Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gastrointestinal mucus system in health and disease

Abstract

Mucins—large, highly glycosylated proteins—are important for the luminal protection of the gastrointestinal tract. Enterocytes have their apical surface covered by transmembrane mucins and goblet cells produce the secreted gel-forming mucins that form mucus. The small intestine has a single unattached mucus layer, which in cystic fibrosis becomes attached, accounting for the intestinal manifestations of this disease. The stomach and colon have two layers of mucus; the inner layer is attached and the outer layer is less dense and unattached. In the colon, the outer mucus layer is the habitat for commensal bacteria. The inner mucus layer is impervious to bacteria and is renewed every hour by surface goblet cells. The crypt goblet cells have the ability to restitute the mucus layer by secretion, for example after an ischaemic challenge. Proteases of certain parasites and some bacteria can cleave mucins and dissolve the mucus as part of their pathogenicity. The inner mucus layer can, however, also become penetrable to bacteria by several other mechanisms, including aberrations in the immune system. When bacteria reach the epithelial surface, the immune system is activated and inflammation is triggered. This mechanism might occur in some types of ulcerative colitis.

Key Points

  • Gastrointestinal mucus is the first line of defence against bacteria

  • The mucus layer in the small intestine is freely movable and carries bacteria distally

  • In cystic fibrosis, the small intestinal mucus is not freely movable, which might explain the intestinal symptoms of this disease

  • The colon handles its large bacterial load with a two-layered mucus system, in which the inner layer normally remains impenetrable to bacteria.

  • Defective functioning of the inner mucus layer of the colon might be a pathophysiological mechanism for colitis and infectious diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified model of a gel-forming mucin produced by goblet cells and transmembrane mucins attached to the apical membrane of enterocytes.
Figure 2: The organization of epithelium and mucus in the gastrointestinal tract.
Figure 3: Mucus secretion from the colon surface epithelium and crypts during ischaemia and reperfusion.
Figure 4: Model of mechanisms that could affect the inner mucus layer properties and potentially cause ulcerative colitis.

Similar content being viewed by others

References

  1. Kim, Y. S. & Ho, S. B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 12, 319–330 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Neutra, M. R., O'Malley, L. J. & Specian, R. D. Regulation of intestinal goblet cell secretion. II. A survey of potentid secretugogues. Am. J. Physiol. Gastroint. Liver Physiol. 242, G380–G387 (1982).

    Article  CAS  Google Scholar 

  3. Ito, S. Structure and function of the glycocalyx. Fed. Proc. 28, 12–25 (1969).

    CAS  PubMed  Google Scholar 

  4. Soergel, K. H. & Ingelfinger, F. J Composition of rectal mucus in normal subjects and patients with ulcerative colitis. Gastroenterology 47, 610–616 (1964).

    Article  CAS  PubMed  Google Scholar 

  5. Rhodes, J. M. Colonic mucus and mucosal glycoproteins: the key to colitis and cancer? Gut 30, 1660–1666 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hollingsworth, M. A. & Swanson, B. J. Mucin in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hattrup, C. L. & Gendler, S. J. Structure and function of the cell surface (tethered) mucins. Ann. Rev. Physiol. 70, 431–457 (2008).

    Article  CAS  Google Scholar 

  8. Thornton, D. J., Rousseau, K. & McGuckin, M. A. Structure and function of the polymeric mucins in airways mucus. Ann. Rev. Physiol. 70, 459–486 (2008).

    Article  CAS  Google Scholar 

  9. McGuckin, M. A., Linden, S. K., Sutton, P. & Florin, T. H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Johansson, M. E. V. et al. Composition and functional role of the mucus layers in the intestine. Cell Mol. Life Sci. 68, 3535–3641 (2011).

    Article  CAS  Google Scholar 

  11. Lang, T., Hansson, G. C. & Samuelsson, T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl Acad. Sci. USA 104, 16209–16214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fowler, J., Vinall, L. & Swallow, D. Polymorphism of the human MUC genes. Front. Biosci. 6, D1207–D1215 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gum, J. R., Hicks, J. W., Toribara, N. W., Siddiki, B. & Kim, Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J. Biol. Chem. 269, 2440–2446 (1994).

    CAS  PubMed  Google Scholar 

  14. Bennett, E. P. et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Jensen, P. H., Kolarich, D. & Packer, N. H. Mucin-type O-glycosylation—putting the pieces together. FEBS J. 277, 81–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Larsson, J. M., Karlsson, H., Sjovall, H. & Hansson, G. C. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19, 756–766 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ambort, D. et al. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proc. Natl Acad. Sci. USA 109, 5645–5650 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ligtenberg, M. J. L. et al. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem. 267, 6171–6177 (1992).

    CAS  PubMed  Google Scholar 

  19. Palmai-Pallag, T. et al. The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. FEBS J. 272, 2901–2911 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Levitin, F. et al. The MUC1 SEA module is a self-cleaving domain. J. Biol. Chem. 280, 33374–33386 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Macao, B., Johansson, D. G. A., Hansson, G. C. & Härd, T. Auto-proteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat. Struct. Mol. Biol. 13, 71–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Pelaseyed, T. et al. Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell protective device. FEBS J. http://dx.doi.org/10.1111/febs.12144.

  23. Soto, P., Zhang, J. & Carraway, K. L. Enzymatic cleavage as a processing step in the maturation of Muc4/sialomucin complex. J. Cell. Biochem. 97, 1267–1274 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lidell, M. E. & Hansson, G. C. Cleavage in the GDPH sequence of the C-terminal cysteine-rich part of the human MUC5AC mucin. Biochem. J. 399, 121–129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weiss, A. A., Babyatsky, M. W., Ogata, S., Chen, A. & Itzkowitz, S. H. Expression of MUC2 and MUC3 mRNA in human normal, malignant, and inflammatory intestinal tissues. J. Histochem. Cytochem. 44, 1161–1166 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Williams, S. J. et al. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res. 59, 4083–4089 (1999).

    CAS  PubMed  Google Scholar 

  27. Williams, S. J. et al. MUC13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J. Biol. Chem. 276, 18327–18336 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Button, B. et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337, 937–941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linden, S. K. et al. MUC1 limits helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog. 5, e1000617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gendler, S. Muc1, The renaissance molecule. J. Mammary Gland Biol. Neoplasia 6, 339–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto, M., Bharti, A., Li, Y. & Kufe, D. Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. J. Biol. Chem. 272, 12492–12494 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Wen, Y. F., Caffrey, T. C., Wheelock, M. J., Johnson, K. R. & Hollingsworth, M. A. Nuclear association of the cytoplasmic tail of MUC1 and beta-catenin. J. Biol. Chem. 278, 38029–38039 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Schroeder, J. C. et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 23, 5739–5747 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Malmberg, E. K. et al. The transmembrane MUC17 mucin C-terminus binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochem. J. 410, 283–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. LaLonde, D. P., Garbett, D. & Bretscher, A. A. Regulated complex of the scaffolding proteins PDZK1 and EBP50 with ezrin contribute to microvillar organization. Mol. Biol. Cell 21, 1519–1529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donowitz, M. & Li, X. Regulatory binding partners and complexes of NHE3. Physiol. Rev. 87, 825–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Singh, P. K. & Hollingsworth, M. A. Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16, 467–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Caldara, M. et al. Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr. Biol. 22, 2325–2330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atuma, C., Strugula, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. 280, G922–G929 (2001).

    CAS  Google Scholar 

  40. Khan, S. H., Aguirre, A. & Bobek, L. A. In-situ hybridization localized MUC7 mucin gene expression to the mucous acinar cells of human and MUC7-transgenic mouse salivary glands. Glycoconj. J. 15, 1125–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Bobek, L. A., Tsai, H., Biesbrock, A. R. & Levine, M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J. Biol. Chem. 268, 20563–20569 (1993).

    CAS  PubMed  Google Scholar 

  42. Nielsen, P. A., Mandel, U., Therkildsen, M. H. & Clausen, H. Differential expression of human high-molecular-weight salivary mucin (MG1) and low-molecular-weight salivary mucin (MG2). J. Dental Res. 75, 1820–1826 (1996).

    Article  CAS  Google Scholar 

  43. Thornton, D. J. et al. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology 9, 293–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Wickstrom, C., Davies, J. R., Eriksen, G. V., Veerman, E. C. I. & Carlstedt, I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem. J. 334, 685–693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. HO, S. B. et al. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology 109, 735–747 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Nordman, H. et al. Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution. Biochem. J. 364, 191–200 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Debolos, C., Garrido, M. & Real, F. X. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology 109, 723–734 (1995).

    Article  CAS  Google Scholar 

  48. Bartman, A. E. et al. The MUC6 secretory mucin genets expressed in a wide variety of epithelial tissues. J. Pathol. 186, 398–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Audie, J. P. et al. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J. Histochem. Cytochem. 41, 1479–1485 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Johansson, M. E. V. et al. The inner of the two Muc2 mucin dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Godl, K. et al. The N-termini of the MUC2 mucin form trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277, 47248–47256 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Lidell, M. E. et al. The recombinant C-terminus of the human MUC2 mucin forms dimers in CHO cells and heterodimers with full-length MUC2 in LS 174T cells. Biochem. J. 372, 335–345 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Round, A. N. et al. Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules 13, 3253–3261 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Johansson, M. E. V. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS ONE 7, e41009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schade, C., Flemstrom, G. & Holm, L. Hydrogen ion concentration in the mucus layer on top of acid-stimulated and -inhibited rat gastric mucosa. Gastroenterology 107, 180–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Phillipson, M., Atuma, C., Henriksnas, J. & Holm, L. The importance of mucus layers and bicarbonate transport in preservation of gastric juxtamucosal pH. Am. J. Physiol. 282, G211–G219 (2002).

    CAS  Google Scholar 

  57. Allen, A. & Flemstrom, G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am. J. Physiol. Cell Physiol. 288, C1–C19 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Bhaskar, K. R. et al. Viscous fingering of HCl through gastric mucin. Nature 360, 458–461 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Johansson, M., Synnerstad, I. & Holm, L. Acid transport through channels in the mucous layer of rat stomach. Gastroenterology 119, 1297–1304 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Ho, S. B. et al. The adherent gastric mucous layer is composed of alternating layers of MUC5AC and MUC6 mucin proteins. Dig. Dis. Sci. 49, 1598–1606 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Phillipson, M. et al. The gastric mucus layers: constituents and regulation of accumulation. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G806–G812 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Baxter, P. S. et al. Abnormal jejunal potential difference in cystic fibrosis. Lancet 333, 464–466 (1989).

    Article  Google Scholar 

  63. Deloose, E., Janssen, P., Depoortere, I. & Tack, J. The migrating motor complex: control mechanisms and its role in health and disease. Nat. Rev. Gastroenterol. Hepatol. 9, 271–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Ouellette, A. J. Paneth cells and innate mucosal immunity. Curr. Opin. Gastroenterol. 26, 547–553 (2010).

    Article  PubMed  Google Scholar 

  65. Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chu, H. et al. Human defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science 337, 477–481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johansson, M. E. V. & Hansson, G. C. Keeping bacteria at a distance. Science 334, 182–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Rosenstiel, P. et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J. Immunol. 178, 8203–8211 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Riordan, J. R. CFTR function and prospects for therapy. Annu. Rev. Biochem. 77, 701–726 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. O'Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009).

    Article  PubMed  Google Scholar 

  71. Houwen, R. H. et al. Defining DIOS and constipation in cystic fibrosis with a multicentre study on the incidence, characteristics, and treatment of DIOS. J. Pediatr. Gastroenterol. Nutr. 50, 38–42 (2010).

    Article  PubMed  Google Scholar 

  72. Grubb, B. R. & Gabriel, S. E. Intestinal physiology and pathology in gene-targeted mouse models of cystic fibrosis. Am. J. Physiol. 273, G258–G266 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. French, P. J. et al. A Delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J. Clin. Invest. 98, 1304–1312 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rogers, C. S. et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gustafsson, J. K. et al. Bicarbonate and functional CFTR channel is required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209, 1263–1272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Lisle, R. C., Roach, E. & Jansson, K. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G577–G584 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Fridge, J. L., Conrad, C., Gerson, L., Castillo, R. O. & Cox, K. Risk factors for small bowel bacterial overgrowth in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 44, 212–218 (2007).

    Article  PubMed  Google Scholar 

  78. Malmberg, E. K. et al. Increased levels of mucins in the cystic fibrosis mouse small intestine and modulator effects of the Muc1 mucin expression. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G203–G210 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Delisle, R. C., Roach, E. A. & Norkina, O. Eradicaion of small intestinal bacterial overgrowth in the cystic fibrosis mouse reduces mucus accumulation. J. Pediatr. Gastroenterol. Nutr. 42, 46–52 (2006).

    Article  Google Scholar 

  80. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host–bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bergstrom, K. S. B. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 6, e1000902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moore, M. E., Boren, T. & Solnick, J. V. Life at the margins: modulation of attachment proteins in Helicobacter pylori. Gut Microbes 2, 42–46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Else, K. J. & Finkelman, F. D. Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol. 28, 1145–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Ishikawa, N., Horii, Y. & Nawa, Y. Immune-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology 78, 303–307 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ishikawa, N., Wakelin, D. & Mahida, Y. R. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology 113, 542–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Koninkx, J. F., Mirck, M. H., Hendriks, H. G., Mouwen, J. M. & van Dijk, J. E. Nippostrongylus brasiliensis: histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp. Parasitol. 65, 84–90 (1988).

    Article  CAS  PubMed  Google Scholar 

  90. McKay, D. M. et al. Hymenolepis diminuta: intestinal goblet cell response to infection in male C57 mice. Exp. Parasitol. 71, 9–20 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Hasnain, S. Z. et al. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 138, 1763–1771 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Hasnain, S. Z. et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J Exp. Med. 208, 893–900 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Biton, M. et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat. Immunol. 12, 239–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Petri, W. A., Haque, R. & Mann, B. J. The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu. Rev. Microbiol. 56, 39–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Moncada, D., Keller, K. & Chadee, K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infec. Immun. 71, 838–844 (2003).

    Article  CAS  Google Scholar 

  97. Lidell, M. E., Moncada, D. M., Chadee, K. & Hansson, G. C. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal part and dissolves the protective colonic mucus gel. Proc. Natl Acad. Sci. USA 103, 9298–9393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brandt, L. J., Feuerstadt, P. & Blaszka, M. C. Anatomic patterns, patient characteristics, and clinical outcomes in ischemic colitis: a study of 313 cases supported by histology. Am. J. Gastroenterol. 105, 2245–2252 (2010).

    Article  PubMed  Google Scholar 

  99. [No authors listed] American Gastroenterological Association Medical Position Statement: Guidelines on intestinal ischemia. Gastroenterology 118, 951–953 (2000).

  100. Grootjans, J. et al. Ischemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut 62, 259–258 (2013).

    Article  Google Scholar 

  101. Specian, D. & Neutra, M. R. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J. Cell Biol. 85, 626–640 (1980).

    Article  CAS  PubMed  Google Scholar 

  102. Plaisancie, P. et al. Effects of neurotransmitters, gut hormones, and inflammatory mediators on mucus discharge in rat colon. Am. J. Physiol. 275, G1073–G1084 (1998).

    CAS  PubMed  Google Scholar 

  103. Johansson, M. E. V. & Hansson, G. C. The goblet cell: a key player in ischemia–reperfusion injury. Gut 62, 188–189 (2012).

    Article  PubMed  Google Scholar 

  104. Ordas, I., Eckmann, L., Talamini, M., Baumgart, D. C. & Sandborn, W. J. Ulcerative colitis. The Lancet 380, 1609–1619 (2012).

    Article  Google Scholar 

  105. Swidsinski, A. et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 56, 343–350 (2007).

    Article  PubMed  Google Scholar 

  106. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dawson, P. A. et al. Impaired intestinal function in the hyposulphataemic NaS1 null mouse. Gut 58, 910–919 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Fu, J. et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis. J. Clin. Invest. 121, 1657–1666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Johansson, M. E. V. et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS ONE 5, e12238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johansson, M. E. V. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and in patients with ulcerative colitis. Gut http://dx.doi.org/10.1136/gutjnl-2012-303207.

  113. Gustafsson, J. K., Hansson, G. C. & Sjovall, H. Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol. Motil. 24, e381–e391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Eri, R. D. et al. An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol. 4, 354–364 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Park, S. W. et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl Acad. Sci. USA 106, 6950–6955 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Develop. Biol. 338, 270–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Lan, M. S., Batra, S. K., Qi, W., Metzgar, R. S. & Hollingsworth, M. A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 265, 15294–15299 (1990).

    CAS  PubMed  Google Scholar 

  119. Ligtenberg, M. J. L., Vos, H. L., Gennissen, A. M. C. & Hilkens, J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem. 265, 5573–5578 (1990).

    CAS  PubMed  Google Scholar 

  120. Gendler, S. J. et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 265, 15286–15293 (1990).

    CAS  PubMed  Google Scholar 

  121. Lancaster, C. A. et al. Structure and expression of the human polymorphic epithelial mucin gene: an expressed VNTR unit. Biochem. Biophys. Res. Commun. 173, 1019–1029 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Wreschner, D. H. et al. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem. 189, 463–473 (1990).

    Article  CAS  PubMed  Google Scholar 

  123. McAuley, J. L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest. 117, 2313–2324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Linden, S. K., Florin, T. H. & McGuckin, M. A. Mucin dynamics in intestinal bacterial infection. PLoS ONE 3, e3952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gum, J. R. et al. Molecular cloning of human intestinal mucin cDNAs sequence analysis and evidence for genetic polymorphism. J. Biol. Chem. 264, 6480–6487 (1989).

    CAS  PubMed  Google Scholar 

  126. Gum, J. R. et al. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267, 21375–21383 (1992).

    CAS  PubMed  Google Scholar 

  127. Gum, J. R. et al. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun. 171, 407–415 (1990).

    Article  CAS  PubMed  Google Scholar 

  128. Gum, J. R. et al. MUC3 human intestinal mucin. J. Biol. Chem. 272, 26678–26686 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Crawley, S. C. et al. Genomic organization and structure of the 3' region of human MUC3: alternative splicing predicts membrane-bound and soluble forms of the mucin. Biochem. Biophys. Res. Commun. 263, 728–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Moniaux, N., Nollet, S., Degand, P., Laine, A. & Aubert, J. P. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem. J. 338, 325–333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Escande, F. et al. Genomic organization of MUC4 mucin gene. Towards the characterization of splice variants. Eur. J. Biochem. 269, 3637–3644 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Price-Schiavi, S. A., Perez, A., Barco, R. & Carraway, K. L. Cloning and characterization of the 5' flanking region of the sialomucin complex/rat Muc4 gene: promoter activity in cultured cells. Biochem. J. 349, 641–649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rong, M. et al. Expression and localization of Muc4/sialomucin complex (SMC) in the adult and developing rat intestine: implications for Muc4/SMC function. J. Cell. Physiol 202, 275–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Buisine, M. P. et al. Genomic organization of the 3'-region of the human MUC5AC mucin gene: additional evidence for a common ancestral gene for the 11p15.5 mucin gene family. Biochem. J. 332, 729–738 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Escande, F., Aubert, J. P., Porchet, N. & Buisine, M. P. Human mucin gene MUC5AC: organization of its 5'-region and central repetitive region. Biochem. J. 358, 763–772 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, D. Z., Gallup, M., Fan, N., Szymkowski, D. E. & Basbaum, C. B. Cloning of the amino-terminal and 5'-flanking region of the human MUC5AC mucin gene and transcriptional up-regulation by bacterial exoproducts. J. Biol. Chem. 273, 6812–6820 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Klomp, L. W. J., Vanrens, L. & Strous, G. J. Cloning and analysis of human gastric mucin cDNA reveals two types of conserved cysteine-rich domains. Biochem. J. 308, 831–838 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Meerzaman, D. et al. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (Muc5). J. Biol. Chem. 269, 12932–12939 (1994).

    CAS  Google Scholar 

  139. Keates, A. C., Nunes, D. P., Afdhal, N. H., Troxler, R. F. & Offner, G. D. Molecular cloning of a major human gall bladder mucin: complete C-terminal sequence and genomic organization of MUC5B. Biochem. J. 324, 295–303 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Offner, G. D., Nunes, D. P., Keates, A. C., Afdhal, N. H. & Troxler, R. F. The amino-terminal sequence of MUC5B contains conserved multifunctional D domains: implications for tissue-specific mucin functions. Biochem. Biophys. Res. Commun. 251, 350–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Troxler, R. F., Offner, G. D., Zhang, F., Iontcheva, I. & Oppenheim, F. G. Molecular cloning of a novel high molecular weight mucin (MG1) from human sublingual gland. Biochem. Biophys. Res. Commun. 217, 1112–1119 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Toribara, N. W. et al. Human gastric mucin. J. Biol. Chem. 268, 5879–5885 (1993).

    CAS  PubMed  Google Scholar 

  143. Toribara, N. W. et al. The carboxyl-terminal sequence of the human secretory mucin, MUC6. J. Biol. Chem. 272, 16398–16403 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Rousseau, K. et al. The complete genomic organization of the human MUC6 and MUC2 mucin genes. Genomics 83, 936–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Situ, H., Wei, G., Smith, C. J., Mashhoon, S. & Bobek, L. A. Human salivary MUC7 mucin peptides: effect of size, charge and cysteine residues on antifungal activity. Biochem. J. 375, 175–182 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sheng, Y. H. et al. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut 60, 1661–1670 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Yin, B. W. T. & Lloyd, K. Molecular cloning of the CA125 ovarian cancer antigen. J. Biol. Chem. 276, 27371–27375 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. O'Brien, T. J., Beard, J. B., Underwood, L. J. & Shigemasa, K. The CA125 gene: a newly discovered extesion of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumor Biol. 23, 154–169 (2004).

    Article  Google Scholar 

  149. Gum, J. R., Crawley, S. C., Hicks, J. W., Szymkowski, D. E. & Kim, Y. S. MUC17, a novel membrane-tethered mucin. Biochem. Biophys. Res. Commun. 291, 466–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Pratt, W. S. et al. Multiple transcripts of MUC3: evidence for two genes MUC3A and MUC3B. Biochem. Biophys. Res. Commun. 275, 916–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Pullan, R. D. et al. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35, 353–359 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Debailleul, V. et al. Human mucin genes MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC6 express stable and extremely large mRNAs and exhibit a variable length polymorphism. J. Biol. Chem. 273, 881–890 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Ogata, S., Uehara, H., Chen, A. & Itzkowitz, S. H. Mucin gene expression in colonic tissues and cell lines. Cancer Res. 52, 5971–5978 (1992).

    CAS  PubMed  Google Scholar 

  154. Vanklinken, B. J. W. et al. MUC5B is the prominent mucin in human gallbladder and is also expressed in a subset of colonic goblet cells. Am. J. Physiol. 37, G871–G878 (1998).

    Google Scholar 

  155. Peat, N., Gendler, S. J., Lalani, N., Duhig, T. & Taylor-Papadimitriou, J. Tissue-specific expression of a human polymorphic epithelial mucin (MUC1) in transgenic mice. Cancer Res. 52, 1954–1960 (1992).

    CAS  PubMed  Google Scholar 

  156. Zhang, J., Yasin, M., Carraway, C. A. & Carraway, K. L. MUC4 expression and localization in gastrointestinal tract and skin of human embryos. Tissue Cell 38, 271–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Gonzalez-Begne, M. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8, 1304–1314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Senapati, S. et al. Expression of intestinal MUC17 membrane-bound mucin in inflammatory and neoplastic diseases of the colon. J. Clin. Pathology 63, 702–707 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by the Swedish Research Council, The Swedish Cancer Foundation, The Knut and Alice Wallenberg Foundation, IngaBritt and Arne Lundberg Foundation, Sahlgren's University Hospital (LUA-ALF), Wilhelm and Martina Lundgren's Foundation, Torsten och Ragnar Söderbergs Stiftelser, The Sahlgrenska Academy, National Institute of Allergy and Infectious Diseases (U01AI095473, the content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH), and The Swedish Foundation for Strategic Research—The Mucus–Bacteria–Colitis Center (MBC) of the Innate Immunity Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Gunnar C. Hansson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, M., Sjövall, H. & Hansson, G. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol 10, 352–361 (2013). https://doi.org/10.1038/nrgastro.2013.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing