Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs in pancreatic cancer metabolism

Abstract

Advances in understanding the biology of tumour progression and metastasis have clearly highlighted the importance of aberrant tumour metabolism, which supports not only the energy requirements but also the enormous biosynthetic needs of tumour cells. Such metabolic alterations modulate glucose, amino acid and fatty-acid-dependent metabolite biosynthesis and energy production. Although much progress has been made in understanding the somatic mutations and expression genomics behind these alterations, the regulation of these processes by microRNAs (miRNAs) is only just beginning to be appreciated. This Review focuses on the miRNAs that are potential regulators of the expression of genes whose protein products either directly regulate metabolic machinery or serve as master regulators, indirectly modulating the expression of metabolic enzymes. We focus particularly on miRNAs in pancreatic cancer.

Key Points

  • Pancreatic tumours are highly glucose dependent; the 18F-FDG-PET imaging of pancreatic tumours utilizes the propensity of pancreatic tumours to take up high amounts of glucose

  • MicroRNAs (miRNAs) are linked to pancreatic cancer metabolism at two levels: first, miRNAs are regulated by metabolic activity; and second, miRNAs can directly or indirectly regulate metabolic activity of pancreatic tumours

  • By modulating the tumour microenvironment, miRNAs can also alter the tumour–stromal metabolic interactions in pancreatic adenocarcinoma

  • miRNAs can differentiate the metabolic status of normal pancreas, chronic pancreatitis and pancreatic cancer

  • miRNAs could serve as biomarkers for the metabolic state of the tumour, and might have diagnostic and therapeutic implications for pancreatic cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of metabolic machinery and its regulators by microRNAs in a pancreatic cancer cell.

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  2. Pizzi, S. et al. Glucose transporter-1 expression and prognostic significance in pancreatic carcinogenesis. Histol. Histopathol. 24, 175–185 (2009).

    PubMed  Google Scholar 

  3. Dong, X., Tang, H., Hess, K. R., Abbruzzese, J. L. & Li, D. Glucose metabolism gene polymorphisms and clinical outcome in pancreatic cancer. Cancer 117, 480–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, X. et al. Polymorphisms in the hypoxia-inducible factor-1alpha gene confer susceptibility to pancreatic cancer. Cancer Biol. Ther. 12, 383–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. M. et al. Improved prognostic value of standardized uptake value corrected for blood glucose level in pancreatic cancer using F-18 FDG PET. Clin. Nucl. Med. 36, 331–336 (2011).

    Article  PubMed  Google Scholar 

  8. van Heertum, R. L. & Fawwaz, R. A. The role of nuclear medicine in the evaluation of pancreatic disease. Surg. Clin. North Am. 81, 345–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Fabbri, M., Croce, C. M. & Calin, G. A. MicroRNAs. Cancer J. 14, 1–6 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Slaby, O., Bienertova-Vasku, J., Svoboda, M. & Vyzula, R. Genetic polymorphisms and MicroRNAs: new direction in molecular epidemiology of solid cancer. J. Cell. Mol. Med. 16, 8–21 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  12. Iorio, M. V. & Croce, C. M. MicroRNAs in cancer: small molecules with a huge impact. J. Clin. Oncol. 27, 5848–5856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Croce, C. M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simone, N. L. et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS ONE 4, e6377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Z. et al. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res. 1346, 14–25 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Kulshreshtha, R., Davuluri, R. V., Calin, G. A. & Ivan, M. A microRNA component of the hypoxic response. Cell Death Differ. 15, 667–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kulshreshtha, R. et al. Regulation of microRNA expression: the hypoxic component. Cell Cycle 6, 1426–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Galanis, A. et al. Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett. 266, 12–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Xia, C. et al. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 67, 10823–10830 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Kent, O. A. et al. A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol. Ther. 8, 2013–2024 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Ruan, K., Song, G. & Ouyang, G. Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 107, 1053–1062 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Kulshreshtha, R. et al. A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859–1867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, E. J. et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloomston, M. et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901–1908 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Favaro, E. et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS ONE 5, e10345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greither, T. et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival. Int. J. Cancer 126, 73–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Yan, H. et al. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum. Gene Ther. 21, 1723–1734 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Giovannucci, E. & Michaud, D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 132, 2208–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Esguerra, J. L., Bolmeson, C., Cilio, C. M. & Eliasson, L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS ONE 6, e18613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang, X., Muniappan, L., Tang, G. & Ozcan, S. Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 15, 287–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thorens, B. & Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab. 298, E141–E145 (2011).

    Article  CAS  Google Scholar 

  34. Reske, S. N. et al. Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J. Nucl. Med. 38, 1344–1348 (1997).

    CAS  PubMed  Google Scholar 

  35. Ito, H., Duxbury, M., Zinner, M. J., Ashley, S. W. & Whang, E. E. Glucose transporter-1 gene expression is associated with pancreatic cancer invasiveness and MMP-2 activity. Surgery 136, 548–556 (2004).

    Article  PubMed  Google Scholar 

  36. Ciaraldi, T. P., Abrams, L., Nikoulina, S., Mudaliar, S. & Henry, R. R. Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects. J. Clin. Invest. 96, 2820–2827 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rincon, J. et al. Mechanisms behind insulin resistance in rat skeletal muscle after oophorectomy and additional testosterone treatment. Diabetes 45, 615–621 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Sakoda, H. et al. Dexamethasone-induced insulin resistance in 3T3-L1 adipocytes is due to inhibition of glucose transport rather than insulin signal transduction. Diabetes 49, 1700–1708 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Matosin-Matekalo, M., Mesonero, J. E., Laroche, T. J., Lacasa, M. & Brot-Laroche, E. Glucose and thyroid hormone co-regulate the expression of the intestinal fructose transporter GLUT5. Biochem. J. 339, 233–239 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Egert, S., Nguyen, N., Brosius, F. C. 3rd & Schwaiger, M. Effects of wortmannin on insulin- and ischemia-induced stimulation of GLUT4 translocation and FDG uptake in perfused rat hearts. Cardiovasc. Res. 35, 283–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Yeh, J. I., Gulve, E. A., Rameh, L. & Birnbaum, M. J. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. J. Biol. Chem. 270, 2107–2111 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Behrooz, A. & Ismail-Beigi, F. Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J. Biol. Chem. 272, 5555–5562 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Russell, R. R. 3rd, Bergeron, R., Shulman, G. I. & Young, L. H. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999).

    CAS  PubMed  Google Scholar 

  46. Chow, T. F. et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J. Urol. 183, 743–751 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS ONE 6, e22839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szafranska, A. E. et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26, 4442–4452 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Srivastava, S. K. et al. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32, 1832–1839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E. & Thorgeirsson, S. S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aqeilan, R. I., Calin, G. A. & Croce, C. M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Calin, G. A. et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc. Natl Acad. Sci. USA 105, 5166–5171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shea, C. M. & Tzertzinis, G. Controlled expression of functional miR-122 with a ligand inducible expression system. BMC Biotechnol. 10, 76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai, W. C. et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, X. J. et al. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J. Hematol. Oncol. 3, 46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nicholson, R. I., Gee, J. M. & Harper, M. E. EGFR and cancer prognosis. Eur. J. Cancer 37 (Suppl. 4), S9–S15 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Ebert, M. et al. Induction of platelet-derived growth factor A and B chains and over-expression of their receptors in human pancreatic cancer. Int. J. Cancer 62, 529–535 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, J., Ustach, C. & Kim, H. R. Platelet-derived growth factor signaling and human cancer. J. Biochem. Mol. Biol. 36, 49–59 (2003).

    CAS  PubMed  Google Scholar 

  60. Sun, Q. et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl Acad. Sci. USA 108, 4129–4134 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hitosugi, T. et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, Y. et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 70, 1486–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hatakeyama, H. et al. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. PLoS ONE 5, e12702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molnar, V. et al. MicroRNA-132 targets HB-EGF upon IgE-mediated activation in murine and human mast cells. Cell. Mol. Life Sci. 69, 793–808 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Park, J. K. et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem. Biophys. Res. Commun. 406, 518–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito, Y. et al. Expression of heparin-binding epidermal growth factor-like growth factor in pancreatic adenocarcinoma. Int. J. Pancreatol. 29, 47–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nat. Rev. Cancer 9, 691–700 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Okamura, S. et al. Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. Oncol. Res. 11, 281–285 (1999).

    CAS  PubMed  Google Scholar 

  71. Ferecatu, I. et al. Mitochondrial localization of the low level p53 protein in proliferative cells. Biochem. Biophys. Res. Commun. 387, 772–777 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Le, M. T. et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23, 862–876 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, Y. et al. MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett. 583, 3725–3730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dang, C. V., Le, A. & Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 15, 6479–6483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akao, Y., Nakagawa, Y. & Naoe, T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol. Pharm. Bull. 29, 903–906 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. He, X. Y. et al. The let-7a microRNA protects from growth of lung carcinoma by suppression of k-Ras and c-Myc in nude mice. J. Cancer Res. Clin. Oncol. 136, 1023–1028 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Cannell, I. G. & Bushell, M. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability? Cell Cycle 9, 2726–2730 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Ji, Q. et al. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4, e6816 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Motojima, K. et al. Mutations in the Kirsten-ras oncogene are common but lack correlation with prognosis and tumor stage in human pancreatic carcinoma. Am. J. Gastroenterol. 86, 1784–1788 (1991).

    CAS  PubMed  Google Scholar 

  81. Howe, J. R. & Conlon, K. C. The molecular genetics of pancreatic cancer. Surg. Oncol. 6, 1–18 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Vizan, P. et al. K-ras codon-specific mutations produce distinctive metabolic phenotypes in NIH3T3 mice [corrected] fibroblasts. Cancer Res. 65, 5512–5515 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Chiaradonna, F., Gaglio, D., Vanoni, M. & Alberghina, L. Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim. Biophys. Acta 1757, 1338–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Hu, Y. et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 22, 399–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, S. et al. miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70, 6015–6025 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, X. et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Xu, B. et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol. Cell Biochem. 350, 207–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Kent, O. A. et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev. 24, 2754–2759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao, W. G. et al. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726–1733 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Szafranska, A. E. et al. Analysis of microRNAs in pancreatic fine-needle aspirates can classify benign and malignant tissues. Clin. Chem. 54, 1716–1724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ali, S. et al. Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J. Cell. Physiol. http://dx.doi.org/10.1002/jcp.24036.

  95. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tacchini, L., Dansi, P., Matteucci, E. & Desiderio, M. A. Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis 22, 1363–1371 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Taguchi, A. et al. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res. 68, 5540–5545 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Rane, S. et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104, 879–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, Y. B. et al. Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res. 37, 123–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Lei, Z. et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS ONE 4, e7629 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cha, S. T. et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res. 70, 2675–2685 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Yamakuchi, M. et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc. Natl Acad. Sci. USA 107, 6334–6339 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bruning, U. et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1{alpha} activity during prolonged hypoxia. Mol. Cell. Biol. 31, 4087–4096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ryu, J. K. et al. Aberrant microRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 10, 66–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu, J., Li, A., Hong, S. M., Hruban, R. H. & Goggins, M. MicroRNA alterations of pancreatic intraepithelial neoplasias. Clin. Cancer Res. 18, 981–992 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Habbe, N. et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol. Ther. 8, 340–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Ghosh, G. et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J. Clin. Invest. 120, 4141–4154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dajani, R. M., Danielski, J., Gamble, W. & Orten, J. M. A study of the citric acid cycle in certain tumour tissue. Biochem. J. 81, 494–503 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilfred, B. R., Wang, W. X. & Nelson, P. T. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91, 209–217 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Puissegur, M. P. et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 18, 465–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baden, K. N., Murray, J., Capaldi, R. A. & Guillemin, K. Early developmental pathology due to cytochrome c oxidase deficiency is revealed by a new zebrafish model. J. Biol. Chem. 282, 34839–34849 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Li, J. et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 6, e1000795 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl Acad. Sci. USA 107, 7455–7460 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jung, D. E., Wen, J., Oh, T. & Song, S. Y. Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas 40, 1180–1187 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Semenza, G. L. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Zhou, L. et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE 5, e15224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zha, X. et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 71, 13–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Kinoshita, T. et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 40, 185–193 (2012).

    CAS  PubMed  Google Scholar 

  128. Pullen, T. J., da Silva Xavier, G., Kelsey, G. & Rutter, G. A. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol. Cell. Biol. 31, 3182–3194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bode, B. P. & Souba, W. W. Modulation of cellular proliferation alters glutamine transport and metabolism in human hepatoma cells. Ann. Surg. 220, 411–422 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. DeBerardinis, R. J. & Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhou, Q., Souba, W. W., Croce, C. M. & Verne, G. N. MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59, 775–784 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Muniyappa, M. K. et al. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur. J. Cancer 45, 3104–3118 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Deberardinis, R. J., Lum, J. J. & Thompson, C. B. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem. 281, 37372–37380 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Ali, S. et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 70, 3606–3617 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Khasawneh, J. et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl Acad. Sci. USA 106, 3354–3359 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    Article  PubMed  Google Scholar 

  139. Michaud, D. S. et al. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA 286, 921–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Cheon, E. C. et al. Alteration of strain background and a high omega-6 fat diet induces earlier onset of pancreatic neoplasia in EL-Kras transgenic mice. Int. J. Cancer 128, 2783–2792 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Martinez-Outschoorn, U. E. et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9, 3256–3276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Aprelikova, O. et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 9, 4387–4398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Enkelmann, A. et al. Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J. Cancer Res. Clin. Oncol. 137, 751–759 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Hu, W. et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol. Cell 38, 689–699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pavlides, S. et al. The autophagic tumor stroma model of cancer: role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 9, 3485–3505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Preis, M. et al. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 17, 5812–5821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shen, X. et al. Heparin impairs angiogenesis through inhibition of microRNA-10b. J. Biol. Chem. 286, 26616–26627 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sun, L. et al. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res. 1389, 9–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ali, S., Almhanna, K., Chen, W., Philip, P. A. & Sarkar, F. H. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am. J. Transl. Res. 3, 28–47 (2011).

    CAS  Google Scholar 

  151. Lukiw, W. J. & Pogue, A. I. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J. Inorg. Biochem. 101, 1265–1269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pizzimenti, S. et al. MicroRNA expression changes during human leukemic HL-60 cell differentiation induced by 4-hydroxynonenal, a product of lipid peroxidation. Free Radic. Biol. Med. 46, 282–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Fuss, M. Strategies of assessing and quantifying radiation treatment metabolic tumor response using F18 FDG positron emission tomography (PET). Acta Oncol. 49, 948–955 (2010).

    Article  PubMed  Google Scholar 

  154. Bhardwaj, V., Rizvi, N., Lai, M. B., Lai, J. C. & Bhushan, A. Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signaling and energetics. Anticancer Res. 30, 743–749 (2010).

    CAS  PubMed  Google Scholar 

  155. Yang, H. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Ho, A. S. et al. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol. 3, 109–113 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Wang, J. et al. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2, 807–813 (2009).

    Article  CAS  Google Scholar 

  158. Kelly, T. J., Souza, A. L., Clish, C. B. & Puigserver, P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol. Cell. Biol. 31, 2696–2706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu, J. et al. Combination of plasma microRNAs with serum CA19–19 for early detection of pancreatic cancer. Int. J. Cancer http://dx.doi.org/10.1002/ijc.26422.

  160. Ryu, J. K. et al. Elevated microRNA miR-21 levels in pancreatic cyst fluid are predictive of mucinous precursor lesions of ductal adenocarcinoma. Pancreatology 11, 343–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Morita, T., Matsuzaki, A., Kurokawa, S. & Tokue, A. Forced expression of cytidine deaminase confers sensitivity to capecitabine. Oncology 65, 267–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Borchert, G. M., Holton, N. W. & Larson, E. D. Repression of human activation induced cytidine deaminase by miR-93 and miR-155. BMC Cancer 11, 347 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by SPORE (P50 CA127297, NCI) Career Development Award, SPORE (P50 CA127297, NCI) Developmental Research Project Award, and Cancer Prevention and Control Nutrition seed grant (15618, GSCN) to P. K. Singh. The funders had no role in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P. K. Singh and K. Mehla researched data for the article. All authors contributed to discussions of content, writing, reviewing and editing the manuscript.

Corresponding author

Correspondence to Pankaj K. Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Brand, R. & Mehla, K. MicroRNAs in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol 9, 334–344 (2012). https://doi.org/10.1038/nrgastro.2012.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.63

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer