Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis

Abstract

Dysregulation of nutrient homeostasis is implicated in the current epidemics of obesity and type 2 diabetes mellitus. The maintenance of homeostasis in the setting of repeated cycles of feeding and fasting occurs through complex interactions between metabolic, hormonal and neural factors. Although pancreatic islets, the liver, muscle, adipocytes and the central nervous system are all key players in this network, the gastrointestinal tract is the first tissue exposed to ingested nutrients and thus has an important role. This Review focuses on several of the endocrine hormones released by the gastrointestinal tract prior to or during nutrient ingestion that have key roles in maintaining energy balance. These hormones include the gastric orexigenic hormone, ghrelin, and the distal L cell anorexigenic and metabolic hormones, glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY. Each of these hormones exerts a distinct set of biological actions to maintain nutrient homeostasis, the properties of which are currently, or might soon be, exploited in the clinic for the treatment of obesity and type 2 diabetes mellitus.

Key Points

  • Enteroendocrine cells in the gastrointestinal tract produce various hormones that have essential roles in the maintenance of nutrient homeostasis in both the fasting and fed states

  • Ghrelin is an orexigenic peptide released by the proximal X/A-like cells prior to nutrient ingestion; the enteroendocrine L cells release glucagon-like peptide (GLP)-1, GLP-2, oxyntomodulin and peptide YY (PYY) in response to nutrient ingestion

  • GLP-1 is a key incretin hormone, which also inhibits glucagon release, gastric emptying and appetite; agents that increase GLP-1 action are used to treat type 2 diabetes mellitus

  • GLP-2 regulates nutrient absorption by the gastrointestinal tract through enhancement of intestinal growth, nutrient digestion and transport, as well as blood flow

  • The physiologic role of oxyntomodulin remains to be established, but exogenous administration suppresses food intake; PYY3–36NH2 has an important role as an anorexigenic gut hormone

  • Surgically induced alterations in the levels of ghrelin and/or GLP-1, oxyntomodulin and PYY improve glycaemic control and induce weight loss; pharmacological manipulation of these gut hormones might prove beneficial

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The X/A-like cell.
Figure 2: The L cell.

Similar content being viewed by others

References

  1. Rehfeld, J. F. A centenary of gastrointestinal endocrinology. Horm. Metab. Res. 36, 735–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ferri, G.-L. et al. Tissue localization and relative distribution of regulatory peptides in separated layers from the human bowel. Gastroenterology 84, 777–786 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Larsson, L. I. Peptide secretory pathways in GI tract: cytochemical contributions to regulatory physiology of the gut. Am. J. Physiol. 239, G237–G246 (1980).

    CAS  PubMed  Google Scholar 

  4. Anini, Y., Hansotia, T. & Brubaker, P. L. Muscarinic receptors control postprandial release of glucagon-like peptide-1: in vivo and in vitro studies in rats. Endocrinology 143, 2420–2426 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Bohorquez, D. V. & Liddle, R. A. Axon-like basal processes in enteroendocrine cells: characteristics and potential targets. Clin. Transl. Sci. 4, 387–391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dockray, G. J. The versatility of the vagus. Physiol. Behav. 97, 531–536 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Reimann, F., Tolhurst, G. & Gribble, F. M. G-protein-coupled receptors in intestinal chemosensation. Cell Metab. 15, 421–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Dockray, G. J. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes. 19, 8–12 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Cho, Y. M. & Kieffer, T. J. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam. Horm. 84, 111–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Ali, S., Lamont, B. J., Charron, M. J. & Drucker, D. J. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J. Clin. Invest. 121, 1917–1929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Habib, A. M. et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153, 3054–3065 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Rindi, G. et al. Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues. Histochem. Cell Biol. 117, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Sakata, I. et al. Ghrelin-producing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract. Peptides 23, 531–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, X., Cao, Y., Voogd, K. & Steiner, D. F. On the processing of proghrelin to ghrelin. J. Biol. Chem. 281, 38867–38870 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Kirchner, H. et al. GOAT links dietary lipids with the endocrine control of energy balance. Nat. Med. 15, 741–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Mundinger, T. O., Cummings, D. E. & Taborsky, G. J. Jr. Direct stimulation of ghrelin secretion by sympathetic nerves. Endocrinology 147, 2893–2901 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ao, Y. et al. Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion. Endocrinology 147, 6004–6010 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Shimada, M. et al. Somatostatin suppresses ghrelin secretion from the rat stomach. Biochem. Biophys. Res. Commun. 302, 520–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. McCowen, K. C., Maykel, J. A., Bistrian, B. R. & Ling, P. R. Circulating ghrelin concentrations are lowered by intravenous glucose or hyperinsulinemic euglycemic conditions in rodents. J. Endocrinol. 175, R7–R11 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Saad, M. F. et al. Insulin regulates plasma ghrelin concentration. J. Clin. Endocrinol. Metab. 87, 3997–4000 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sakata, I. et al. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells. Am. J. Physiol. Endocrinol. Metab. 302, E1300–E1310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gagnon, J. & Anini, Y. Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture. Endocrinology 153, 3646–3656 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Taborsky, G. J. Jr. The physiology of glucagon. J. Diabetes Sci. Technol. 4, 1338–1344 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13 (Suppl. 1), 95–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Kordowich, S., Collombat, P., Mansouri, A. & Serup, P. Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage. BMC Dev. Biol. 11, 52–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ariyasu, H. et al. A postweaning reduction in circulating ghrelin temporarily alters growth hormone (GH) responsiveness to GH-releasing hormone in male mice but does not affect somatic growth. Endocrinology 151, 1743–1750 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Sakata, I. et al. Characterization of a novel ghrelin cell reporter mouse. Regul. Pept. 155, 91–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esler, W. P. et al. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology 148, 5175–5185 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Pfluger, P. T. et al. Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G610–G618 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kirchner, H., Tong, J., Tschop, M. H. & Pfluger, P. T. Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants. Am. J. Physiol. Endocrinol. Metab. 298, E909–E919 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Barnett, B. P. et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor. Science 330, 1689–1692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stengel, A. & Tache, Y. Ghrelin—a pleiotropic hormone secreted from endocrine x/a-like cells of the stomach. Front. Neurosci. 6, 24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banks, W. A., Tschop, M., Robinson, S. M. & Heiman, M. L. Extent and direction of ghrelin transport across the blood–brain barrier is determined by its unique primary structure. J. Pharmacol. Exp. Ther. 302, 822–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Toshinai, K. et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 144, 1506–1512 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Gnanapavan, S. et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 87, 2988–2991 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, T. J. et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc. Natl Acad. Sci. USA 107, 7467–7472 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Shiiya, T. et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 87, 240–244 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Marzullo, P. et al. The relationship between active ghrelin levels and human obesity involves alterations in resting energy expenditure. J. Clin. Endocrinol. Metab. 89, 936–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. McLaughlin, T., Abbasi, F., Lamendola, C., Frayo, R. S. & Cummings, D. E. Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. J. Clin. Endocrinol. Metab. 89, 1630–1635 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ukkola, O. et al. Role of ghrelin polymorphisms in obesity based on three different studies. Obes. Res. 10, 782–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Otto, B. et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 145, 669–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Akamizu, T. & Kangawa, K. The physiological significance and potential clinical applications of ghrelin. Eur. J. Intern. Med. 23, 197–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Patterson, M., Bloom, S. R. & Gardiner, J. V. Ghrelin and appetite control in humans--potential application in the treatment of obesity. Peptides 32, 2290–2294 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Dhanvantari, S., Seidah, N. G. & Brubaker, P. L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol. Endocrinol. 10, 342–355 (1996).

    CAS  PubMed  Google Scholar 

  51. Anini, Y. et al. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers Arch. 438, 299–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Orskov, C. et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119, 1467–1475 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Larsson, L.-I., Holst, J., Hakanson, R. & Sundler, F. Distribution and properties of glucagon immunoreactivity in the digestive tract of various mammals: an immunohistochemical and immunochemical study. Histochemistry 44, 281–290 (1975).

    Article  CAS  PubMed  Google Scholar 

  54. Eissele, R. et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur. J. Clin. Invest. 22, 283–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Geraedts, M. C. et al. Transformation of post-ingestive glucose responses after deletion of sweet taste receptor subunits or gastric bypass surgery. Am. J. Physiol. Endocrinol. Metab. 303, E464–E474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiao, Q., Boushey, R., Drucker, D. J. & Brubaker, P. L. Secretion of the intestinotropic hormone glucagon-like peptide-2 is differentially regulated by nutrients in humans. Gastroenterology 117, 99–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Anini, Y. & Brubaker, P. L. Muscaranic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 144, 3244–3250 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Balks, H. J., Holst, J. J., Von zur Mühlen, A. & Brabant, G. Rapid oscillations in plasma glucagon-like peptide-1 (GLP- 1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J. Clin. Endocrinol. Metab. 82, 786–790 (1997).

    CAS  PubMed  Google Scholar 

  61. Roberge, J. N. & Brubaker, P. L. Secretion of proglucagon-derived peptides in response to intestinal luminal nutrients. Endocrinology 128, 3169–3174 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Parker, H. E. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55, 2445–2455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gribble, F. M., Williams, L., Simpson, A. K. & Reimann, F. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52, 1147–1154 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Iakoubov, R., Lauffer, L., Ahmed, A., Bazinet, R. P. & Brubaker, P. L. Essential role for protein kinase C zeta in oleic-acid induced glucagon-like peptide-1 secretion in vivo in the rat. Endocrinology 152, 1244–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Poreba, M. A. et al. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion. Am. J. Physiol. Endocrinol. Metab. http://dx.doi.org/10.1152/ajpendo.00116.2012.

  66. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Edfalk, S., Steneberg, P. & Edlund, H. Gpr40 is expressed in enteroendocrine cells and mediates FFA stimulation of incretin secretion. Diabetes 57, 2280–2287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lauffer, L. M., Iakoubov, R. & Brubaker, P. L. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thomas, C. et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10, 167–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hansen, K. B. et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 96, E1409–E1417 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Rocca, A. S., LaGreca, J., Kalitsky, J. & Brubaker, P. L. Monounsaturated fatty acids improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology 142, 1148–1155 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Thomsen, C. et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am. J. Clin. Nutr. 69, 1135–1143 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Lim, G. E. & Brubaker, P. L. Glucagon-like peptide-1 secretion by the L cell: a view from the inside. Diabetes 55, S70–S77 (2006).

    Article  CAS  Google Scholar 

  74. Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 8, 369–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Anini, Y. & Brubaker, P. L. Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 52, 252–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lim, G. E. et al. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 150, 580–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rask, E. et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care 24, 1640–1645 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Vilsboll, T., Krarup, T., Deacon, C. F., Madsbad, S. & Holst, J. J. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50, 609–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Mannucci, E. et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus. Diabetes Med. 17, 713–719 (2000).

    Article  CAS  Google Scholar 

  80. Vilsboll, T., Agerso, H., Krarup, T. & Holst, J. J. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J. Clin. Endocrinol. Metab. 88, 220–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Tavares, W., Drucker, D. J. & Brubaker, P. L. Enzymatic- and renal-dependent catabolism of the intestinotropic hormone glucagon-like peptide-2 in rats. Am. J. Physiol. Endocrinol. Metab. 278, E134–E139 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Zhu, L. et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J. Biol. Chem. 278, 22418–22423 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kerr, B. D., Flatt, P. R. & Gault, V. A. (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem. Pharmacol. 80, 1727–1735 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Knudsen, L. B. & Pridal, L. Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharmacol. 318, 429–435 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Shin, E. D., Estall, J. L., Izzo, A., Drucker, D. J. & Brubaker, P. L. Mucosal adaptation to enteral nutrients is dependent on the physiologic actions of glucagon-like peptide-2 in mice. Gastroenterology 128, 1340–1353 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Medeiros, M. D. & Turner, A. J. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 134, 2088–2094 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Aaboe, K. et al. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 12, 323–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Yoshinaga, K. et al. Structural requirements of peptide YY for biological activity at enteric sites. Am. J. Physiol. 263, G695–G701 (1992).

    CAS  PubMed  Google Scholar 

  90. Dumont, Y., Fournier, A., St-Pierre, S. & Quirion, R. Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31, Pro34]peptide YY and [125I]peptide YY3–36 as selective Y1 and Y2 radioligands. J. Pharmacol. Exp. Ther. 272, 673–680 (1995).

    CAS  PubMed  Google Scholar 

  91. Campos, R. V., Lee, Y. C. & Drucker, D. J. Divergent tissue-specific and developmental expression of receptors for glucagon and glucagon-like peptide-1 in the mouse. Endocrinology 134, 2156–2164 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Vahl, T. P. et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148, 4965–4973 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Merchenthaler, I., Lane, M. & Shughrue, P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Brubaker, P. L. Minireview: update on incretin biology: focus on glucagon-like peptide-1. Endocrinology 151, 1984–1989 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Salehi, M., Vahl, T. P. & D'Alessio, D. A. Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J. Clin. Endocrinol. Metab. 93, 4909–4916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Edwards, C. M. et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48, 86–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Scrocchi, L. A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Naslund, E. et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int. J. Obes. Relat. Metab. Disord. 23, 304–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Rodriquez, D. F. et al. Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism 49, 709–717 (2000).

    Article  Google Scholar 

  102. Gutzwiller, J. P. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276, R1541–R1544 (1999).

    Article  CAS  Google Scholar 

  103. Lovshin, J. A. & Drucker, D. J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 262–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Vilsboll, T., Christensen, M., Junker, A. E., Knop, F. K. & Gluud, L. L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ 344, d7771 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Hughes, T. E. Emerging therapies for metabolic diseases—the focus is on diabetes and obesity. Curr. Opin. Chem. Biol. 13, 332–337 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Thorens, B. Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. Natl Acad. Sci. USA 89, 8641–8645 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huypens, P., Ling, Z., Pipeleers, D. & Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia 43, 1012–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Bucinskaite, V. et al. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol. Motil. 21, 978–e78 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Ahren, B. Sensory nerves contribute to insulin secretion by glucagon-like peptide-1 in mice. Am. J. Physiol Regul. Integr. Comp. Physiol. 286, R269–R272 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Talsania, T., Anini, Y., Siu, S., Drucker, D. J. & Brubaker, P. L. Peripheral exendin-4 and peptide YY(3–36) synergistically reduce food intake through different mechanisms in mice. Endocrinology 146, 3748–3756 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Jelsing, J. et al. Liraglutide: short-lived effect on gastric emptying-long lasting effects on body weight. Diabetes Obes. Metab. 14, 531–538 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Waget, A. et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152, 3018–3029 (2011).

    Article  PubMed  Google Scholar 

  114. Mussig, K. et al. Association of type 2 diabetes candidate polymorphisms in KCNQ1 with incretin and insulin secretion. Diabetes 58, 1715–1720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beinborn, M., Worrall, C. I., McBride, E. W. & Kopin, A. S. A human glucagon-like peptide-1 receptor polymorphism results in reduced agonist responsiveness. Regul. Pept. 130, 1–6 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Schafer, S. A. et al. Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 50, 2443–2450 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schafer, S. A. et al. A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion. Diabetologia 52, 1075–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Munroe, D. G. et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc. Natl Acad. Sci. USA 96, 1569–1573 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nelson, D. W., Sharp, J. W., Brownfield, M. S., Raybould, H. E. & Ney, D. M. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat. Endocrinology 148, 1954–1962 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Drucker, D. J., Ehrlich, P., Asa, S. L. & Brubaker, P. L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl Acad. Sci. USA 93, 7911–7916 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Drucker, D. J. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 1, 22–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Rowland, K. J. & Brubaker, P. L. The “cryptic” mechanism of action of glucagon-like peptide-2. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G1–G8 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Nagell, C. F., Wettergren, A., Pedersen, J. F., Mortensen, D. & Holst, J. J. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand. J. Gastroenterol. 39, 353–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Boushey, R. P., Yusta, B. & Drucker, D. J. Glucagon-like peptide 2 decreases mortality and reduces the severity of indomethacin-induced murine enteritis. Am. J. Physiol. Endocrinol. Metab. 277, E937–E947 (1999).

    Article  CAS  Google Scholar 

  125. Boushey, R. P., Yusta, B. & Drucker, D. J. Glucagon-like peptide (GLP)-2 reduces chemotherapy-associated mortality and enhances cell survival in cells expressing a transfected GLP-2 receptor. Cancer Res. 61, 687–693 (2001).

    CAS  PubMed  Google Scholar 

  126. L'Heureux, M.-C. & Brubaker, P. L. Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis. J. Pharm. Exp. Ther. 306, 347–354 (2003).

    Article  CAS  Google Scholar 

  127. Martin, G. R., Wallace, L. E. & Sigalet, D. L. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G964–G972 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Shin, E. D., Drucker, D. J. & Brubaker, P. L. Glucagon-like peptide-2: an update. Curr. Opin. Endocrinol. Diab. 12, 63–71 (2005).

    Article  CAS  Google Scholar 

  129. Lee, S. J. et al. Disruption of the murine Glp2r impairs paneth cell function and increases susceptibility to small bowel enteritis. Endocrinology 153, 1141–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Bahrami, J., Yusta, B. & Drucker, D. J. ErbB activity links the glucagon-like peptide-2 receptor to refeeding-induced adaptation in the murine small bowel. Gastroenterology 138, 2447–2456 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Jeppesen, P. B. et al. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut 60, 902–914 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Buchman, A. L., Katz, S., Fang, J. C., Bernstein, C. N. & Abou-Assi, S. G. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease. Inflamm. Bowel. Dis. 16, 962–973 (2010).

    Article  PubMed  Google Scholar 

  133. R & D Pipeline. NPS Pharmaceuticals [online], (2012).

  134. Dube, P. E., Forse, C. L., Bahrami, J. & Brubaker, P. L. Essential role of insulin-like growth factor-1 in the intestinal tropic effects of glucagon-like peptide-2 in mice. Gastroenterology 131, 589–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Rowland, K. J. et al. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1 receptor deletion. Gastroenterology 141, 2166–2175 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Yusta, B. et al. ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut. Gastroenterology 137, 986–996 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Orskov, C. et al. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul. Pept. 124, 105–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Sigalet, D. L. et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G211–G221 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Guan, X. et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology 130, 150–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Lovshin, J., Estall, J., Yusta, B., Brown, T. J. & Drucker, D. J. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J. Biol. Chem. 276, 21489–21499 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Schmidt, P. T. et al. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul. Pept. 116, 21–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Bataille, D., Gespach, C., Coudray, A. M. & Rosselin, G. 'Enteroglucagon': A specific effect on gastric glands isolated from the rat fundus. Evidence for an 'oxyntomodulin' action. Biosci. Rep. 1, 151–155 (1981).

    Article  CAS  PubMed  Google Scholar 

  143. Greenberg, G. R., Fung, L. & Pokol-Daniel, S. Regulation of somatostatin-14 and -28 secretion by gastric acid in dogs: differential role of cholecystokinin. Gastroenterology 105, 1387–1395 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Cohen, M. A. et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88, 4696–4701 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Wynne, K. et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30, 1729–1736 (2006).

    Article  CAS  Google Scholar 

  148. Liu, Y. L. et al. Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents. Int. J. Obes. (Lond.) 34, 1715–1725 (2010).

    Article  CAS  Google Scholar 

  149. MacNeil, D. J., Occi, J. L., Hey, P. J., Strader, C. D. & Graziano, M. P. Cloning and expression of a human glucagon receptor. Biochem. Biophys. Res. Commun. 198, 328–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Schepp, W. et al. Oxyntomodulin: a cAMP-dependent stimulus of rat parietal cell function via the receptor for glucagon-like peptide- 1 (7–36)NH2 . Digestion 57, 398–405 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Dakin, C. L. et al. Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145, 2687–2695 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Kosinski, J. R. et al. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 20, 1566–1571 (2012).

    Article  CAS  Google Scholar 

  154. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Maida, A., Lovshin, J. A., Baggio, L. L. & Drucker, D. J. The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances beta-cell function but does not inhibit gastric emptying in mice. Endocrinology 149, 5670–5678 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Hager, J. et al. A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. Nat. Genet. 9, 299–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  158. Anini, Y. et al. Oxyntomodulin inhibits pancreatic secretion through the nervous system in rats. Pancreas 20, 348–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Tatemoto, K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl Acad. Sci. USA 79, 2514–2518 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lundberg, J. M. et al. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc. Natl Acad. Sci. USA 79, 4471–4475 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kanatani, A. et al. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology 141, 1011–1016 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Cabrele, C. & Beck-Sickinger, A. G. Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. J. Pept. Sci. 6, 97–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  163. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Abbott, C. R. et al. Blockade of the neuropeptide Y Y2 receptor with the specific antagonist BIIE0246 attenuates the effect of endogenous and exogenous peptide YY(3–36) on food intake. Brain Res. 1043, 139–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Burdyga, G. et al. Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J. Neurosci. 28, 11583–11592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 349, 941–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Wynne, K. & Bloom, S. R. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat. Clin. Pract. Endocrinol. Metab. 2, 612–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Boggiano, M. M. et al. PYY3–36 as an anti-obesity drug target. Obes. Rev. 6, 307–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Ma, L. et al. Variations in peptide YY and Y2 receptor genes are associated with severe obesity in Pima Indian men. Diabetes 54, 1598–1602 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Lavebratt, C., Alpman, A., Persson, B., Arner, P. & Hoffstedt, J. Common neuropeptide Y2 receptor gene variant is protective against obesity among Swedish men. Int. J. Obes. (Lond.) 30, 453–459 (2006).

    Article  CAS  Google Scholar 

  172. Ahituv, N. et al. A PYY Q62P variant linked to human obesity. Hum. Mol. Genet. 15, 387–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Neary, N. M. et al. Peptide YY3–36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146, 5120–5127 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. Field, B. C. et al. PYY3–36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 59, 1635–1639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reidelberger, R. D., Haver, A. C., Apenteng, B. A., Anders, K. L. & Steenson, S. M. Effects of exendin-4 alone and with peptide YY(3–36) on food intake and body weight in diet-induced obese rats. Obesity (Silver Spring) 19, 121–127 (2011).

    Article  CAS  Google Scholar 

  176. Wettergren, A., Maina, P., Boesby, S. & Holst, J. J. Glucagon-like peptide-1 7–36 amide and peptide YY have additive inhibitory effect on gastric acid secretion in man. Scand. J. Gastroenterol. 32, 552–555 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Baldassano, S., Bellanca, A., Serio, R. & Mule, F. Food intake in lean and obese mice after peripheral administration of glucagon-like peptide-2. J. Endocrinol. 213, 277–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Lund, A., Vilsboll, T., Bagger, J. I., Holst, J. J. & Knop, F. K. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 300, E1038–E1046 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Dixon, J. B., Straznicky, N. E., Lambert, E. A., Schlaich, M. P. & Lambert, G. W. Surgical approaches to the treatment of obesity. Nat. Rev. Gastroenterol. Hepatol. 8, 429–437 (2011).

    Article  PubMed  Google Scholar 

  180. Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Peterli, R. et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes. Surg. 22, 740–748 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Bayham, B. E., Greenway, F. L., Bellanger, D. E. & O'Neil, C. E. Early resolution of type 2 diabetes seen after Roux-en-Y gastric bypass and vertical sleeve gastrectomy. Diabetes Technol. Ther. 14, 30–34 (2012).

    Article  PubMed  Google Scholar 

  183. Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).

    Article  PubMed  Google Scholar 

  184. Korner, J. et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int. J. Obes. (Lond.) 33, 786–795 (2009).

    Article  CAS  Google Scholar 

  185. Beckman, L. M., Beckman, T. R. & Earthman, C. P. Changes in gastrointestinal hormones and leptin after Roux-en-Y gastric bypass procedure: a review. J. Am. Diet. Assoc. 110, 571–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Falken, Y., Hellstrom, P. M., Holst, J. J. & Naslund, E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J. Clin. Endocrinol. Metab. 96, 2227–2235 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Chandarana, K. et al. Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY. Diabetes 60, 810–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chambers, A. P. et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 141, 950–958 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. X. Dong is supported by a graduate studentship from the Banting and Best Diabetes Centre, University of Toronto, Canada. P. L. Brubaker is supported by the Canada Research Chairs program. Studies on GLP-1 and GLP-2 in the Brubaker laboratory are supported by operating grants from the Canadian Diabetes Association (#2374) and the Canadian Institutes of Health Research (#MOP-9940), respectively.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Patricia L. Brubaker.

Ethics declarations

Competing interests

C. X. Dong declares no competing interests. P. L. Brubaker has re-ceived consulting fees from Eli Lilly; Merck, Sharp & Dome; and NPS Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Brubaker, P. Ghrelin, the proglucagon-derived peptides and peptide YY in nutrient homeostasis. Nat Rev Gastroenterol Hepatol 9, 705–715 (2012). https://doi.org/10.1038/nrgastro.2012.185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing