Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The migrating motor complex: control mechanisms and its role in health and disease

Abstract

The migrating motor complex (MMC) is a cyclic, recurring motility pattern that occurs in the stomach and small bowel during fasting; it is interrupted by feeding. The MMC is present in the gastrointestinal tract of many species, including humans. The complex can be subdivided into four phases, of which phase III is the most active, with a burst of contractions originating from the antrum or duodenum and migrating distally. Control of the MMC is complex. Phase III of the MMC with an antral origin can be induced in humans through intravenous administration of motilin, erythromycin or ghrelin, whereas administration of serotonin or somatostatin induces phase III activity with duodenal origin. The role of the vagus nerve in control of the MMC seems to be restricted to the stomach, as vagotomy abolishes the motor activity in the stomach, but leaves the periodic activity in the small bowel intact. The physiological role of the MMC is incompletely understood, but its absence has been associated with gastroparesis, intestinal pseudo-obstruction and small intestinal bacterial overgrowth. Measuring the motility of the gastrointestinal tract can be important for the diagnosis of gastrointestinal disorders. In this Review we summarize current knowledge of the MMC, especially its role in health and disease.

Key Points

  • The migrating motor complex (MMC) is a cyclic motor pattern in the gastrointestinal tract that occurs during the interdigestive state in humans and other animals

  • Levels of endogenous motilin fluctuate together with the different MMC phases, and exogenously administered motilin can induce phase III contractions

  • Exogenously administered ghrelin induces phase III contractions; detailed studies of fluctuations of endogenous ghrelin levels with the MMC phases in humans are lacking

  • Serotonin and somatostatin inhibit the occurrence of antral phase III contractions and redirect the origin of these contractions towards the duodenum

  • Vagotomy abolishes the MMC pattern in the stomach, but has a minimal effect on the small bowel pattern

  • The activity of the MMC is a clinical marker for the functionality of the gastrointestinal tract, and several disorders are linked to a disturbed MMC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-resolution manometry recording of the MMC in humans.
Figure 2: Schematic representation of potential mechanisms involved in the generation of the MMC in humans.

Similar content being viewed by others

References

  1. Wingate, D. L. Backwards and forwards with the migrating complex. Dig. Dis. Sci. 26, 641–666 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Boldyreff, V. Periodic wave phenomena in the secretory function of the digestive tract. Gaz. Hop. Botkine 34, 1529–1542 (1902).

    Google Scholar 

  3. Boldyreff, W. Le travail periodique de l'appareil digestif en dehors de la digestion [French]. Arch. Des Sci. Biol. 11, 1–157 (1905).

    Google Scholar 

  4. Cannon, W. & Washburn, A. An explanation of hunger. Am. J. Physiol. 29, 441–454 (1912).

    Article  Google Scholar 

  5. Carlson, A. A study of the mechanisms of the hunger contractions of the empty stomach by experiments on dogs. Am. J. Physiol. 32, 369–388 (1913).

    Article  Google Scholar 

  6. Szurszewski, J. H. A migrating electric complex of canine small intestine. Am. J. Physiol. 217, 1757–1763 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Code, C. F. & Marlett, J. A. The interdigestive myo-electric complex of the stomach and small bowel of dogs. J. Physiol. 246, 289–309 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Wever, I., Eeckhout, C., Vantrappen, G. & Hellemans, J. Disruptive effect of test meals on interdigestive motor complex in dogs. Am. J. Physiol. 235, E661–E665 (1978).

    CAS  PubMed  Google Scholar 

  9. Aeberhard, P. F., Magnenat, L. D. & Zimmermann, W. A. Nervous control of migratory myoelectric complex of the small bowel. Am. J. Physiol. 238, G102–G108 (1980).

    CAS  PubMed  Google Scholar 

  10. Bueno, L. & Ruckebusch, M. Insulin and jejunal electrical activity in dogs and sheep. Am. J. Physiol. 230, 1538–1544 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Grivel, M. L. & Ruckebusch, Y. The propagation of segmental contractions along the small intestine. J. Physiol. 227, 611–625 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruckebusch, Y. & Bueno, L. The effect of weaning on the motility of the small intestine in the calf. Br. J. Nutr. 30, 491–499 (1973).

    Article  CAS  PubMed  Google Scholar 

  13. Rukebusch, M. & Fioramonti, J. Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology 68, 1500–1508 (1975).

    CAS  PubMed  Google Scholar 

  14. Ruckenbusch, Y. & Bueno, L. The effect of feeding on the motility of the stomach and small intestine in the pig. Br. J. Nutr. 35, 397–405 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Vantrappen, G. & Janssens, J. The migrating motor complex. Gastroenterol. Clin. Biol. 5, 681–690 (1981).

    CAS  PubMed  Google Scholar 

  16. Fujino, K. et al. Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J. Physiol. 550, 227–240 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng, J., Ariga, H., Taniguchi, H., Ludwig, K. & Takahashi, T. Ghrelin regulates gastric phase III-like contractions in freely moving conscious mice. Neurogastroenterol. Motil. 21, 78–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Tatewaki, M. et al. Dual effects of acupuncture on gastric motility in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R862–R872 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Fleckenstein, P. Migrating electrical spike activity in the fasting human small intestine. Am. J. Dig. Dis. 23, 769–775 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Vantrappen, G., Janssens, J., Hellemans, J. & Ghoos, Y. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J. Clin. Invest. 59, 1158–1166 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vantrappen, G. et al. Motilin and the interdigestive migrating motor complex in man. Dig. Dis. Sci. 24, 497–500 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Dooley, C. P., Di Lorenzo, C. & Valenzuela, J. E. Variability of migrating motor complex in humans. Dig. Dis. Sci. 37, 723–728 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Tomomasa, T., Kuroume, T., Arai, H., Wakabayashi, K. & Itoh, Z. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig. Dis. Sci. 31, 157–161 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Coulie, B., Tack, J., Peeters, T. & Janssens, J. Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 43, 395–400 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomomasa, T. et al. Gastrointestinal sounds and migrating motor complex in fasted humans. Am. J. Gastroenterol. 94, 374–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Vantrappen, G., Peeters, T. & Janssens J. The secretory component of the interdigestive motor complex in man. Scand. J. Gastroenterol. 14, 663–667 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Sjovall, H. Meaningful or redundant complexity—mechanisms behind cyclic changes in gastroduodenal pH in the fasting state. Acta Physiol. (Oxf.) 201, 127–131 (2011).

    Article  CAS  Google Scholar 

  28. Castedal, M. & Abrahamsson, H. High-resolution analysis of the duodenal interdigestive phase III in humans. Neurogastroenterol. Motil. 13, 473–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Vantrappen, G. R., Peeters, T. L. & Janssens, J. The secretory component of the interdigestive migrating motor complex in man. Scand. J. Gastroenterol. 14, 663–667 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. Kachel, G. W., Frase, L. L., Domschke, W., Chey, W. Y. & Krejs, G. J. Effect of 13-norleucin motilin on water and ion transport in the human jejunum. Gastroenterology 87, 550–556 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Mellander, A., Jarbur, K. & Sjovall, H. Pressure and frequency dependent linkage between motility and epithelial secretion in human proximal small intestine. Gut 46, 376–384 (1999).

    Article  Google Scholar 

  32. Kumar, D., Wingate, D. & Ruckebusch, Y. Circadian variation in the propagation velocity of the migrating motor complex. Gastroenterology 91, 926–930 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Kellow, J. E., Gill, R. C. & Wingate, D. L. Prolonged ambulant recordings of small bowel motility demonstrate abnormalities in the irritable bowel syndrome. Gastroenterology 98, 1208–1218 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Kumar, D. et al. Relationship between enteric migrating motor complex and the sleep cycle. Am. J. Physiol. 259, G983–G990 (1990).

    CAS  PubMed  Google Scholar 

  35. Kumar, D. et al. Modulation of the duration of human postprandial motor activity by sleep. Am. J. Physiol. 256, G851–G855 (1989).

    CAS  PubMed  Google Scholar 

  36. Helmstaedter, V. et al. Immunohistochemical localization of motilin in endocrine non-enterochromaffin cells of the small intestine of humans and monkey. Gastroenterology 76, 897–902 (1979).

    CAS  PubMed  Google Scholar 

  37. Xu, L. et al. Evidence for the presence of motilin, ghrelin, and the motilin and ghrelin receptor in neurons of the myenteric plexus. Regul. Pept. 124, 119–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, J. C., Cook, M. A. & Dryburgh, J. R. Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can. J. Biochem. 51, 533–537 (1973).

    Article  CAS  PubMed  Google Scholar 

  39. De Smet, B., Mitselos, A. & Depoortere, I. Motilin and ghrelin as prokinetic drug targets. Pharmacol. Ther. 123, 207–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Aerssens, J., Depoortere, I., Thielemans, L., Mistelos, A., Coulie, B. & Peeters, T. The rat lacks functional genes for motilin and the motilin recpetor. Neurogastroenterol. Motil. 16, 841 (2004).

    Google Scholar 

  41. Hill, J., Szekeres, P., Muir, A. & Sanger, G. Molecular, functional and cross-species comparisons between the receptors for the prokinetic neuropeptides, motilin and ghrelin. Gastroenterology 122, A54 (2002).

    Article  Google Scholar 

  42. Itoh, Z. et al. Motilin-induced mechanical activity in the canine alimentary tract. Scand. J. Gastroenterol. Suppl. 39, 93–110 (1976).

    CAS  PubMed  Google Scholar 

  43. Lee, K. Y., Chey, W. Y., Tai, H. H. & Yajima, H. Radioimmunoassay of motilin. Validation and studies on the relationship between plasma motilin and interdigestive myoelectric activity of the duodenum of dog. Am. J. Dig. Dis. 23, 789–795 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Peeters, T. L., Vantrappen, G. & Janssens, J. Fasting plasma motilin levels are related to the interdigestive motility complex. Gastroenterology 79, 716–719 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, I. et al. Effect of motilin on the opossum upper gastrointestinal tract and sphincter of Oddi. Am. J. Physiol. 245, G476–G481 (1983).

    CAS  PubMed  Google Scholar 

  46. Rayner, V., Christofides, N. D., Gregory, P., Goodall, E. D. & Bloom, S. R. Motilin secretion and the migrating myoelectric complex in the pig. Q. J. Exp. Physiol. 72, 51–60 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Bueno, L., Fioramonti, J., Rayner, V. & Ruckebusch, Y. Effects of motilin, somatostatin, and pancreatic polypeptide on the migrating myoelectric complex in pig and dog. Gastroenterology 82, 1395–1402 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Borody, T. J., Byrnes, D. J. & Titchen, D. A. Motilin and migrating myoelectric complexes in the pig and the dog. Q. J. Exp. Physiol. 69, 875–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, K. Y., Chang, T. M. & Chey, W. Y. Effect of rabbit antimotilin serum on myoelectric activity and plasma motilin concentration in fasting dog. Am. J. Physiol. 245, G547–G553 (1983).

    CAS  PubMed  Google Scholar 

  50. Poitras, P. Motilin is a digestive hormone in the dog. Gastroenterology 87, 909–913 (1984).

    Article  CAS  PubMed  Google Scholar 

  51. Bormans, V. et al. In man, only activity fronts that originate in the stomach correlate with motilin peaks. Scand. J. Gastroenterol. 22, 781–784 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Boivin, M. R. M., Riberdy, M., Trudel, L., St-Pierre, S. & Poitras, P. Plasma motilin variation during the interdigestive and digestive states in man. Neurogastroenterol. Motil. 2, 240–246 (1990).

    Article  Google Scholar 

  53. Suzuki, H. et al. Effect of duodenectomy on gastric motility and gastric hormones in dogs. Ann. Surg. 233, 353–359 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Janssens, J., Vantrappen, G. & Peeters, T. L. The activity front of the migrating motor complex of the human stomach but not of the small intestine is motilin-dependent. Regul. Pept. 6, 363–369 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Janssens, J. et al. Pancreatic polypeptide is not involved in the regulation of the migrating motor complex in man. Regul. Pept. 3, 41–49 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Hall, K. E., Diamant, N. E., El-Sharkawy, T. Y. & Greenberg, G. R. Effect of pancreatic polypeptide on canine migrating motor complex and plasma motilin. Am. J. Physiol. 245, G178–G185 (1983).

    Article  CAS  PubMed  Google Scholar 

  57. Wilmer, A. et al. 5-hydroxytryptamine-3 receptors are involved in the initiation of gastric phase-3 motor activity in humans. Gastroenterology 105, 773–780 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Peeters, T. L., Janssens, J. & Vantrappen, G. R. Somatostatin and the interdigestive migrating motor complex in man. Regul. Pept. 5, 209–217 (1983).

    Article  CAS  PubMed  Google Scholar 

  59. Woodtli, W. & Owyang, C. Duodenal pH governs interdigestive motility in humans. Am. J. Physiol. 268, G146–G152 (1995).

    CAS  PubMed  Google Scholar 

  60. Bortolotti, M. Relationship between acid secretory activity and gastroduodenal migrating motor complex. Hepatogastroenterology 43, 1288–1295 (1996).

    CAS  PubMed  Google Scholar 

  61. Sarna, S. et al. Cause-and-effect relationship between motilin and migrating myoelectric complexes. Am. J. Physiol. 245, G277–G284 (1983).

    CAS  PubMed  Google Scholar 

  62. Lewis, T. D. Morphine and gastroduodenal motility. Dig. Dis. Sci. 44, 2178–2186 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell. Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qvist, N. et al. Increases in plasma motilin follow each episode of gallbladder emptying during the interdigestive period, and changes in serum bile acid concentration correlate to plasma motilin. Scand. J. Gastroenterol. 30, 122–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Stolk, M. F. et al. Motor cycles with phase III in antrum are associated with high motilin levels and prolonged gallbladder emptying. Am. J. Physiol. 264, G596–G600 (1993).

    CAS  PubMed  Google Scholar 

  66. Kusano, M. et al. The relationship between interdigestive gallbladder and gastroduodenal motility in man. Gastroenterol. Jpn 25, 568–574 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Perdikis, G. et al. Altered antroduodenal motility after cholecystectomy. Am. J. Surg. 168, 609–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Itoh, Z., Nakaya, M., Suzuki, T., Arai, H. & Wakabayashi, K. Erythromycin mimics exogenous motilin in gastrointestinal contractile activity in the dog. Am. J. Physiol. 247, G688–G694 (1984).

    CAS  PubMed  Google Scholar 

  69. Kondo, Y., Torii, K., Itoh, Z. & Omura, S. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem. Biophys. Res. Commun. 150, 877–882 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Peeters, T. et al. Erythromycin is a motilin receptor agonist. Am. J. Physiol. 257, G470–G474 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Peeters, T. L. et al. The motilin antagonist ANQ-11125 blocks motilide-induced contractions in vitro in the rabbit. Biochem. Biophys. Res. Commun. 198, 411–416 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Depoortere, I. & Peeters, T. L. Transduction mechanism of motilin and motilides in rabbit duodenal smooth muscle. Regul. Pept. 55, 227–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Feighner, S. D. et al. Receptor for motilin identified in the human gastrointestinal system. Science 284, 2184–2188 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Tack, J. et al. Effect of erythromycin on gastric motility in controls and in diabetic gastroparesis. Gastroenterology 103, 72–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Van Assche, G., Depoortere, I., Thijs, T., Janssens, J. J. & Peeters, T. L. Concentration-dependent stimulation of cholinergic motor nerves or smooth muscle by [Nle13]motilin in the isolated rabbit gastric antrum. Eur. J. Pharmacol. 337, 267–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Parkman, H. P., Pagano, A. P., Vozzelli, M. A. & Ryan, J. P. Gastrokinetic effects of erythromycin: myogenic and neurogenic mechanisms of action in rabbit stomach. Am. J. Physiol. 269, G418–G426 (1995).

    CAS  PubMed  Google Scholar 

  77. Marzio, L., Grossi, L., Martelli, L., Falcucci, M. & Lapenna, D. Migrating motor complex recorded spontaneously and induced by motilin and erythromycin in an ex vivo rabbit intestinal preparation. Peptides 15, 1067–1077 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Tack, J., Coulie, B., Wilmer, A., Peeters, T. & Janssens, J. Actions of the 5-hydroxytryptamine 1 receptor agonist sumatriptan on interdigestive gastrointestinal motility in man. Gut 42, 36–41 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tack, J., Vanden Berghe, P., Coulie, B. & Janssens, J. Sumatriptan is an agonist at 5-HT receptors on myenteric neurones in the guinea-pig gastric antrum. Neurogastroenterol. Motil. 19, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Depoortere, I., Thijs, T., Thielemans, L., Robberecht, P. & Peeters, T. L. Interaction of the growth hormone-releasing peptides ghrelin and growth hormone-releasing peptide-6 with the motilin receptor in the rabbit gastric antrum. J. Pharmacol. Exp. Ther. 305, 660–667 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Gutierrez, J. A. et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc. Natl Acad. Sci. USA 105, 6320–6325 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Furness, J. B. et al. Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience 193, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Lu, S. et al. Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus. Neurosci. Lett. 321, 157–160 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Menyhert, J. et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Res. 1125, 31–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Cowley, M. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Wortley, K. et al. Genetic deletion of ghrelin does not decrease food intake but influences metabolic fuel preference. Proc. Natl Acad. Sci. USA 101, 8227–8232 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maier, C. et al. The cholinergic system controls ghrelin release and ghrelin-induced growth hormone release in humans. J. Clin. Endocrinol. Metab. 89, 4729–4733 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Broglio, F. et al. Acetylcholine regulates ghrelin secretion in humans. J. Clin. Endocrinol. Metab. 89, 2429–2433 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, T. J. et al. Ghrelin secretion stimulated by {beta}1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc. Natl Acad. Sci. USA 107, 15868–1 5873.

    Article  Google Scholar 

  92. Toshinai, K. et al. Upregulation of Ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem. Biophys. Res. Commun. 281, 1220–1225 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Hashimoto, H. et al. Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology 148, 1638–1647 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Wren, A. M. et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141, 4325–4328 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Yin, J. & Chen, J. Inhibitory effects of gastric electrical stimulation on ghrelin-induced excitatory effects on gastric motility and food intake in dogs. Scand. J. Gastroenterol. 41, 903–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Akamizu, T. et al. Repeated administration of ghrelin to patients with functional dyspepsia: its effects on food intake and appetite. Eur. J. Endocrinol. 158, 491–498 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Akamizu, T. et al. Pharmacokinetics, safety, and endocrine and appetite effects of ghrelin administration in young healthy subjects. Eur. J. Endocrinol. 150, 447–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R. & Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol. Endocrinol. Metab. 287, E297–E304 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Tack, J. et al. Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55, 327–333 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ohno, T. et al. Ghrelin does not stimulate gastrointestinal motility and gastric emptying: an experimental study of conscious dogs. Neurogastroenterol. Motil. 18, 129–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Ariga, H. et al. Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach. Neurogastroenterol. Motil. 19, 675–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Taniguchi, H. et al. Endogenous ghrelin and 5-HT regulate interdigestive gastrointestinal contractions in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G403–G411 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Zietlow, A., Nakajima, H., Taniguchi, H., Ludwig, K. & Takahashi, T. Association between plasma ghrelin and motilin levels during MMC cycle in conscious dogs. Regul. Pept. 164, 78–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Ariga, H. et al. Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach. Neurogastroenterol. Motil. 19, 675–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Masuda, Y. et al. Ghrelin stimulates gastric acid secretion and motility in rats. Biochem. Biophys. Res. Commun. 276, 905–908 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, J. V. et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science 310, 996–999 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. De Smet, B., Thijs, T., Peeters, T. L. & Depoortere, I. Effect of peripheral obestatin on gastric emptying and intestinal contractility in rodents. Neurogastroenterol. Motil. 19, 211–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Bassil, A. K. et al. Little or no ability of obestatin to interact with ghrelin or modify motility in the rat gastrointestinal tract. Br. J. Pharmacol. 150, 58–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Gourcerol, G. et al. Lack of interaction between peripheral injection of CCK and obestatin in the regulation of gastric satiety signaling in rodents. Peptides 27, 2811–2819 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Ataka, K., Inui, A., Asakawa, A., Kato, I. & Fujimiya, M. Obestatin inhibits motor activity in the antrum and duodenum in the fed state of conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1210–G1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Polak, J. M., Pearse, A. G., Grimelius, L. & Bloom, S. R. Growth-hormone release-inhibiting hormone in gastrointestinal and pancreatic D cells. Lancet 1, 1220–1222 (1975).

    Article  CAS  PubMed  Google Scholar 

  115. Pimstone, B. L., Berelowitz, M. & Kronheim, S. Somatostatin, 1976. S. Afr. Med. J. 50, 1471–1474 (1976).

    CAS  PubMed  Google Scholar 

  116. Portbury, A. L. et al. Cholinergic, somatostatin-immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure, connections and projections. J. Anat. 187 (Pt 2), 303–321 (1995).

    PubMed  PubMed Central  Google Scholar 

  117. Boden, G., Sivitz, M. C., Owen, O. E., Essa-Koumar, N. & Landor, J. H. Somatostatin suppresses secretin and pancreatic exocrine secretion. Science 190, 163–165 (1975).

    Article  CAS  PubMed  Google Scholar 

  118. Ormsbee, H. S. 3rd, Koehler, S. L. Jr & Telford, G. L. Somatostatin inhibits motilin-induced interdigestive contractile activity in the dog. Am. J. Dig. Dis. 23, 781–788 (1978).

    Article  CAS  PubMed  Google Scholar 

  119. Poitras, P., Steinbach, J. H., Van Deventer, G., Code, C. F. & Walsh, J. H. Effect of somatostatin on blood levels of motilin and the interdigestive myoelectric complex in dogs. Endocrinol. Jpn 27 (Suppl. 1), 163–166 (1980).

    Article  CAS  PubMed  Google Scholar 

  120. Broglio, F. et al. Ghrelin secretion is inhibited by either somatostatin or cortistatin in humans. J. Clin. Endocrinol. Metab. 87, 4829–4832 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Barkan, A. L. et al. Ghrelin secretion in humans is sexually dimorphic, suppressed by somatostatin, and not affected by the ambient growth hormone levels. J. Clin. Endocrinol. Metab. 88, 2180–2184 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Suzuki, H. et al. Motilin controls cyclic release of insulin through vagal cholinergic muscarinic pathways in fasted dogs. Am. J. Physiol. 274, G87–G95 (1998).

    CAS  PubMed  Google Scholar 

  123. Eeckhout, C., De Wever, I., Peeters, T., Hellemans, J. & Vantrappen, G. Role of gastrin and insulin in postprandial disruption of migrating complex in dogs. Am. J. Physiol. 235, E666–E669 (1978).

    CAS  PubMed  Google Scholar 

  124. Rayner, V., Weekes, T. E. & Bruce, J. B. Insulin and myoelectric activity of the small intestine of the pig. Dig. Dis. Sci. 26, 33–41 (1981).

    Article  CAS  PubMed  Google Scholar 

  125. Tanaka, T. et al. Relationship between intraduodenal 5-hydroxytryptamine release and interdigestive contractions in dogs. J. Smooth Muscle Res. 40, 75–84 (2004).

    Article  PubMed  Google Scholar 

  126. Ormsbee, H. S. 3rd, Silber, D. A. & Hardy, F. E. Jr. Serotonin regulation of the canine migrating motor complex. J. Pharmacol. Exp. Ther. 231, 436–440 (1984).

    CAS  PubMed  Google Scholar 

  127. Hansen, M. B., Arif, F., Gregersen, H., Bruusgaard, H. & Wallin, L. Effect of serotonin on small intestinal contractility in healthy volunteers. Physiol. Res. 57, 63–71 (2008).

    CAS  PubMed  Google Scholar 

  128. Lordal, M. & Hellstrom, P. M. 5-Hydroxytryptamine: initiator of phase 3 of migrating motor complex. Acta Physiol. Scand. 155, 241–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  129. Lordal, M., Wallen, H., Hjemdahl, P., Beck, O. & Hellstrom, P. M. Concentration-dependent stimulation of intestinal phase III of migrating motor complex by circulating serotonin in humans. Clin. Sci. (Lond.) 94, 663–670 (1998).

    Article  CAS  Google Scholar 

  130. Gorard, D. A., Libby, G. W. & Farthing, M. J. 5-Hydroxytryptamine and human small intestinal motility: effect of inhibiting 5-hydroxytryptamine reuptake. Gut 35, 496–500 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Janssen, P., Vos, R. & Tack, J. The influence of citalopram on interdigestive gastrointestinal motility in man. Aliment. Pharmacol. Ther. 32, 289–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Fujitsuka, N. et al. Selective serotonin reuptake inhibitors modify physiological gastrointestinal motor activities via 5-HT2c receptor and acyl ghrelin. Biol. Psychiatry 65, 748–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Thor, P., Laskiewicz, J., Konturek, P. & Konturek, S. J. Cholecystokinin in the regulation of intestinal motility and pancreatic secretion in dogs. Am. J. Physiol. 255, G498–G504 (1988).

    CAS  PubMed  Google Scholar 

  134. Niederau, C. & Karaus, M. Effects of CCK receptor blockade on intestinal motor activity in conscious dogs. Am. J. Physiol. 260, G315–G324 (1991).

    CAS  PubMed  Google Scholar 

  135. Mukhopadhyay, A. K., Thor, P. J., Copeland, E. M., Johnson, L. R. & Weisbrodt, N. W. Effect of cholecystokinin on myoelectric activity of small bowel of the dog. Am. J. Physiol. 232, E44–E47 (1977).

    CAS  PubMed  Google Scholar 

  136. Feurle, G. E., Hamscher, G., Kusiek, R., Meyer, H. E. & Metzger, J. W. Identification of xenin, a xenopsin-related peptide, in the human gastric mucosa and its effect on exocrine pancreatic secretion. J. Biol. Chem. 267, 22305–22309 (1992).

    CAS  PubMed  Google Scholar 

  137. Feurle, G. E., Carraway, R. E., Rix, E. & Knauf, W. Evidence for the presence of xenopsin-related peptide(s) in the gastric mucosa of mammals. J. Clin. Invest. 76, 156–162 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Alexiou, C., Zimmermann, J. P., Schick, R. R. & Schusdziarra, V. Xenin—a novel suppressor of food intake in rats. Brain Res. 800, 294–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  139. Leckstrom, A., Kim, E. R., Wong, D. & Mizuno, T. M. Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway. Diabetes 58, 87–94 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Feurle, G. E. et al. Phase III of the migrating motor complex: associated with endogenous xenin plasma peaks and induced by exogenous xenin. Neurogastroenterol. Motil. 13, 237–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Ruckebusch, Y. & Bueno, L. Migrating myoelectrical complex of the small intestine. An intrinsic activity mediated by the vagus. Gastroenterology 73, 1309–1314 (1977).

    Article  CAS  PubMed  Google Scholar 

  142. Takakuwa, K. Effects of vagotomy on gastrointestinal myoelectric pattern of the conscious dog [Japanese]. Nippon Heikatsukin Gakkai Zasshi 18, 19–38 (1982).

    Article  CAS  PubMed  Google Scholar 

  143. Hall, K. E., El-Sharkawy, T. Y. & Diamant, N. E. Vagal control of migrating motor complex in the dog. Am. J. Physiol. 243, G276–G284 (1982).

    CAS  PubMed  Google Scholar 

  144. Chung, S. A. & Diamant, N. E. Small intestinal motility in fasted and postprandial states: effect of transient vagosympathetic blockade. Am. J. Physiol. 252, G301–G308 (1987).

    CAS  PubMed  Google Scholar 

  145. Lemoyne, M., Wassef, R., Tasse, D., Trudel, L. & Poitras, P. Motilin and the vagus in dogs. Can. J. Physiol. Pharmacol. 62, 1092–1096 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Poitras, P. et al. Variations in plasma motilin, somatostatin, and pancreatic polypeptide concentrations and the interdigestive myoelectric complex in dog. Can. J. Physiol. Pharmacol. 63, 1495–1500 (1985).

    Article  CAS  PubMed  Google Scholar 

  147. Yoshiya, K. et al. The failure of truncal vagotomy to affect motilin release in dogs. J. Surg. Res. 38, 263–266 (1985).

    Article  CAS  PubMed  Google Scholar 

  148. Hall, K. E., el-Sharkawy, T. Y. & Diamant, N. E. Vagal control of canine postprandial upper gastrointestinal motility. Am. J. Physiol. 250, G501–G510 (1986).

    CAS  PubMed  Google Scholar 

  149. Chung, S. A., Greenberg, G. R. & Diamant, N. E. Relationship of postprandial motilin, gastrin, and pancreatic polypeptide release to intestinal motility during vagal interruption. Can. J. Physiol. Pharmacol. 70, 1148–1153 (1992).

    Article  CAS  PubMed  Google Scholar 

  150. Hall, K. E., Greenberg, G. R., El-Sharkawy, T. Y. & Diamant, N. E. Vagal control of migrating motor complex-related peaks in canine plasma motilin, pancreatic polypeptide, and gastrin. Can. J. Physiol. Pharmacol. 61, 1289–1298 (1983).

    Article  CAS  PubMed  Google Scholar 

  151. Chung, S. A., Greenberg, G. R. & Diamant, N. E. Vagal control of fasting somatostatin levels. Neurogastroenterol. Motil. 7, 73–78 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Illingworth, C. & Kay, A. Vagotomy in the treatment of peptic ulcer. Edinb. Med. J. 54, 540–544 (1947).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ross, B., Watson, B. & Kay, A. Studies on the effect of vagotomy on small intestinal motility using the radiotelemetering capsule. Gut 4, 77–81 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hanani, M. & Freund, H. Interstitial cells of Cajal-their role in pacing and signal transmission in the digestive system. Acta Physiol. Scand. 170, 177–190 (200).

  155. Roman´ski, K. W. Mechanisms controlling the gastrointestinal migrating motor complex. JPCCR 3, 11–19 (2009).

    Google Scholar 

  156. Sarna, S. K. in Schuster Atlas of Gastrointestinal Motility in Health and Disease (eds Schuster, M. M., Crowell, M. D. & Koch, K. L.) 1–18 (Decker Publishing Inc., Hamilton, Canada, 2002).

    Google Scholar 

  157. Sarna, S., Stoddard, C., Belbeck, L. & McWade, D. Intrinsic nervous control of migrating myoelectric complexes. Am. J. Physiol. 241, G16–G23 (1981).

    CAS  PubMed  Google Scholar 

  158. Rolemberg-Lessa, S., Vantrappen, G., Janssens, J. & Hellemans, J. Intestinal motility. Its possible role in diarrhea. Acta Gastroenterol. Belg. 44, 34–42 (1981).

    CAS  PubMed  Google Scholar 

  159. Husebye, E. Gastrointestinal motility disorders and bacterial overgrowth. J. Intern. Med. 237, 419–427 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Husebye, E., Skar, V., Hoverstad, T., Iversen, T. & Melby, K. Abnormal intestinal motor patterns explain enteric colonization with gram-negative bacilli in late radiation enteropathy. Gastroenterology 109, 1078–1089 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Simren, M., Bjornsson, E. S. & Abrahamsson, H. High interdigestive and postprandial motilin levels in patients with the irritable bowel syndrome. Neurogastroenterol. Motil. 17, 51–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Simren, M., Castedal, M., Svedlund, J., Abrahamsson, H. & Bjornsson, E. Abnormal propagation pattern of duodenal pressure waves in the irritable bowel syndrome (IBS) [correction of (IBD)]. Dig. Dis. Sci. 45, 2151–2161 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Wilmer, A. et al. Ambulatory gastrojejunal manometry in severe motility-like dyspepsia: lack of correlation between dysmotility, symptoms, and gastric emptying. Gut 42, 235–242 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Malagelada, J. R., Rees, W. D., Mazzotta, L. J. & Go, V. L. Gastric motor abnormalities in diabetic and postvagotomy gastroparesis: effect of metoclopramide and bethanechol. Gastroenterology 78, 286–293 (1980).

    Article  CAS  PubMed  Google Scholar 

  165. Samsom, M. & Smout, A. J. Abnormal gastric and small intestinal motor function in diabetes mellitus. Dig. Dis. 15, 263–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  166. Frazee, L. A. & Mauro, L. S. Erythromycin in the treatment of diabetic gastroparesis. Am. J. Ther. 1, 287–295 (1994).

    Article  PubMed  Google Scholar 

  167. Wingate, D., Hongo, M., Kellow, J., Lindberg, G. & Smout, A. Disorders of gastrointestinal motility: towards a new classification. J. Gastroenterol. Hepatol. 17 (Suppl.), S1–S14 (2002).

    Article  PubMed  Google Scholar 

  168. Meneghelli, U. G. Chagas' disease: a model of denervation in the study of digestive tract motility. Braz. J. Med. Biol. Res. 18, 255–264 (1985).

    CAS  PubMed  Google Scholar 

  169. Oliveira, R. B., Meneghelli, U. G., de Godoy, R. A., Dantas, R. O. & Padovan, W. Abnormalities of interdigestive motility of the small intestine in patients with Chagas' disease. Dig. Dis. Sci. 28, 294–299 (1983).

    Article  CAS  PubMed  Google Scholar 

  170. Koberle, F. Chagas' disease and Chagas' syndromes: the pathology of American trypanosomiasis. Adv. Parasitol. 6, 63–116 (1968).

    Article  CAS  PubMed  Google Scholar 

  171. de Oliveira, R. B., Troncon, L. E., Dantas, R. O. & Menghelli, U. G. Gastrointestinal manifestations of Chagas' disease. Am. J. Gastroenterol. 93, 884–889 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Aprile, L. R., Troncon, L. E., Meneghelli, U. G. & de Oliveira, R. B. Small bowel bacterial overgrowth syndrome in chagasic megajejunum: report of 2 cases [Portugese]. Arq. Gastroenterol. 32, 71–78 (1995).

    CAS  PubMed  Google Scholar 

  173. Stanghellini, V., Camilleri, M. & Malagelada, J. R. Chronic idiopathic intestinal pseudo-obstruction: clinical and intestinal manometric findings. Gut 28, 5–12 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hyman, P. E., McDiarmid, S. V., Napolitano, J., Abrams, C. E. & Tomomasa, T. Antroduodenal motility in children with chronic intestinal pseudo-obstruction. J. Pediatr. 112, 899–905 (1988).

    Article  CAS  PubMed  Google Scholar 

  175. Summers, R. W., Anuras, S. & Green, J. Jejunal manometry patterns in health, partial intestinal obstruction, and pseudoobstruction. Gastroenterology 85, 1290–1300 (1983).

    CAS  PubMed  Google Scholar 

  176. Cannon, W. B. & Washburn, A. L. An explanation of hunger. 1911. Obes. Res. 1, 494–500 (1993).

    Article  CAS  PubMed  Google Scholar 

  177. Carlson, A. J. Contributions to the physiology of the stomach.—II. The relation between the contractions of the empty stomach and the sensation of hunger. 1912. Obes. Res. 1, 501–509 (1993).

    Article  CAS  PubMed  Google Scholar 

  178. Itoh, Z., Aizawa, I., Takeuchi, S. & Couch, E. F. in Proceedings of the Fifth International Symposium on Gastrointestinal Motility (ed. Vantrappen, G.) 48–55 (Typoff, Herentals, Belgium, 1975).

    Google Scholar 

  179. Ang, D. C. et al. Gastric phase 3 is a hunger signal in the interdigestive state in man. Gastroenterology 134, A314 (2008).

    Google Scholar 

  180. Pieramico, O., Malfertheiner, P., Nelson, D. K., Glasbrenner, B. & Ditschuneit, H. Interdigestive gastroduodenal motility and cycling of putative regulatory hormones in severe obesity. Scand. J. Gastroenterol. 27, 538–544 (1992).

    Article  CAS  PubMed  Google Scholar 

  181. Silverstone, J. T. & Russell, G. F. Gastric “hunger” contractions in anorexia nervosa. Br. J. Psychiatr. 113, 257–263 (1967).

    Article  CAS  Google Scholar 

  182. Buchman, A. L., Ament, M. E., Weiner, M., Kodner, A. & Mayer, E. A. Reversal of megaduodenum and duodenal dysmotility associated with improvement in nutritional status in primary anorexia nervosa. Dig. Dis. Sci. 39, 433–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Husebye, E. & Engedal, K. The patterns of motility are maintained in the human small intestine throughout the process of aging. Scand. J. Gastroenterol. 27, 397–404 (1992).

    Article  CAS  PubMed  Google Scholar 

  184. Desipio, J. et al. High-resolution solid-state manometry of the antropyloroduodenal region. Neurogastroenterol. Motil. 19, 188–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  185. Sarosiek, I. et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment. Pharmacol. Ther. 31, 313–322 (2010).

    CAS  PubMed  Google Scholar 

  186. Kloetzer, L. et al. Motility of the antroduodenum in healthy and gastroparetics characterized by wireless motility capsule. Neurogastroenterol. Motil. 22, 527–533 (2010).

    CAS  PubMed  Google Scholar 

  187. Camilleri, M. et al. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol. Motil. 20, 1269–1282 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Wilson, P. et al. Prolonged ambulatory antroduodenal manometry in humans. Am. J. Gastroenterol. 89, 1489–95 (1994).

    CAS  PubMed  Google Scholar 

  189. Di Lorenzo, C., Flores, A. F., Buie, T. & Hyman, P. E. Intestinal motility and jejunal feeding in children with chronic intestinal pseudo-obstruction. Gastroenterology 108, 1379–1385 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Hyman, P. E. et al. Predicting the clinical response to cisapride in children with chronic intestinal pseudoobstruction. Am. J. Gastroenterol. 88, 832–836 (1993).

    CAS  PubMed  Google Scholar 

  191. Medhus, A. W., Bondi, J., Gaustad, P. & Husebye, E. Low-dose intravenous erythromycin: effects on postprandial and fasting motility of the small bowel. Aliment. Pharmacol. Ther. 14, 233–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  192. Larson, J. M., Tavakkoli, A., Drane, W. E., Toskes, P. P. & Moshiree, B. Advantages of azithromycin over erythromycin in improving the gastric emptying half-time in adult patients with gastroparesis. J. Neurogastroenterol. Motil. 16, 407–413 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Tack, J. & Peeters, T. What comes after macrolides and other motilin stimulants? Gut 49, 317–318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Heightman, T. D. et al. Identification of small molecule agonists of the motilin receptor. Bioorg. Med. Chem. Lett. 18, 6423–6428 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Westaway, S. M. et al. Discovery of N.-(3-fluorophenyl)-1-[(4-([(3S)-3-methyl-1-piperazinyl]methyl)phenyl)acety l]-4-piperidinamine (GSK962040), the first small molecule motilin receptor agonist clinical candidate. J. Med. Chem. 52, 1180–1189 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Sanger, G. J. et al. GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility. Neurogastroenterol. Motil. 21, 657–664, e630–e651 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Leming, S. et al. GSK962040: a small molecule motilin receptor agonist which increases gastrointestinal motility in conscious dogs. Neurogastroenterol. Motil. 23, 958–e410 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Dukes, G. et al. Pharmacokinetics, safety/tolerability, and effect on gastric emptying of the oral motilin receptor agonist, GSK962040, in healthy male and female volunteers [abstract 280]. Neurogastroenterol. Motil. 21 (Suppl. s1), 84 (2009).

    Google Scholar 

  199. Deloose, E. et al. Evaluation of a new motilin receptor agonist, GSK962040, on the migrating motor complex and gastric pH in healthy human volunteers. Gastroenterology (in press).

  200. Hellstrom, P. M. et al. A double-blind, randomized placebo-controlled phase II study of the pharmacodynamics, safety/tolerability, and pharmacokinetics of single doses of the motilin agonist GSK962040, in patients with type I diabetes mellitus (T1DM) and gastroparesis [abstract 1389]. Gastroenterology 140, S-813 (2011).

    Article  Google Scholar 

  201. Gale, J. D., Colman, P. J., Kantaridis, C., Claes, C. & Tutuian, R. PF-04548043, a novel motilin receptor agonist, increases gastric emptying in healthy volunteers and does not undergo tachyphyllaxis [abstract 235]. Gastroenterology 136, A-45 (2009).

    Article  Google Scholar 

  202. Wo, J. M. et al. Randomised clinical trial: ghrelin agonist TZP-101 relieves gastroparesis associated with severe nausea and vomiting--randomised clinical study subset data. Aliment. Pharmacol. Ther. 33, 679–688 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Ejskjaer, N. et al. Ghrelin receptor agonist (TZP-101) accelerates gastric emptying in adults with diabetes and symptomatic gastroparesis. Aliment. Pharmacol. Ther. 29, 1179–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Ejskjaer, N. Safety and efficacy of ghrelin agonist TZP-101 in relieving symptoms in patients with diabetic gastroparesis: a randomized, placebo-controlled study. Neurogastroenterol. Motil. 22, 1069–e281 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. McCallum, R. et al. TZP-102, ghrelin agonist phase 2 data: the improvement in symptoms of gastroparesis (nausea, early satiety, bloating and abdominal pain) significantly correlated with patient rating of overall treatment effect [abstract 1365]. Gastroenterology 140, S-807 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The main draft of this manuscript was written when all authors worked at the Translational Research Center for Gastrointestinal Disorders (TARGID), Catholic University of Leuven, Belgium. Since that time P. Janssens has moved to work for Shire. See the article online for full author biographies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Jan Tack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deloose, E., Janssen, P., Depoortere, I. et al. The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 9, 271–285 (2012). https://doi.org/10.1038/nrgastro.2012.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing