Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The enteric nervous system and neurogastroenterology

Abstract

Neurogastroenterology is defined as neurology of the gastrointestinal tract, liver, gallbladder and pancreas and encompasses control of digestion through the enteric nervous system (ENS), the central nervous system (CNS) and integrative centers in sympathetic ganglia. This Review provides a broad overview of the field of neurogastroenterology, with a focus on the roles of the ENS in the control of the musculature of the gastrointestinal tract and transmucosal fluid movement. Digestion is controlled through the integration of multiple signals from the ENS and CNS; neural signals also pass between distinct gut regions to coordinate digestive activity. Moreover, neural and endocrine control of digestion is closely coordinated. Interestingly, the extent to which the ENS or CNS controls digestion differs considerably along the digestive tract. The importance of the ENS is emphasized by the life-threatening effects of certain ENS neuropathies, including Hirschsprung disease and Chagas disease. Other ENS disorders, such as esophageal achalasia and gastroparesis, cause varying degrees of dysfunction. The neurons in enteric reflex pathways use a wide range of chemical messengers that signal through an even wider range of receptors. These receptors provide many actual and potential targets for modifying digestive function.

Key Points

  • The enteric nervous system (ENS) is an extensive reflex control system for digestive function that works with the central nervous system (CNS) and neural pathways that pass through sympathetic ganglia

  • The ENS of the small intestine and colon has complete reflex pathways that control patterns of contractile activity, local blood flow and transmucosal movement of fluids

  • The CNS has essential roles in control of esophageal, stomach and colorectal functions

  • Control of transmucosal fluid movement by the ENS and CNS is closely integrated

  • The ENS interacts with both the gut endocrine and immune systems and has roles in modifying nutrient absorption and maintaining the mucosal barrier

  • Enteric neuropathies in which control of muscle contractile activity or neural control of transmucosal fluid movement fail are life-threatening

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The innervation of the gastrointestinal tract.
Figure 2: The organization of the ENS of human and medium–large mammals.
Figure 3: Nerve circuits for control of motility in the small intestine.
Figure 4: Neural control of transmucosal water and electrolyte movement in the small intestine.

Similar content being viewed by others

References

  1. Bayliss, W. M. & Starling, E. H. The movements and innervation of the small intestine. J. Physiol. 24, 99–143 (1899).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Furness, J. B. The Enteric Nervous System (Blackwell, Oxford, 2006).

    Google Scholar 

  3. Brehmer, A. Structure of enteric neurons. Adv. Anat. 186, 1–94 (2006).

    CAS  Google Scholar 

  4. Brehmer, A., Rupprecht, H. & Neuhuber, W. Two submucosal nerve plexus in human intestines. Histochem. Cell Biol. 133, 149–161 (2010).

    CAS  PubMed  Google Scholar 

  5. Toumi, F. et al. Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. Neurogastroenterol. Motil. 15, 239–242 (2003).

    CAS  PubMed  Google Scholar 

  6. Savidge, T. C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132, 1344–1358 (2007).

    CAS  PubMed  Google Scholar 

  7. Swenson, O. Hirschsprung's disease: a review. Pediatrics 109, 914–918 (2002).

    PubMed  Google Scholar 

  8. Matsuda, N. M., Miller, S. M. & Evora, P. R. B. The chronic gastrointestinal manifestations of Chagas disease. Clinics 64, 1219–1224 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. De Giorgio, R. et al. Inflammatory neuropathies of the enteric nervous system. Gastroenterology 126, 1872–1883 (2004).

    PubMed  Google Scholar 

  10. Knowles, C. H. et al. The London classification of gastrointestinal neuromuscular pathology: Report on behalf of the Gastro 2009 International Working Group. Gut 59, 882–887 (2010).

    PubMed  Google Scholar 

  11. Di Nardo, G. et al. Review article: molecular, pathological and therapeutic features of human enteric neuropathies. Aliment. Pharmacol. Ther. 28, 25–45 (2008).

    CAS  PubMed  Google Scholar 

  12. Lundgren, O. Enteric nerves and diarrhoea. Pharmacol. Toxicol. 90, 109–120 (2002).

    CAS  PubMed  Google Scholar 

  13. Podewils, L. J., Mintz, E. D., Nataro, J. P. & Parashar, U. D. Acute, infectious diarrhea among children in developing countries. Semin. Pediatr. Infect. Dis. 15, 155–168 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Hasler, W. L. in Gastroenterology (ed. Yamada, T.) 195–219 (Lippincott Williams & Wilkins, Philadelphia, 2003).

    Google Scholar 

  15. Schubert, M. L. & Peura, D. A. Control of gastric acid secretion in health and disease. Gastroenterology 134, 1842–1860 (2008).

    CAS  PubMed  Google Scholar 

  16. de Groat, W. C. et al. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J. Auton. Nerv. Syst. 3, 135–160 (1981).

    CAS  PubMed  Google Scholar 

  17. Jean, A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969 (2001).

    CAS  PubMed  Google Scholar 

  18. Bieger, D. & Hopkins, D. A. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J. Comp. Neurol. 262, 546–562 (1987).

    CAS  PubMed  Google Scholar 

  19. Cannon, W. B. Oesophageal peristalsis after bilateral vagotomy. Am. J. Physiol. 19, 436–444 (1907).

    Google Scholar 

  20. Wörl, J., Mayer, B. & Neuhuber, W. L. Spatial relationships of enteric nerve fibers to vagal motor terminals and the sarcolemma in motor endplates of the rat esophagus: a confocal laser scanning and electron-microscopic study. Cell Tissue Res. 287, 113–118 (1997).

    PubMed  Google Scholar 

  21. Izumi, N., Matsuyama, H., Ko, M., Shimizu, Y. & Takewaki, T. Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J. Physiol. 551, 287–294 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Spechler, S. J., Fitzgerald, R. C., Prasad, G. A. & Wang, K. G. History, molecular mechanisms, and endoscopic treatment of Barrett's esophagus. Gastroenterology 138, 854–869 (2010).

    PubMed  Google Scholar 

  23. Reynolds, R. P. E., El-Sharkawy, T. Y. & Diamant, N. E. Lower esophageal sphincter function in the cat: role of central innervation assessed by transient vagal blockade. Am. J. Physiol. 246, G666–G674 (1984).

    CAS  PubMed  Google Scholar 

  24. Rivera, L. R., Poole, D. P., Thacker, M. & Furness, J. B. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil. 23, 980–988 (2011).

    CAS  PubMed  Google Scholar 

  25. Diamant, N. E. & Akin, A. Effect of gastric contraction of the lower esophageal sphincter. Gastroenterology 63, 38–44 (1972).

    CAS  PubMed  Google Scholar 

  26. Franzi, S. J., Martin, C. J., Cox, M. R. & Dent, J. Response of canine lower esophageal sphincter to gastric distension. Am. J. Physiol. 259, G380–G385 (1990).

    CAS  PubMed  Google Scholar 

  27. Dent, J. From 1906 to 2006—a century of major evolution of understanding of gastro-oesophageal reflux disease. Aliment. Pharmacol. Ther. 24, 1269–1281 (2006).

    CAS  PubMed  Google Scholar 

  28. Sanders, K. M., Koh, S. D. & Ward, S. M. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68, 307–343 (2006).

    CAS  PubMed  Google Scholar 

  29. Cannon, W. B. Peristalsis, segmentation and the myenteric reflex. Am. J. Physiol. 30, 114–128 (1912).

    Google Scholar 

  30. Kelly, K. A., Code, C. F. & Elveback, L. R. Patterns of canine gastric electrical activity. Am. J. Physiol. 217, 461–470 (1969).

    CAS  PubMed  Google Scholar 

  31. Hasler, W. L. in Gastroenterology (ed. Yamada, T.) 220–247 (Lippincott Williams & Wilkins, Philadelphia, USA, 2003).

    Google Scholar 

  32. Furness, J. B., Jones, C., Nurgali, K. & Clerc, N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog. Neurobiol. 72, 143–164 (2004).

    CAS  PubMed  Google Scholar 

  33. Kirchgessner, A. L., Tamir, H. & Gershon, M. D. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J. Neurosci. 12, 235–248 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertrand, P. P., Kunze, W. A. A., Bornstein, J. C., Furness, J. B. & Smith, M. L. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am. J. Physiol. 273, G422–G435 (1997).

    CAS  PubMed  Google Scholar 

  35. Kunze, W. A. A., Furness, J. B., Bertrand, P. P. & Bornstein, J. C. Intracellular recording from myenteric neurons of the guinea-pig ileum that respond to stretch. J. Physiol. 506, 827–842 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Furness, J. B., Kunze, W. A. A., Bertrand, P. P., Clerc, N. & Bornstein, J. C. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol. 54, 1–18 (1998).

    CAS  PubMed  Google Scholar 

  37. Spencer, N. J. & Smith, T. K. Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J. Physiol. 558, 577–596 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Spencer, N. J., Dickson, E. J., Hennig, G. W. & Smith, T. K. Sensory elements within the circular muscle are essential for mechanotransduction of ongoing peristaltic reflex activity in guinea-pig distal colon. J. Physiol. 576, 519–531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mazzuoli, G. & Schemann, M. Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J. Physiol. 587, 4681–4693 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendriks, R., Bornstein, J. C. & Furness, J. B. An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea-pig ileum. Neurosci. Lett. 110, 286–290 (1990).

    CAS  PubMed  Google Scholar 

  41. Lawson S. N. in Peripheral Neuropathy (eds Dyck, P. J. & Thomas, P. K.) 163–202 (Elsevier, Philadelphia, PA, 2005).

    Google Scholar 

  42. Kunze, W. A. A. & Furness, J. B. The enteric nervous system and regulation of intestinal motility. Annu. Rev. Physiol. 61, 117–142 (1999).

    CAS  PubMed  Google Scholar 

  43. Weidmann, S., Schrödl, F., Neuhuber, W. & Brehmer, A. Quantitative estimation of putative primary afferent neurons in the myenteric plexus of human small intestine. Histochem. Cell Biol. 128, 399–407 (2007).

    CAS  PubMed  Google Scholar 

  44. Chiocchetti, R. et al. Characterisation of neurons expressing calbindin immunoreactivity in the ileum of the unweaned and mature sheep. Cell Tissue Res. 318, 289–303 (2004).

    CAS  PubMed  Google Scholar 

  45. Gwynne, R. M., Thomas, E. A., Goh, S. M., Sjövall, H. & Bornstein, J. C. Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J. Physiol. 556, 557–569 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomas, E. A. & Bornstein, J. C. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission. Neuroscience 120, 333–352 (2003).

    CAS  PubMed  Google Scholar 

  47. Ferens, D., Baell, J., Lessene, G., Smith, J. E. & Furness, J. B. Effects of modulators of Ca2+-activated, intermediate-conductance potassium channels on motility of the rat small intestine, in vivo. Neurogastroenterol. Motil. 19, 383–389 (2007).

    CAS  PubMed  Google Scholar 

  48. Wingate, D. L. Backwards and forwards with the migrating complex. Dig. Dis. Sci. 26, 641–666 (1981).

    CAS  PubMed  Google Scholar 

  49. Sarna, S., Stoddard, C., Belbeck, L. & McWade, D. Intrinsic nervous control of migrating myoelectric complexes. Am. J. Physiol. 241, G16–G23 (1981).

    CAS  PubMed  Google Scholar 

  50. El Sharkawy, T. Y., Markus, H. & Diamant, N. E. Neural control of the intestinal migrating myoelectric complex. A pharmacological analysis. Can. J. Physiol. Pharmacol. 60, 794–804 (1982).

    CAS  PubMed  Google Scholar 

  51. Ehrlein, H. J. Retroperistaltism and duodenogastric reflux in dogs. Scand. J. Gastroenterol. 16 (Suppl.), 29–32 (1981).

    Google Scholar 

  52. Lang, I. M., Sarna, S. K. & Shaker, R. Gastrointestinal motor and myoelectric correlates of motion sickness. Am. J. Physiol. 277, G642–G652 (1999).

    CAS  PubMed  Google Scholar 

  53. Vallance, B. A., Blennerhassett, P. A. & Collins, S. M. Increased intestinal muscle contractility and worm expulsion in nematode-infected mice. Am. J. Physiol. 272, G321–G327 (1997).

    CAS  PubMed  Google Scholar 

  54. Field, M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest. 111, 931–943 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mellander, A., Järbur, K. & Sjövall, H. Pressure and frequency dependent linkage between motility and epithelial secretion in human proximal small intestine. Gut 46, 376–384 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lynch, A. C. & Frizelle, F. A. Colorectal motility and defecation after spinal cord injury in humans. Prog. Brain Res. 152, 335–343 (2006).

    CAS  PubMed  Google Scholar 

  57. Shimizu, Y. et al. Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J. Physiol. 576, 329–338 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lynch, A. C., Antony, A., Dobbs, B. R. & Frizelle, F. A. Bowel dysfunction following spinal cord injury. Spinal Cord 39, 193–203 (2001).

    CAS  PubMed  Google Scholar 

  59. Ferens, D. M. et al. Stimulation of defecation in spinal cord-injured rats by a centrally acting ghrelin receptor agonist. Spinal Cord 49, 1036–1041 (2011).

    CAS  PubMed  Google Scholar 

  60. Wright, E. M. & Loo, D. D. F. Coupling between Na+, sugar, and water transport across the intestine. Ann. NY Acad. Sci. 915, 54–66 (2000).

    CAS  PubMed  Google Scholar 

  61. Sjövall, H. et al. Intestinal fluid and electrolyte transport in man during reduced circulating blood volume. Gut 27, 913–918 (1986).

    PubMed  PubMed Central  Google Scholar 

  62. Young, R. L. Sensing via intestinal sweet taste pathways. Front. Neurosci. 5, 1–13 (2011).

    Google Scholar 

  63. Shirazi-Beechey, S. P., Moran, A. W., Batchelor, D. J., Daly, K. & Al-Rammahi, M. Influences of food constituents on gut health glucose sensing and signalling; regulation of intestinal glucose transport. Proc. Nutr. Soc. 70, 185–193 (2011).

    CAS  PubMed  Google Scholar 

  64. Sigalet, D. L. et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. 293, G211–G221 (2007).

    CAS  Google Scholar 

  65. Cox, H. M. Peptide YY: a neuroendocrine neighbor of note. Peptides 28, 345–351 (2007).

    CAS  PubMed  Google Scholar 

  66. Estall J. L. & Drucker D. J. Glucagon-like peptide-2. Annu. Rev. Nutr. 26, 391–411 (2006).

    CAS  PubMed  Google Scholar 

  67. Gwynne, R. M., Ellis, M., Sjövall, H. & Bornstein, J. C. Cholera toxin induces sustained hyperexcitability in submucosal secretomotor neurons in guinea pig jejunum. Gastroenterology 136, 299–308 (2009).

    PubMed  Google Scholar 

  68. Malagelada, J.-R., Rees, W. D. W., Mazzotta, L. J. & Go, V. L. W. Gastric motor abnormalities in diabetic and postvagotomy gastroparesis: effect of metoclopramide and bethanechol. Gastroenterology 78, 286–293 (1980).

    CAS  PubMed  Google Scholar 

  69. Camilleri, M. Alvimopan, a selective peripherally acting μ-opioid antagonist. Neurogastroenterol. Motil. 17, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  70. Sanger, G. J. & Hicks, G. A. Drugs targeting functional bowel disorders: insights from animal studies. Curr. Opin. Pharmacol. 2, 678–683 (2002).

    CAS  PubMed  Google Scholar 

  71. Camilleri, M. et al. Pharmacological and pharmacokinetic aspects of functional gastrointestinal disorders. Gastroenterology 130, 1421–1434 (2006).

    CAS  PubMed  Google Scholar 

  72. De Giorgio, R., Barbara, G., Furness, J. B. & Tonini, M. Novel therapeutic targets for enteric nervous system disorders. Trends Pharmacol. Sci. 28, 473–481 (2007).

    CAS  PubMed  Google Scholar 

  73. Sanger, G. J. & Alpers, D. H. Development of drugs for gastrointestinal motor disorders: translating science to clinical need. Neurogastroenterol. Motil. 20, 177–184 (2008).

    CAS  PubMed  Google Scholar 

  74. Rehfeld, J. F. A centenary of gastrointestinal endocrinology. Horm. Metab. Res. 36, 735–741 (2004).

    CAS  PubMed  Google Scholar 

  75. Raybould, H. E. Mechanisms of CCK signaling from gut to brain. Curr. Opin. Pharmacol. 7, 570–574 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brookes, S. J. H., Steele, P. A. & Costa, M. Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 42, 863–878 (1991).

    CAS  PubMed  Google Scholar 

  77. Holzer, P. & Holzer Petsche, U. Tachykinins in the gut. Part 1. Expression, release and motor function. Pharmacol. Ther. 73, 173–217 (1997).

    CAS  PubMed  Google Scholar 

  78. Grider, J. R. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J. Pharmacol. Exp. Ther. 307, 460–467 (2003).

    CAS  PubMed  Google Scholar 

  79. Fahrenkrug, J. et al. Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J. Physiol. 284, 291–305 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Costa, M. et al. Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci. Lett. 148, 121–125 (1992).

    CAS  PubMed  Google Scholar 

  81. Sanders, K. M. & Ward, S. M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am. J. Physiol. 262, G379–G392 (1992).

    CAS  PubMed  Google Scholar 

  82. Xue, L. et al. Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc. Natl Acad. Sci. USA 97, 1851–1855 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Brookes, S. J. H., Steele, P. A. & Costa, M. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 263, 471–481 (1991).

    CAS  PubMed  Google Scholar 

  84. Young, H. M., Furness, J. B. & Povey, J. M. Analysis of connections between nitric oxide synthase neurons in the myenteric plexus of the guinea-pig small intestine. J. Neurocytol. 24, 257–263 (1995).

    CAS  PubMed  Google Scholar 

  85. Brookes, S. J. H. Classes of enteric nerve cells in the guinea-pig small intestine. Anat. Rec. 262, 58–70 (2001).

    CAS  PubMed  Google Scholar 

  86. Furness, J. B. & Costa, M. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their projections in the guinea-pig small intestine. Neuroscience 7, 341–349 (1982).

    CAS  PubMed  Google Scholar 

  87. Monro, R. L., Bertrand, P. P. & Bornstein, J. C. ATP and 5-HT are the principal neurotransmitters in the descending excitatory reflex pathway of the guinea-pig ileum. Neurogastroenterol. Motil. 14, 255–264 (2002).

    CAS  PubMed  Google Scholar 

  88. Gwynne, R. M. & Bornstein, J. C. Synaptic transmission at functionally identified synapses in the enteric nervous system: roles for both ionotropic and metabotropic receptors. Curr. Neuropharmacol. 5, 1–17 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Portbury, A. L. et al. Cholinergic, somatostatin-immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure, connections and projections. J. Anat. 187, 303–321 (1995).

    PubMed  PubMed Central  Google Scholar 

  90. Li, Z. S. & Furness, J. B. Immunohistochemical localization of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res. 294, 35–43 (1998).

    CAS  PubMed  Google Scholar 

  91. Johnson, P. J. & Bornstein, J. C. Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience 126, 137–147 (2004).

    CAS  PubMed  Google Scholar 

  92. Surprenant, A. Slow excitatory synaptic potentials recorded from neurones of guinea-pig submucous plexus. J. Physiol. 351, 343–361 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Monro, R. L., Bertrand, P. P. & Bornstein, J. C. ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J. Physiol. 556, 571–584 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cassuto, J., Fahrenkrug, J., Jodal, M., Tuttle, R. & Lundgren, O. The release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut 22, 958–963 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Banks, M. R., Farthing, M. J. G., Robberecht, P. & Burleigh, D. E. Antisecretory actions of a novel vasoactive intestinal polypeptide (VIP) antagonist in human and rat small intestine. Br. J. Pharmacol. 144, 994–1001 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Keast, J. R., Furness, J. B. & Costa, M. Investigations of nerve populations influencing ion transport that can be stimulated electrically, by serotonin and by a nicotinic agonist. Naunyn-Schmiedeberg's Arch. Pharmacol. 331, 260–266 (1985).

    CAS  Google Scholar 

  97. Holst, J. J. et al. GRP nerves in pig antrum: role of GRP in vagal control of gastrin secretion. Am. J. Physiol. 253, G643–G649 (1987).

    CAS  PubMed  Google Scholar 

  98. Weigert, N. et al. Role of vagal fibers and bombesin/gastrin-releasing peptide-neurons in distension-induced gastrin release in rats. Regul. Pept. 69, 33–40 (1997).

    CAS  PubMed  Google Scholar 

  99. Nilsson, G., Simon, J., Yalow, R. S. & Berson, S. A. Plasma gastrin and gastric acid responses to sham feeding and feeding in dogs. Gastroenterology 63, 51–59 (1972).

    CAS  PubMed  Google Scholar 

  100. Feldman, M., Richardson, C. T., Taylor, I. L. & Walsh, J. H. Effect of atropine on vagal release of gastrin and pancreatic polypeptide. J. Clin. Invest. 63, 294–298 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Finkleman, B. On the nature of inhibition in the intestine. J. Physiol. 70, 145–157 (1930).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Macrae, L. M., Furness, J. B. & Costa, M. Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea-pig. Cell Tissue Res. 244, 173–180 (1986).

    CAS  PubMed  Google Scholar 

  103. Costa, M. & Furness, J. B. Somatostatin is present in a subpopulation of noradrenergic nerve fibres supplying the intestine. Neuroscience 13, 911–919 (1984).

    CAS  PubMed  Google Scholar 

  104. Dresel, P. & Wallentin, L. Effects of sympathetic vasoconstrictor fibres, noradrenaline and vasopresin on the intestinal vascular resistance during constant blood flow or blood pressure. Acta Physiol. Scand. 66, 427–436 (1966).

    CAS  PubMed  Google Scholar 

  105. Furness, J. B. The adrenergic innervation of the vessels supplying and draining the gastrointestinal tract. Z. Zellforsch. Mikrosk. Anat. 113, 67–82 (1971).

    CAS  PubMed  Google Scholar 

  106. Furness, J. B. et al. Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res. 234, 71–92 (1983).

    CAS  PubMed  Google Scholar 

  107. Crowcroft, P. J., Holman, M. E. & Szurszewski, J. H. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J. Physiol. 219, 443–461 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dalsgaard, C. J. et al. Origin of peptide-containing fibers in the inferior mesenteric ganglion of the guinea-pig: immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience 9, 191–211 (1983).

    CAS  PubMed  Google Scholar 

  109. Love, J. A. & Szurszewski, J. H. The electrophysiological effects of vasoactive intestinal peptide in the guinea-pig inferior mesenteric ganglion. J. Physiol. 394, 67–84 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work from the author's laboratory is supported by the National Health and Medical Research Council of Australia. I thank Dr Alan Lomax and Dr Daniel Poole for their helpful comments and Dr Trung Nguyen for assistance with the figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furness, J. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9, 286–294 (2012). https://doi.org/10.1038/nrgastro.2012.32

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing