Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy

Abstract

Well-differentiated pancreatic neuroendocrine tumors (PanNETs) comprise 1–3% of pancreatic neoplasms. Although long considered as reasonably benign lesions, PanNETs have considerable malignant potential, with a 5-year survival of 65% and a 10-year survival of 45% for resected lesions. As PanNETs have a low incidence, they have been understudied, with few advances made until the completion of their exomic sequencing in the past year. In this Review, we summarize some of the latest insights into the genetics of PanNETs, and their probable implications in the context of prognosis and therapy. In particular, we discuss two genes (DAXX and ATRX) that have collectively been identified as mutated in >40% of PanNETs, and the biological and prognostic implications of these novel mutations. The identification of recurrent somatic mutations within the mTOR signaling pathway and the therapeutic implications for personalized therapy in patients with PanNETs are also discussed. Finally, this Review outlines state-of-the-art advances in the biology of PanNETs that are of emerging translational importance.

Key Points

  • Pancreatic neuroendocrine tumors (PanNETs) are fully malignant neoplasms, with the majority (70%) of patients presenting with advanced disease and a 5-year survival of 65%

  • In 2010, the WHO implemented a new classification for PanNETs that stratifies these tumors by stage and histological grade (the latter defined by mitotic counts or Ki-67 labeling index)

  • Sequencing of the PanNET exome has identified somatic mutations in MEN1, DAXX, ATRX and mTOR pathway genes in 44%, 25%, 18% and 16% of PanNETs, respectively

  • ATRX and DAXX are PanNET tumor suppressor genes that are involved in chromatin remodeling—mutations in these genes are correlated with the alternative lengthening of telomeres phenotype

  • Two molecularly targeted therapies—sunitinib (VEGF inhibitor) and everolimus (mTOR inhibitor)—have been independently shown to improve progression-free survival in patients with metastatic PanNETs, and are approved by the FDA

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gross appearance and histologic features of well-differentiated pancreatic neuroendocrine tumors (PanNETs).
Figure 2: The mTOR signaling pathway.
Figure 3: Loss of ATRX or DAXX function in pancreatic neuroendocrine tumors (PanNETs) correlates with the alternative lengthening of telomeres (ALT) phenotype.

Similar content being viewed by others

References

  1. Yao, J. C. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26, 3063–3072 (2008).

    Article  PubMed  Google Scholar 

  2. Halfdanarson, T. R., Rabe, K. G., Rubin, J. & Petersen, G. M. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann. Oncol. 19, 1727–1733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kouvaraki, M. A. et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J. Clin. Oncol. 22, 4762–4771 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Moertel, C. G., Hanley, J. A. & Johnson, L. A. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 303, 1189–1194 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Moertel, C. G., Lefkopoulo, M., Lipsitz, S., Hahn, R. G. & Klaassen, D. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N. Engl. J. Med. 326, 519–523 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, P. N. & Saltz, L. B. Failure to confirm major objective antitumor activity for streptozocin and doxorubicin in the treatment of patients with advanced islet cell carcinoma. Cancer 86, 944–948 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. McCollum, A. D. et al. Lack of efficacy of streptozocin and doxorubicin in patients with advanced pancreatic endocrine tumors. Am. J. Clin. Oncol. 27, 485–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Klöppel, G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer 18 (Suppl. 1), S1–S16 (2011).

    Article  PubMed  Google Scholar 

  9. Rindi, G. et al. in WHO Classification of Tumours of the Digestive System (eds Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N.) 13–14 (IARC, Lyon, 2010).

    Google Scholar 

  10. Klimstra, D. S. et al. in WHO Classification of Tumours of the Digestive System (eds Bosman, F. T., Carneiro, F., Hruban, R. H. & Theise, N.) 322–326 (IARC, Lyon, 2010).

    Google Scholar 

  11. Yachida, S. et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am. J. Surg. Pathol. 36, 173–184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Halfdanarson, T. R., Rubin J., Farnell M. B., Grant C. S. & Petersen G. M. Pancreatic endocrine neoplasms: epidemiology and prognosis of pancreatic endocrine tumors. Endocr. Relat. Cancer 15, 409–427 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whipple, A. O. The surgical therapy of hyperinsulinism. J. Int. Chir. 3, 237–276 (1938).

    Google Scholar 

  14. Zollinger, R. M. & Ellison, E. H. Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann. Surg. 142, 709–723 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hermann, G., Konukiewitz, B., Schmitt, A., Perren, A. & Klöppel, G. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch. 459, 147–154 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Verner, J. V. & Morrison, A. B. Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia. Am. J. Med. 25, 374–380 (1958).

    Article  CAS  PubMed  Google Scholar 

  17. Kindmark, H. et al. Endocrine pancreatic tumors with glucagon hypersecretion: a retrospective study of 23 cases during 20 years. Med. Oncol. 24, 330–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Larsson, L. I. et al. Pancreatic somatostatinoma. Clinical features and physiological implications. Lancet 1, 666–668 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Garbrecht, N. et al. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr. Relat. Cancer 15, 229–241 (2008).

    Article  PubMed  Google Scholar 

  20. Panzuto, F. et al. Metastatic and locally advanced pancreatic endocrine carcinomas: analysis of factors associated with disease progression. J. Clin. Oncol. 29, 2372–2377 (2011).

    Article  PubMed  Google Scholar 

  21. Alexakis, N. et al. Hereditary pancreatic endocrine tumours. Pancreatology 4, 417–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Jensen, R. T., Berna, M. J., Bingham, D. B. & Norton, J. A. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 113 (7 Suppl.), 1807–1843 (2008).

    Article  PubMed  Google Scholar 

  23. Anlauf, M. et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am. J. Surg. Pathol. 30, 560–574 (2006).

    Article  PubMed  Google Scholar 

  24. Périgny, M. et al. Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am. J. Surg. Pathol. 33, 739–748 (2009).

    Article  PubMed  Google Scholar 

  25. Perren, A. et al. Multiple endocrine neoplasia type 1 (MEN1): loss of one MEN1 allele in tumors and monohormonal endocrine cell clusters but not in islet hyperplasia of the pancreas. J. Clin. Endocrinol. Metab. 92, 1118–1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pipeleers-Marichal, M. et al. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger-Ellison syndrome. N. Engl. J. Med. 322, 723–727 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Triponez, F. et al. Epidemiology data on 108 MEN 1 patients from the GTE with isolated nonfunctioning tumors of the pancreas. Ann. Surg. 243, 265–672 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carty, S. E. et al. The variable penetrance and spectrum of manifestations of multiple endocrine neoplasia type 1. Surgery 124, 1106–1113 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Dean, P. G. et al. Are patients with multiple endocrine neoplasia type I prone to premature death? World J. Surg. 24, 1437–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Schmitt, A. M. et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr. Relat. Cancer 16, 1219–1227 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Hammel, P. R. et al. Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d'Etude de la Maladie de von Hippel-Lindau. Gastroenterology 119, 1087–1095 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Lonser, R. R. et al. von Hippel-Lindau disease. Lancet 361, 2059–2067 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mao, C., Shah, A., Hanson, D. J. & Howard, J. M. Von Recklinghausen's disease associated with duodenal somatostatinoma: contrast of duodenal versus pancreatic somatostatinomas. J. Surg. Oncol. 59, 67–73 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Fujisawa, T. et al. Malignant endocrine tumor of the pancreas associated with von Recklinghausen's disease. J. Gastroenterol. 37, 59–67 (2002).

    Article  PubMed  Google Scholar 

  35. Ilgren, E. B. & Westmoreland, D. Tuberous sclerosis: unusual associations in four cases. J. Clin. Pathol. 37, 272–278 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Marx, S. et al. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann. Intern. Med. 129, 484–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Agarwal, S. K. et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Yokoyama, A. & Cleary, M. L. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14, 36–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schnepp, R. W. et al. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res. 66, 5707–5715 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertolino, P., Tong, W. M., Galendo, D., Wang, Z. Q. & Zhang, C. X. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol. Endocrinol. 17, 1880–1892 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Crabtree, J. S. et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA 98, 1118–1123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crabtree, J. S. et al. Of mice and MEN1: Insulinomas in a conditional mouse knockout. Mol. Cell. Biol. 23, 6075–6085 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Toliat, M. R., Berger, W., Ropers, H. H., Neuhaus, P. & Wiedenmann, B. Mutations in the MEN I gene in sporadic neuroendocrine tumours of gastroenteropancreatic system. Lancet 350, 1223 (1997).

    CAS  PubMed  Google Scholar 

  47. Moore, P. S. et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 32, 177–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Corbo, V. et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr. Relat. Cancer 17, 771–783 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8, 179–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Speel, E. J. et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am. J. Pathol. 155, 1787–1794 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perren, A. et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am. J. Pathol. 157, 1097–1103 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Missiaglia, E. et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 28, 245–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Gumbs, A. A. et al. Review of the clinical, histological, and molecular aspects of pancreatic endocrine neoplasms. J. Surg. Oncol. 81, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Oberg, K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr. Opin. Endocrinol. Diabetes Obes. 16, 72–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Chung, D. C. et al. Overexpression of cyclin D1 occurs frequently in human pancreatic endocrine tumors. J. Clin. Endocrinol. Metab. 85, 4373–4378 (2000).

    CAS  PubMed  Google Scholar 

  56. Maitra, A. et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin. Cancer Res. 9, 5988–5995 (2003).

    CAS  PubMed  Google Scholar 

  57. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Elsaesser, S. J. & Allis, C. D. HIRA and Daxx constitute two independent histone H3.3-containing predeposition complexes. Cold Spring Harb. Symp. Quant. Biol. 75, 27–34 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lewis, P. W., Elsaesser, S. J., Noh, K. M., Stadler, S. C. & Allis, C. D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl Acad. Sci. USA 107, 14075–14080 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res. 62, 6405–6409 (2002).

    CAS  PubMed  Google Scholar 

  64. van Heek, N. T. et al. Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am. J. Pathol. 161, 1541–1547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heaphy, C. M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hakin-Smith, V. et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361, 836–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Ulaner, G. A. et al. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 63, 1759–1763 (2003).

    CAS  PubMed  Google Scholar 

  69. Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, R285–R295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bardeesy, N. et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hingorani, S. R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Fendrich, V. & Bartsch, D. K. Surgical treatment of gastrointestinal neuroendocrine tumors. Langenbecks Arch. Surg. 396, 299–311 (2011).

    Article  PubMed  Google Scholar 

  74. Eriksson, B. New drugs in neuroendocrine tumors: rising of new therapeutic philosophies? Curr. Opin. Oncol. 22, 381–386 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Rinke, A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Faivre, S., Sablin, M. P., Dreyer, C. & Raymond, E. Novel anticancer agents in clinical trials for well-differentiated neuroendocrine tumors. Endocrinol. Metab. Clin. North Am. 39, 811–826 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Bushnell, D. L. Jr et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J. Clin. Oncol. 28, 1652–1659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwekkeboom, D. J. et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol. 26, 2124–2130 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Rindi, G. & Wiedenmann, B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat. Rev. Endocrinol. 8, 54–64 (2012).

    Article  CAS  Google Scholar 

  80. Broder, L. E. & Carter, S. K. Pancreatic islet cell carcinoma. II. Results of therapy with streptozotocin in 52 patients. Ann. Intern. Med. 79, 108–118 (1973).

    Article  CAS  PubMed  Google Scholar 

  81. Chernicoff, D., Bukowski, R. M., Groppe, C. W. Jr & Hewlett, J. S. Combination chemotherapy for islet cell carcinoma and metastatic carcinoid tumors with 5-fluorouracil and streptozotocin. Cancer Treat. Rep. 63, 795–796 (1979).

    CAS  PubMed  Google Scholar 

  82. Kulke, M. H. et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J. Clin. Oncol. 24, 401–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Ekeblad, S. et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin. Cancer Res. 13, 2986–2991 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Strosberg, J. R. et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117, 268–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Eriksson, B. et al. Medical treatment and long-term survival in a prospective study of 84 patients with endocrine pancreatic tumors. Cancer 65, 1883–1890 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Alexandraki, K. I. & Kaltsas, G. Gastroenteropancreatic neuroendocrine tumors: new insights in the diagnosis and therapy. Endocrine 41, 40–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, L. & Gerson, S. L. Targeted modulation of MGMT: clinical implications. Clin. Cancer Res. 12, 328–331 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Kulke, M. H. et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 15, 338–345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, X. & Sun, S. Y. Enhancing mTOR-targeted cancer therapy. Expert Opin. Ther. Targets 13, 1193–1203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yao, J. C. et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J. Clin. Oncol. 28, 69–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Yao, J. C. et al. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J. Clin. Oncol. 26, 4311–4318 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pommier, R. F. et al. Impact of prior chemotherapy on progression-free survival in patients (pts) with advanced pancreatic neuroendocrine tumors (pNET): Results from the RADIANT-3 trial [abstract]. J. Clin. Oncol. 29 (Suppl.), 4103 (2011).

    Article  Google Scholar 

  94. Shah, M. H. et al. Everolimus in patients with advanced pancreatic neuroendocrine tumors (pNET): Impact of somatostatin analog use on progression-free survival in the RADIANT-3 trial [abstract]. J. Clin. Oncol. 29 (Suppl.), 4010 (2011).

    Article  Google Scholar 

  95. Strosberg, J. R., Lincy, J., Winkler, R. E. & Wolin, E. M. Everolimus in patients with advanced pancreatic neuroendocrine tumors (pNET): Updated results of a randomized, double-blind, placebo-controlled, multicenter, phase III trial (RADIANT-3) [abstract]. J. Clin. Oncol. 29 (Suppl.), 4009 (2011).

    Article  Google Scholar 

  96. ClinicalTrials.gov [online], (2011).

  97. Chiu, C. W., Nozawa, H. & Hanahan, D. Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. J. Clin. Oncol. 28, 4425–4433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Joyce, J. A. et al. Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 4, 393–403 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Lindahl, P., Johansson, B. R., Levéen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Fjällskog, M. L., Hessman, O., Eriksson, B. & Janson, E. T. Upregulated expression of PDGF receptor beta in endocrine pancreatic tumors and metastases compared to normal endocrine pancreas. Acta Oncol. 46, 741–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Hansel, D. E. et al. Liver metastases arising from well-differentiated pancreatic endocrine neoplasms demonstrate increased VEGF-C expression. Mod. Pathol. 16, 652–659 (2003).

    Article  PubMed  Google Scholar 

  103. Hanahan, D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  PubMed  Google Scholar 

  104. Bergers, G., Song, S., Meyer-Morse, N., Bergsland, E. & Hanahan, D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111, 1287–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pietras, K. & Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 23, 939–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Kulke, M. H. et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 26, 3403–3410 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Raymond, E. et al. Updated overall survival (OS) and progression-free survival (PFS) by blinded independent central review (BICR) of sunitinib (SU) versus placebo (PBO) for patients (Pts) with advanced unresectable pancreatic neuroendocrine tumors (NET). J. Clin. Oncol. 29 (Suppl.), 4008 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Sol Goldman Pancreatic Cancer Research Center and the Caring for Carcinoid Foundation. The authors are grateful to Drs Alan Meeker and Christopher Heaphy (Johns Hopkins University) for assistance with Figure 3 of this Review and helpful suggestions.

Author information

Authors and Affiliations

Authors

Contributions

R. F. de Wilde and A. Maitra researched data for the article. All authors contributed equally to discussion of the content, writing the manuscript and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Anirban Maitra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Wilde, R., Edil, B., Hruban, R. et al. Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nat Rev Gastroenterol Hepatol 9, 199–208 (2012). https://doi.org/10.1038/nrgastro.2012.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research