Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into pancreatic cancer-induced paraneoplastic diabetes

Abstract

Up to 85% of patients with pancreatic cancer have diabetes or hyperglycaemia, which frequently manifests as early as 2–3 years before a diagnosis of pancreatic cancer. Conversely, patients with new-onset diabetes have a 5–8-fold increased risk of being diagnosed with pancreatic cancer within 1–3 years of developing diabetes. Emerging evidence now indicates that pancreatic cancer causes diabetes. As in type 2 diabetes, β-cell dysfunction and peripheral insulin resistance are seen in pancreatic cancer-induced diabetes. However, unlike in patients with type 2 diabetes, glucose control worsens in patients with pancreatic cancer in the face of ongoing, often profound, weight loss. Diabetes and weight loss, which precede cachexia onset by several months, are paraneoplastic phenomena induced by pancreatic cancer. Although the pathogenesis of these pancreatic cancer-induced metabolic alterations is only beginning to be understood, these are likely mechanisms to promote the survival and growth of pancreatic cancer in a hostile and highly desmoplastic microenvironment. Interestingly, these metabolic changes could enable early diagnosis of pancreatic cancer, if they can be distinguished from the ones that occur in patients with type 2 diabetes. One such possible biomarker is adrenomedullin, which is a potential mediator of β-cell dysfunction in pancreatic cancer-induced diabetes.

Key Points

  • Compelling evidence now indicates that pancreatic cancer causes paraneoplastic diabetes

  • As in type 2 diabetes, β-cell dysfunction and peripheral insulin resistance occur in pancreatic cancer-induced diabetes; however, unlike type 2 diabetes, weight loss occurs alongside worsening diabetes in pancreatic cancer

  • Paraneoplastic diabetes and weight loss manifest many months prior to the onset of cachexia or clinical presentation of pancreatic cancer

  • Differential responses of visceral and subcutaneous adipose tissue compartments in pancreatic cancer might underlie the development of insulin resistance and paradoxical weight loss

  • These metabolic alterations might be induced by pancreatic cancer for enhanced survival and tumour growth in an otherwise hostile microenvironment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bidirectional association between pancreatic cancer and diabetes.
Figure 2: A model depicting the phases of weight loss in pancreatic cancer.
Figure 3: A model demonstrating pancreatic cancer and β-cell interactions resulting in the pathogenesis of paraneoplastic diabetes.
Figure 4: A model demonstrating pancreatic cancer and adipose tissue interactions resulting in the pathogenesis of paraneoplastic diabetes and associated weight loss.
Figure 5: Significance of metabolic alterations in pancreatic cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).

    Article  PubMed  Google Scholar 

  2. Conlon, K. C., Klimstra, D. S. & Brennan, M. F. Long-term survival after curative resection for pancreatic ductal adenocarcinoma. Clinicopathologic analysis of 5-year survivors. Ann. Surg. 223, 273–279 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chari, S. T. Detecting early pancreatic cancer: problems and prospects. Semin. Oncol. 34, 284–294 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Magruder, J. T., Elahi, D. & Andersen, D. K. Diabetes and pancreatic cancer: chicken or egg? Pancreas 40, 339–351 (2011).

    Article  PubMed  Google Scholar 

  5. Li, D. Diabetes and pancreatic cancer. Mol. Carcinog. 51, 64–74 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cui, Y. & Andersen, D. K. Diabetes and pancreatic cancer. Endocr. Relat. Cancer 19, F9–F26 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Bright, R. Cases and observations connected with disease of the pancreas and duodenum. Med. Chir. Trans. 18, 1–56 (1833).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marble, A. Diabetes and pancreatic cancer. N. Engl. J. Med. 211, 339–349 (1934).

    Article  Google Scholar 

  9. Grauer, F. W. Pancreatic carcinoma: a review of thirty-four autopsies. Arch. Intern. Med. 63, 884–889 (1939).

    Article  Google Scholar 

  10. Green, R. C. Jr, Baggenstoss, A. H. & Sprague, R. G. Diabetes mellitus in association with primary carcinoma of the pancreas. Diabetes 7, 308–311 (1958).

    Article  PubMed  Google Scholar 

  11. Everhart, J. & Wright, D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273, 1605–1609 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Huxley, R., Ansary-Moghaddam, A., Berrington de Gonzalez, A., Barzi, F. & Woodward, M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br. J. Cancer 92, 2076–2083 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ben, Q. et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of cohort studies. Eur. J. Cancer 47, 1928–1937 (2011).

    Article  PubMed  Google Scholar 

  14. Grote, V. A. et al. Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia 54, 3037–3046 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Ogawa, Y. et al. A prospective pancreatographic study of the prevalence of pancreatic carcinoma in patients with diabetes mellitus. Cancer 94, 2344–2349 (2002).

    Article  PubMed  Google Scholar 

  16. De Nunzio, C. & Tubaro, A. Prostate cancer: diabetes and prostate cancer—an open debate. Nat. Rev. Urol. 10, 12–14 (2012).

    Article  PubMed  Google Scholar 

  17. Djiogue, S. et al. Insulin resistance and cancer: the role of insulin and insulin-like growth factors. Endocr. Relat. Cancer 20, R1–R17 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Yuhara, H. et al. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer? Am. J. Gastroenterol. 106, 1911–1921 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang, C. et al. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int. J. Cancer 130, 1639–1648 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Vongsuvanh, R., George, J., Qiao, L. & Poorten, D. V. Visceral adiposity in gastrointestinal and hepatic carcinogenesis. Cancer Lett. 330, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. McTiernan, A. Obesity and cancer: the risks, science, and potential management strategies. Oncology 19, 871–881 (2005).

    PubMed  Google Scholar 

  22. Mannucci, E. Insulin therapy and cancer in type 2 diabetes. ISRN Endocrinol. 2012, 240634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonelli, L. et al. Exocrine pancreatic cancer, cigarette smoking, and diabetes mellitus: a case-control study in northern Italy. Pancreas 27, 143–149 (2003).

    Article  PubMed  Google Scholar 

  24. Ding, X. Z., Fehsenfeld, D. M., Murphy, L. O., Permert, J. & Adrian, T. E. Physiological concentrations of insulin augment pancreatic cancer cell proliferation and glucose utilization by activating MAP kinase, PI3 kinase and enhancing GLUT-1 expression. Pancreas 21, 310–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Maisonneuve, P. et al. Past medical history and pancreatic cancer risk: results from a multicenter case-control study. Ann. Epidemiol. 20, 92–98 (2010).

    Article  PubMed  Google Scholar 

  26. Li, D., Yeung, S. C., Hassan, M. M., Konopleva, M. & Abbruzzese, J. L. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 137, 482–428 (2009).

    Article  PubMed  Google Scholar 

  27. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chari, S. T. et al. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology 129, 504–511 (2005).

    Article  PubMed  Google Scholar 

  29. Gupta, S. et al. New-onset diabetes and pancreatic cancer. Clin. Gastroenterol. Hepatol. 4, 1366–1372 (2006).

    Article  PubMed  Google Scholar 

  30. Wang, F., Gupta, S. & Holly, E. A. Diabetes mellitus and pancreatic cancer in a population-based case-control study in the San Francisco Bay Area, California. Cancer Epidemiol. Biomarkers Prev. 15, 1458–1463 (2006).

    Article  PubMed  Google Scholar 

  31. Pannala, R. et al. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 134, 981–987 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Krechler, T. et al. Leptin and adiponectin in pancreatic cancer: connection with diabetes mellitus. Neoplasma 58, 58–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Cersosimo, E. et al. Insulin secretion and action in patients with pancreatic cancer. Cancer 67, 486–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Permert, J. et al. Pancreatic cancer is associated with impaired glucose metabolism. Eur. J. Surg. 159, 101–107 (1993).

    CAS  PubMed  Google Scholar 

  35. Saruc, M. & Pour, P. M. Diabetes and its relationship to pancreatic carcinoma. Pancreas 26, 381–387 (2003).

    Article  PubMed  Google Scholar 

  36. Kim, T. D. et al. Clinical characteristics of pancreatic cancer according to the presence of diabetes mellitus [Korean]. Korean J. Gastroenterol. 43, 35–40 (2004).

    PubMed  Google Scholar 

  37. Wu, J. M. et al. Resolution of diabetes after pancreaticoduodenectomy in patients with and without pancreatic ductal cell adenocarcinoma. Ann. Surg. Oncol. 20, 242–249 (2013).

    Article  PubMed  Google Scholar 

  38. Trna, J., Dite, P., Adamcova, A., Crawford, B. J. & Hermanova, M. Diabetes mellitus in pancreatic cancer patients in the Czech Republic: sex differences. Exp. Diabetes Res. 2012, 414893 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cuzick, J. & Babiker, A. G. Pancreatic cancer, alcohol, diabetes mellitus and gall-bladder disease. Int. J. Cancer 43, 415–421 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Hiatt, R. A., Klatsky, A. L. & Armstrong, M. A. Pancreatic cancer, blood glucose and beverage consumption. Int. J. Cancer 41, 794–797 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Bell, E. T. Carcinoma of the pancreas. I. A clinical and pathologic study of 609 necropsied cases. II. The relation of carcinoma of the pancreas to diabetes mellitus. Am. J. Pathol. 33, 499–523 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Aggarwal, G., Rabe, K. G., Petersen, G. M. & Chari, S. T. New-onset diabetes in pancreatic cancer: a study in the primary care setting. Pancreatology 12, 156–161 (2012).

    Article  PubMed  Google Scholar 

  43. Permert, J. et al. Pancreatic cancer is associated with impaired glucose metabolism. Eur. J. Surg. 159, 101–107 (1993).

    CAS  PubMed  Google Scholar 

  44. Chari, S. T., Klee, G. G., Miller, L. J., Raimondo, M. & DiMagno, E. P. Islet amyloid polypeptide is not a satisfactory marker for detecting pancreatic cancer. Gastroenterology 121, 640–645 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Chari, S. T. et al. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 134, 95–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Permert, J. et al. Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br. J. Surg. 80, 1047–1050 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Aggarwal, G., Kamada, P. & Chari, S. T. Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas 42, 198–201 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tsoli, M. & Robertson, G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol. Metab. http://dx.doi.org/10.1016/j.tem.2012.10.006.

  49. Fearon, K., Arends, J. & Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10, 90–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Fearon, K. C. et al. Pancreatic cancer as a model: inflammatory mediators, acute-phase response, and cancer cachexia. World J. Surg. 23, 584–588 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Gangi, S. et al. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am. J. Roentgenol. 182, 897–903 (2004).

    Article  PubMed  Google Scholar 

  52. Pelaez-Luna, M., Takahashi, N., Fletcher, J. G. & Chari, S. T. Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am. J. Gastroenterol. 102, 2157–2163 (2007).

    Article  PubMed  Google Scholar 

  53. Permert, J. et al. Islet hormone secretion in pancreatic cancer patients with diabetes. Pancreas 15, 60–68 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Basso, D. et al. β-cell function in pancreatic adenocarcinoma. Pancreas 9, 332–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Schwarts, S. S., Zeidler, A., Moossa, A. R., Kuku, S. F. & Rubenstein, A. H. A prospective study of glucose tolerance, insulin, C-peptide, and glucagon responses in patients with pancreatic carcinoma. Am. J. Dig. Dis. 23, 1107–1114 (1978).

    Article  CAS  PubMed  Google Scholar 

  56. Permert, J. et al. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med. 330, 313–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Rosa, J. A., Van Linda, B. M. & Abourizk, N. N. New-onset diabetes mellitus as a harbinger of pancreatic carcinoma. A case report and literature review. J. Clin. Gastroenterol. 11, 211–215 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Silverstein, M. D., Richter, J. M., Podolsky, D. K. & Warshaw, A. L. Suspected pancreatic cancer presenting as pain or weight loss: analysis of diagnostic strategies. World J. Surg. 8, 839–845 (1984).

    Article  CAS  PubMed  Google Scholar 

  59. Girelli, C. M., Reguzzoni, G., Limido, E., Savastano, A. & Rocca, F. Pancreatic carcinoma: differences between patients with or without diabetes mellitus. Recenti Prog. Med. 86, 143–146 (1995).

    CAS  PubMed  Google Scholar 

  60. Pannala, R. et al. Temporal association of changes in fasting blood glucose and body mass index with diagnosis of pancreatic cancer. Am. J. Gastroenterol. 104, 2318–2325 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hart, P. A. et al. Weight loss precedes cancer-specific symptoms in pancreatic cancer-associated diabetes mellitus. Pancreas 40, 768–772 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Murphy, R. A. et al. Loss of adipose tissue and plasma phospholipids: relationship to survival in advanced cancer patients. Clin. Nutr. 29, 482–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Hermans, M. P., Levy, J. C., Morris, R. J. & Turner, R. C. Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia 42, 678–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Hermans, M. P., Levy, J. C., Morris, R. J. & Turner, R. C. Comparison of tests of β-cell function across a range of glucose tolerance from normal to diabetes. Diabetes 48, 1779–1786 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Chari, S. T., Zapiach, M., Yadav, D. & Rizza, R. A. β-cell function and insulin resistance evaluated by HOMA in pancreatic cancer subjects with varying degrees of glucose intolerance. Pancreatology 5, 229–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Permert, J. et al. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med. 330, 313–318 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Basso, D. et al. Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause? Clin. Chim. Acta 372, 120–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Basso, D. et al. Pancreatic cancer-associated diabetes mellitus: an open field for proteomic applications. Clin. Chim. Acta 357, 184–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Aggarwal, G. et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice. Gastroenterology 143, 1510–1517 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Martinez, A. et al. Regulation of insulin secretion and blood glucose metabolism by adrenomedullin. Endocrinology 137, 2626–2632 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Sekine, N., Takano, K., Kimata-Hayashi, N., Kadowaki, T. & Fujita, T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 291, E9–E14 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Zudaire, E., Cuttitta, F. & Martinez, A. Regulation of pancreatic physiology by adrenomedullin and its binding protein. Regu. Pept. 112, 121–130 (2003).

    Article  CAS  Google Scholar 

  74. Hong, Y., Hay, D. L., Quirion, R. & Poyner, D. R. The pharmacology of adrenomedullin 2/intermedin. Br. J. Pharmacol. 166, 110–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Keleg, S. et al. Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int. J. Cancer 121, 21–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Natsuizaka, M. et al. Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp. Cell Res. 313, 3337–3348 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Konner, A. C. & Bruning, J. C. Selective insulin and leptin resistance in metabolic disorders. Cell. Metab. 16, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J. et al. The intracellular mechanism of insulin resistance in pancreatic cancer patients. J. Clin. Endocrinol. Metab. 85, 1232–1238 (2000).

    CAS  PubMed  Google Scholar 

  79. Isaksson, B. et al. Impaired insulin action on phosphatidylinositol 3-kinase activity and glucose transport in skeletal muscle of pancreatic cancer patients. Pancreas 26, 173–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Basso, D. et al. Putative pancreatic cancer-associated diabetogenic factor: 2030 MW peptide. Pancreas 24, 8–14 (2002).

    Article  PubMed  Google Scholar 

  81. Tabata, H. et al. Islet amyloid polypeptide (IAPP/amylin) causes insulin resistance in perfused rat hindlimb muscle. Diabetes Res. Clin. Pract. 15, 57–61 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Ding, X., Flatt, P. R., Permert, J. & Adrian, T. E. Pancreatic cancer cells selectively stimulate islet β cells to secrete amylin. Gastroenterology 114, 130–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, F., Adrian, T. E., Westermark, G., Gasslander, T. & Permert, J. Dissociated insulin and islet amyloid polypeptide secretion from isolated rat pancreatic islets cocultured with human pancreatic adenocarcinoma cells. Pancreas 18, 403–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, F. et al. Dissociated secretion of islet amyloid polypeptide and insulin in serum-free culture media conditioned by human pancreatic adenocarcinoma cell lines. Int. J. Pancreatol. 21, 157–164 (1997).

    CAS  PubMed  Google Scholar 

  85. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hardy, O. T., Czech, M. P. & Corvera, S. What causes the insulin resistance underlying obesity? Curr. Opin. Endocrinol. Diabetes Obes. 19, 81–87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Ann. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  Google Scholar 

  88. De Boer, M. P. et al. Microvascular dysfunction: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Microcirculation 19, 5–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Koerner, A., Kratzsch, J. & Kiess, W. Adipocytokines: leptin--the classical, resistin--the controversical, adiponectin--the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19, 525–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Matsuzawa, Y. Adiponectin: a key player in obesity related disorders. Curr. Pharm. Des. 16, 1896–1901 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Oda, N. et al. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 57, 268–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Ann. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  Google Scholar 

  93. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stienstra, R., Tack, C. J., Kanneganti, T. D., Joosten, L. A. & Netea, M. G. The inflammasome puts obesity in the danger zone. Cell. Metab. 15, 10–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Matsuzawa, Y. The metabolic syndrome and adipocytokines. FEBS Lett. 580, 2917–2921 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Grote, V. A. et al. Inflammation marker and risk of pancreatic cancer: a nested case-control study within the EPIC cohort. Br. J. Cancer 106, 1866–1874 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smits, M. M. & van Geenen, E. J. The clinical significance of pancreatic steatosis. Nat. Rev. Gastroenterol. Hepatol. 8, 169–177 (2011).

    Article  PubMed  Google Scholar 

  98. Gupta, D., Krueger, C. B. & Lastra, G. Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction. Curr. Diabetes Rev. 8, 76–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Tisdale, M. J. Zinc- α-2-glycoprotein in cachexia and obesity. Curr. Opin. Support Palliat. Care 3, 288–293 (2009).

    Article  PubMed  Google Scholar 

  100. Bing, C., Mracek, T., Gao, D. & Trayhurn, P. Zinc- α-2-glycoprotein: an adipokine modulator of body fat mass? Int. J. Obes. (Lond.) 34, 1559–1565 (2010).

    Article  CAS  Google Scholar 

  101. Matsuzawa, Y. The role of fat topology in the risk of disease. Int. J. Obes. (Lond.) 32 (Suppl. 7), S83–S92 (2008).

    Article  CAS  Google Scholar 

  102. Matsuzawa, Y., Funahashi, T. & Nakamura, T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 18, 629–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Matsuzawa, Y. Establishment of a concept of visceral fat syndrome and discovery of adiponectin. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 86, 131–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–E1760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klein, S. et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 350, 2549–2557 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Gabriely, I. et al. Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51, 2951–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Thorne, A., Lonnqvist, F., Apelman, J., Hellers, G. & Arner, P. A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int. J. Obes. (Lond.) 26, 193–199 (2002).

    Article  CAS  Google Scholar 

  108. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Int. J. Obes. (Lond.) 11, 11–18 (2010).

    Google Scholar 

  109. Samaras, K., Botelho, N. K., Chisholm, D. J. & Lord, R. V. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 18, 884–889 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  111. Regel, I. et al. Energy metabolism and proliferation in pancreatic carcinogenesis. Langenbecks Arch. Surg. 397, 507–512 (2012).

    Article  PubMed  Google Scholar 

  112. Chaika, N. V. et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS ONE 7, e32996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dong, X. et al. Glucose metabolism gene variants modulate the risk of pancreatic cancer. Cancer Prev. Res. (Phila.) 4, 758–766 (2011).

    Article  CAS  Google Scholar 

  114. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Singh, P. K., Brand, R. E. & Mehla, K. MicroRNAs in pancreatic cancer metabolism. Nat. Rev. Gastroenterol. Hepatol. 9, 334–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferrer, J. Glucose as a mitogenic hormone. Cell Metab. 13, 357–358 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Jiao, L. et al. Advanced glycation end products, soluble receptor for advanced glycation end products, and risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 20, 1430–1438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiao, L. et al. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res. 71, 3582–3589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Han, L. et al. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 6, e27074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Butler, A. E. et al. Pancreatic duct replication is increased with obesity and type 2 diabetes in humans. Diabetologia 53, 21–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Li, J. et al. Relationship between neural alteration and perineural invasion in pancreatic cancer patients with hyperglycemia. PLoS ONE 6, e17385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stolzenberg-Solomon, R. Z. et al. Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294, 2872–2878 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Kang, R. et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc. Natl Acad. Sci. USA 109, 7031–7036 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Arumugam, T., Ramachandran, V., Gomez, S. B., Schmidt, A. M. & Logsdon, C. D. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin. Cancer Res. 18, 4356–4364 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Grote, V. A. et al. The associations of advanced glycation end products and its soluble receptor with pancreatic cancer risk: a case-control study within the prospective EPIC Cohort. Cancer Epidemiol. Biomarkers Prev. 21, 619–628 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Jiao, L. et al. Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study. Cancer Res. 71, 3582–3589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Muders, M. H. et al. Expression and regulatory role of GAIP-interacting protein GIPC in pancreatic adenocarcinoma. Cancer Res. 66, 10264–10268 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Rozengurt, E., Sinnett-Smith, J. & Kisfalvi, K. Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin. Cancer Res. 16, 2505–2511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mehenni, H. et al. Cancer risks in LKB1 germline mutation carriers. Gut 55, 984–990 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Birnbaum, D. J. et al. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50, 456–465 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Li, D. et al. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 33, 1384–1390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chaika, N. V. et al. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 α to regulate metabolism in pancreatic cancer. Proc. Natl Acad. Sci. USA 109, 13787–13792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Akakura, N. et al. Constitutive expression of hypoxia-inducible factor-1 α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 61, 6548–6554 (2001).

    CAS  PubMed  Google Scholar 

  135. Chen, J. et al. Dominant-negative hypoxia-inducible factor-1 α reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol. 162, 1283–12891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pannala, R., Basu, A., Petersen, G. M. & Chari, S. T. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 10, 88–95 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hardt, P. D., Brendel, M. D., Kloer, H. U. & Bretzel, R. G. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed? Diabetes Care 31 (Suppl. 2), S165–S169 (2008).

    Article  PubMed  Google Scholar 

  138. Chen, N., Unnikrishnan, I. R., Anjana, R. M., Mohan, V. & Pitchumoni, C. S. The complex exocrine-endocrine relationship and secondary diabetes in exocrine pancreatic disorders. J. Clin. Gastroenterol. 45, 850–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Diagnosis and classification of diabetes mellitus. Diabetes Care 33 (Suppl. 1), S62–S69 (2010).

  140. Cui, Y. & Andersen, D. K. Pancreatogenic diabetes: special considerations for management. Pancreatology 11, 279–294 (2011).

    Article  PubMed  Google Scholar 

  141. Raue, G. & Keim, V. Secondary diabetes in chronic pancreatitis [German]. Z. Gastroenterol. (Suppl. 1), 4–9 (1999).

  142. Tsuchiya, R. et al. Collective review of small carcinomas of the pancreas. Ann. Surg. 203, 77–81 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Permert, J., Herrington, M., Kazakoff, K., Pour, P. M. & Adrian, T. E. Early changes in islet hormone secretion in the hamster pancreatic cancer model. Teratog. Carcinog. Mutagen. 21, 59–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Ahren, B. & Andren-Sandberg, A. Glucose tolerance and insulin secretion in experimental pancreatic cancer in the Syrian hamster. Res. Exp. Med. (Berl.) 193, 21–26 (1993).

    Article  CAS  Google Scholar 

  145. Pour, P. M. & Bell, R. H. Alteration of pancreatic endocrine cell patterns and their secretion during pancreatic carcinogenesis in the hamster model. Cancer Res. 49, 6396–6400 (1989).

    CAS  PubMed  Google Scholar 

  146. Basso, D. et al. An unidentified pancreatic cancer cell product alters some intracellular pathways of glucose metabolism in isolated rat hepatocytes. Pancreas 15, 132–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Valerio, A. et al. Glucose metabolic alterations in isolated and perfused rat hepatocytes induced by pancreatic cancer conditioned medium: a low molecular weight factor possibly involved. Biochem. Biophys. Res. Commun. 257, 622–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  148. Basso, D. et al. Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut 53, 1159–1166 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Basso, D. et al. The pancreatic cancer cell line MIA PaCa2 produces one or more factors able to induce hyperglycemia in SCID mice. Anticancer Res. 15, 2585–2588 (1995).

    CAS  PubMed  Google Scholar 

  150. Wang, F., Larsson, J., Adrian, T. E., Gasslander, T. & Permert, J. In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. J. Surg. Res. 79, 13–19 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D. Mukhopadhyay was supported by funding from NIH (R01 CA150190) and the Mayo Clinic Pancreas Cancer SPORE (P50 CA 102701). S. T. Chari was supported by grants from the NIH (R01 CA 100685) and the Mayo Clinic Pancreas Cancer SPORE (P50 CA 102701).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and reviewed and/or edited the manuscript before submission. R. P. Sah, D. Mukhopadhyay and S. T. Chari substantially contributed to the discussion of content. R. P. Sah, S. J. S. Nagpal and S. T. Chari wrote the Review.

Corresponding author

Correspondence to Suresh T. Chari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sah, R., Nagpal, S., Mukhopadhyay, D. et al. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol 10, 423–433 (2013). https://doi.org/10.1038/nrgastro.2013.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing