Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functional genomic analyses of the gut microbiota for CRC screening

Abstract

The evidence for a strong correlation between the gut microbiota and colorectal carcinogenesis is quickly gathering pace. This correlation raises important questions, such as whether analysis of the microbiota can be used for screening purposes, and whether targeted intervention can influence the risk of development and progression of neoplasia. The recovery of several pathobionts—such as members of the different bacterial phyla Proteobacteria, Bacteroidetes and Fusobacteria—from the tumour microenvironment of patients with colorectal cancer (CRC) now provides a link between specific microbial colonization and cancer. However, other intestinal bacteria belonging to another major intestinal phylum, Firmicutes, might be effective in the treatment of pathogenic inflammation related to CRC. Future approaches based on the analysis of the gut microbiota of patients with CRC combined with large human cohort studies might open up new possibilities for further prophylactic, screening and treatment strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The gut microbiota in health and disease.
Figure 2: Role of postbiotics in maintaining colonic health.
Figure 3: Open questions regarding the role of the colonic microbiome in the development of adenomas and in the different stages of CRC.

References

  1. 1

    Herrinton, L. J. et al. Incidence and mortality of colorectal adenocarcinoma in persons with inflammatory bowel disease from 1998 to 2010. Gastroenterology 143, 382–389 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Schneider, E. B. et al. Patient readmission and mortality after colorectal surgery for colon cancer: impact of length of stay relative to other clinical factors. J. Am. Coll. Surg. 214, 390–398 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    de Vos, W. M. & de Vos, E. A. Role of the intestinal microbiome in health and disease:from correlation to causation. Nutr. Rev. 70 (Suppl. 1), S45–S56 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science 331, 337–341 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Kusters, J., van Vliet, A. & Kuipers, E. J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19, 449–490 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Rajilic´-Stojanovic´, M., Shanahan, F., Guarner, F. & de Vos, W. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Balish, E. & Warner, T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am. J. Pathol. 160, 2253–2257 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Wang, X. et al. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 142, 543–551.e7 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 80–93 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Dharmani, P., Strauss, J., Ambrose, C., Allen-Vercoe, E. & Chadee, K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect. Immun. 79, 2597–2607 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis. 17, 1971–1978 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Okin, D. & Medzhitov, R. Evolution of inflammatory diseases. Curr. Biol. 22, R733–R740 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Konstantinov, S. R. et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl Acad. Sci. USA 105, 19474–19479 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Grangette, C. et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc. Natl Acad. Sci. USA 102, 10321–10326 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Mohamadzadeh, M. et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 108, 4623–4630 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Fernandez, E. M. et al. Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60, 1050–1059 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Lebeer, S., Claes, I. J. J., Verhoeven, T. L. A., Vanderleyden, J. & De Keersmaecker, S. C. J. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotech. 4, 368–374 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Klaenhammer, T. R., Kleerebezem, M., Kopp, M. V. & Rescigno, M. The impact of probiotics and prebiotics on the immune system. Nat. Rev. Immunol. 12, 728–734 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Tsilingiri, K. et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut 61, 1007–1015 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Yan, F. et al. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Yan, F. et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J. Clin. Invest. 121, 2242–2253 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Escamilla, J., Lane, M. A. & Maitin, V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr. Cancer 64, 871–878 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    Khazaie, K. et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA 109, 10462–10467 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Gounaris, E. et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res. 69, 5490–5497 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Chen, C.-C. et al. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extraintestinal tissue. Br. J. Nutr. 107 1623–1634 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35

    Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. http://dx.doi.org/10.3945/ajcn.112.056689.

  36. 36

    Degirolamo, C., Modica, S., Palasciano, G. & Moschetta, A. Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol. Med. 17, 564–572 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Nyangale, E. P., Mottram, D. S. & Gibson, G. R. Gut microbial activity, implications for health and disease: the potential role of metabolite analysis. J. Proteome Res. 11, 5573–5585 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Surana, N. K. & Kasper, D. L. The yin-yang of bacterial polysaccharides: lessons learned from B. fragilis PSA. Immunol. Rev. 245, 13–26 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Fanning, S. et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl Acad. Sci. USA 109, 2108–2113 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Ewaschuk, J. B. et al. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1025–G1034 (2008).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Ivanov, D. et al. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J. Biol. Chem. 281, 17246–17252 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Rafter, J. et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 85, 488–496 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

S. R. Konstantinov contributed to researching data, discussion of content, writing and reviewing/editing the manuscript. E. J. Kuipers and M. P. Peppelenbosch contributed to discussion of content, writing and reviewing/editing the manuscript.

Corresponding author

Correspondence to Sergey R. Konstantinov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantinov, S., Kuipers, E. & Peppelenbosch, M. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol 10, 741–745 (2013). https://doi.org/10.1038/nrgastro.2013.178

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing