauer, A. A. et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann. Surg. 255, 405–414 (2012).

    PubMed  Google Scholar 

  68. de Santibanes, E. & Clavien, P. A. Playing Play-Doh to prevent postoperative liver failure: the “ALPPS” approach. Ann. Surg. 255, 415–417 (2012).

    PubMed  Google Scholar 

  69. Ogata, S. et al. Sequential arterial and portal vein embolizations before right hepatectomy in patients with cirrhosis and hepatocellular carcinoma. Br. J. Surg. 93, 1091–1098 (2006).

    CAS  PubMed  Google Scholar 

  70. Dokmak, S. & Belghiti, J. Which limits to the “ALPPS” approach? Ann. Surg. 256, e6 (2012).

    PubMed  Google Scholar 

  71. Rudnick, D. A. & Davidson, N. O. Functional relationships between lipid metabolism and liver regeneration. Int. J. Hepatol. 2012, 549241 (2012).

    PubMed  PubMed Central  Google Scholar 

  72. Higgins, G. M. & Anderson R. Experimental pathology of the liver. Arch. Path. Lab. Med. 12, 186–202 (1931).

    Google Scholar 

  73. Greene, A. K. & Puder, M. Partial hepatectomy in the mouse: technique and perioperative management. J. Invest. Surg. 16, 99–102 (2003).

    PubMed  Google Scholar 

  74. Harun, N., Nikfarjam, M., Muralidharan, V. & Christophi, C. Liver regeneration stimulates tumor metastases. J. Surg. Res. 138, 284–290 (2007).

    PubMed  Google Scholar 

  75. Slooter, G. D., Marquet, R. L., Jeekel, J. & Ijzermans, J. N. Tumour growth stimulation after partial hepatectomy can be reduced by treatment with tumour necrosis factor α. Br. J. Surg. 82, 129–132 (1995).

    CAS  PubMed  Google Scholar 

  76. Furrer, K. et al. Selective portal vein embolization and ligation trigger different regenerative responses in the rat liver. Hepatology 47, 1615–1623 (2008).

    PubMed  Google Scholar 

  77. Bretagnol, F. et al. Selective portal vein embolization and colorectal liver metastases in rat: a new experimental model for tumor growth study. J. Surg. Res. 171, 669–674 (2011).

    PubMed  Google Scholar 

  78. Maggiori, L. et al. Selective portal vein ligation and embolization induce different tumoral responses in the rat liver. Surgery 149, 496–503 (2011).

    PubMed  Google Scholar 

  79. Sakai, N. et al. Portal vein ligation accelerates tumor growth in ligated, but not contralateral lobes. World J. Gastroenterol. 16, 3816–3826 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Aller, M. A. et al. The value of microsurgery in liver research. Liver Int. 29, 1132–1140 (2009).

    PubMed  Google Scholar 

  81. van den Esschert, J. W. et al. Portal vein embolization induces more liver regeneration than portal vein ligation in a standardized rabbit model. Surgery 149, 378–385 (2011).

    PubMed  Google Scholar 

  82. Wilms, C. et al. Comparative study of portal vein embolization versus portal vein ligation for induction of hypertrophy of the future liver remnant using a mini-pig model. Ann. Surg. 247, 825–834 (2008).

    PubMed  Google Scholar 

  83. de Jong, G. M., Aarts, F., Hendriks, T., Boerman, O. C. & Bleichrodt, R. P. Animal models for liver metastases of colorectal cancer: research review of preclinical studies in rodents. J. Surg. Res. 154, 167–176 (2009).

    PubMed  Google Scholar 

  84. Maggiori, L., Bretagnol, F., Wagner, M., Hatwell, C. & Panis, Y. Bilobar colorectal liver metastases: a new model for preclinical studies. Int. J. Exp. Pathol. 93, 414–420 (2012).

    PubMed  PubMed Central  Google Scholar 

  85. de Jong, K. P. et al. The effect of partial hepatectomy on tumor growth in rats: in vivo and in vitro studies. Hepatology 22, 1263–1272 (1995).

    CAS  PubMed  Google Scholar 

  86. Ikeda, Y. et al. Preliminary report of tumor metastasis during liver regeneration after hepatic resection in rats. Eur. J. Surg. Oncol. 21, 188–190 (1995).

    CAS  PubMed  Google Scholar 

  87. Rashidi, B. et al. Minimal liver resection strongly stimulates the growth of human colon cancer in the liver of nude mice. Clin. Exp. Metastasis 17, 497–500 (1999).

    CAS  PubMed  Google Scholar 

  88. Fausto, N. Liver regeneration. J. Hepatol. 32, 19–31 (2000).

    CAS  PubMed  Google Scholar 

  89. Mangnall, D., Bird, N. C. & Majeed, A. W. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int. 23, 124–138 (2003).

    CAS  PubMed  Google Scholar 

  90. Denys, A. L. et al. Failure of right portal vein ligation to induce left lobe hypertrophy due to intrahepatic portoportal collaterals: successful treatment with portal vein embolization. AJR Am. J. Roentgenol. 173, 633–635 (1999).

    CAS  PubMed  Google Scholar 

  91. Heinrich, S., Jochum, W., Graf, R. & Clavien, P. A. Portal vein ligation and partial hepatectomy differentially influence growth of intrahepatic metastasis and liver regeneration in mice. J. Hepatol. 45, 35–42 (2006).

    PubMed  Google Scholar 

  92. Riehle, K. J., Dan, Y. Y., Campbell, J. S. & Fausto, N. New concepts in liver regeneration. J. Gastroenterol. Hepatol. 26 (Suppl. 1), 203–212 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. am Esch, J. S. et al. Infusion of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances functional hepatic reserves after extended right hepatectomy: a retrospective single-center study. Ann. Surg. 255, 79–85 (2012).

    PubMed  Google Scholar 

  94. Audollent, R. et al. Bone marrow-derived endothelial and hematopoietic precursors cells enhance the metastasis of colon cancer in an orthotopic murine model. Int. J. Cancer. 129, 2304–2305 (2011).

    CAS  PubMed  Google Scholar 

  95. Shinagawa, K. et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int. J. Cancer 127, 2323–2333 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C. Lim researched data for the article. C. Lim, F. Cauchy and M. Pocard wrote the article. All of the authors substantially contributed to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Marc Pocard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C., Cauchy, F., Azoulay, D. et al. Tumour progression and liver regeneration—insights from animal models. Nat Rev Gastroenterol Hepatol 10, 452–462 (2013). https://doi.org/10.1038/nrgastro.2013.55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.55

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer