Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New therapeutic strategies for postoperative ileus

Abstract

Patients undergoing an abdominal surgical procedure develop a transient episode of impaired gastrointestinal motility or postoperative ileus. Importantly, postoperative ileus is a major determinant of recovery after intestinal surgery and leads to increased morbidity and prolonged hospitalization, which is a great economic burden to health-care systems. Although a variety of strategies reduce postoperative ileus, including multimodal postoperative rehabilitation (fast-track care) and minimally invasive surgery, none of these methods have been completely successful in shortening the duration of postoperative ileus. The aetiology of postoperative ileus is multifactorial, but insights into the pathogenesis of postoperative ileus have identified intestinal inflammation, triggered by surgical handling, as the main mechanism. The importance of this inflammatory response in postoperative ileus is underscored by the beneficial effect of pharmacological interventions that block the influx of leukocytes. New insights into the pathophysiology of postoperative ileus and the involvement of the innate and the adaptive (T-helper type 1 cell-mediated immune response) immune system offer interesting and important new approaches to prevent postoperative ileus. In this Review, we discuss the latest insights into the mechanisms behind postoperative ileus and highlight new strategies to intervene in the postoperative inflammatory cascade.

Key Points

  • Postoperative ileus can occur after intestinal surgery and leads to increased morbidity and prolonged hospitalization, placing an economic burden on health-care systems; no successful preventative treatment has been developed

  • Several techniques have been shown to reduce postoperative ileus including multimodal postoperative rehabilitation (fast-track care) and laparoscopic surgery

  • The aetiology of postoperative ileus is multifactorial and involves intestinal inflammation triggered by surgical procedures

  • Insights into the roles of the adaptive and innate arms of the immune system in the pathophysiology of postoperative ileus can be used to develop novel therapies

  • Some therapeutic approaches (ghrelin agonists, 5-HT4 receptor agonists and TU-100) are safe and reduce ileus duration in clinical trials but the mechanisms of their action are not completely understood

  • Improved understanding of the role of immune cells, particularly memory T-helper cells, and systemic inflammation in relation to the development of postoperative ileus could lead to new therapeutic strategies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The vagal anti-inflammatory pathway and postoperative ileus.

Similar content being viewed by others

References

  1. Koscielny, A. & Kalff, J. C. T-helper cell type 1 memory cells and postoperative ileus in the entire gut. Curr. Opin. Gastroenterol. 27, 509–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kehlet, H. Postoperative ileus--an update on preventive techniques. Nat. Clin. Pract. Gastroenterol. Hepatol. 5, 552–558 (2008).

    Article  PubMed  Google Scholar 

  3. Asgeirsson, T. et al. Postoperative ileus: it costs more than you expect. J. Am. Coll. Surg. 210, 228–231 (2010).

    Article  PubMed  Google Scholar 

  4. Bennett-Guerrero, E. et al. The use of a postoperative morbidity survey to evaluate patients with prolonged hospitalization after routine, moderate-risk, elective surgery. Anesth. Analg. 89, 514–519 (1999).

    CAS  PubMed  Google Scholar 

  5. Grocott, M. P. et al. The Postoperative Morbidity Survey was validated and used to describe morbidity after major surgery. J. Clin. Epidemiol. 60, 919–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Iyer, S., Saunders, W. B. & Stemkowski, S. Economic burden of postoperative ileus associated with colectomy in the United States. J. Manag. Care Pharm. 15, 485–494 (2009).

    PubMed  Google Scholar 

  7. Barquist, E. et al. Neuronal pathways involved in abdominal surgery-induced gastric ileus in rats. Am. J. Physiol. 270, R888–R894 (1996).

    CAS  PubMed  Google Scholar 

  8. Bonaz, B. The cholinergic anti-inflammatory pathway and the gastrointestinal tract. Gastroenterology 133, 1370–1373 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Bonaz, B., Plourde, V. & Tache, Y. Abdominal surgery induces Fos immunoreactivity in the rat brain. J. Comp. Neurol. 349, 212–222 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Boeckxstaens, G. E. & de Jonge, W. J. Neuroimmune mechanisms in postoperative ileus. Gut 58, 1300–1311 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. De Winter, B. Y. et al. Effect of adrenergic and nitrergic blockade on experimental ileus in rats. Br. J. Pharmacol. 120, 464–468 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Story, S. K. & Chamberlain, R. S. A comprehensive review of evidence-based strategies to prevent and treat postoperative ileus. Dig. Surg. 26, 265–275 (2009).

    Article  PubMed  Google Scholar 

  13. Kalff, J. C. et al. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 117, 378–387 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Engel, D. R. et al. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat. Med. 16, 1407–1413 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Kalff, J. C. et al. Intra-abdominal activation of a local inflammatory response within the human muscularis externa during laparotomy. Ann. Surg. 237, 301–315 (2003).

    PubMed  PubMed Central  Google Scholar 

  16. The, F. O. et al. Intestinal handling-induced mast cell activation and inflammation in human postoperative ileus. Gut 57, 33–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Bauer, A. J. Two immune arms to stop one gut. Nat. Med. 16, 1378–1379 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Prasad, M. & Matthews, J. B. Deflating postoperative ileus. Gastroenterology 117, 489–492 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. de Jonge, W. J. et al. Postoperative ileus is maintained by intestinal immune infiltrates that activate inhibitory neural pathways in mice. Gastroenterology 125, 1137–1147 (2003).

    Article  PubMed  Google Scholar 

  20. de Jonge, W. J. et al. Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 127, 535–545 (2004).

    Article  PubMed  Google Scholar 

  21. Kreiss, C., Birder, L. A., Kiss, S., Van Bibber, M. M. & Bauer, A. J. COX-2 dependent inflammation increases spinal Fos expression during rodent postoperative ileus. Gut 52, 527–534 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Tracey, K. J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. The, F. et al. Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br. J. Pharmacol. 163, 1007–1016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pavlov, V. A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl Acad. Sci. USA 103, 5219–5223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Venkova, K., Fraser, G., Hoveyda, H. R. & Greenwood-Van Meerveld, B. Prokinetic effects of a new ghrelin receptor agonist TZP-101 in a rat model of postoperative ileus. Dig. Dis. Sci. 52, 2241–2248 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Pavlov, V. A. et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23, 41–45 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Luyer, M. D. et al. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med. 202, 1023–1029 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lubbers, T. et al. Lipid-rich enteral nutrition reduces postoperative ileus in rats via activation of cholecystokinin-receptors. Ann. Surg. 249, 481–487 (2009).

    Article  PubMed  Google Scholar 

  32. Zhang, B., Cao, A., Zhou, J., Hu, Z. & Wu, D. Effect of jatrorrhizine on delayed gastrointestinal transit in rat postoperative ileus. J. Pharm. Pharmacol. 64, 413–419 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Cailotto, C. et al. Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol. Motil. 24, 191–e93 (2011).

    Article  PubMed  Google Scholar 

  34. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. van Bree, S. H. W. Which clinical symptoms reflect postoperative recovery of gastrointestinal motility? [abstract 864] Gastroenterology 138, (Suppl. 1), S-119 (2010).

    Google Scholar 

  36. Kehlet, H. Fast-track surgery-an update on physiological care principles to enhance recovery. Langenbecks Arch. Surg. 396, 585–590 (2011).

    Article  PubMed  Google Scholar 

  37. Kehlet, H. Surgery: Fast-track colonic surgery and the 'knowing-doing' gap. Nat. Rev. Gastroenterol. Hepatol. 8, 539–540 (2011).

    Article  PubMed  Google Scholar 

  38. Lassen, K. et al. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch. Surg. 144, 961–969 (2009).

    Article  PubMed  Google Scholar 

  39. van Bree, S. et al. Faster recovery of gastrointestinal transit after laparoscopy and fast-track care in patients undergoing colonic surgery. Gastroenterology 141, 872–880 e1–4 (2011).

    Article  PubMed  Google Scholar 

  40. Basse, L., Madsen, J. L., Billesbolle, P., Bardram, L. & Kehlet, H. Gastrointestinal transit after laparoscopic versus open colonic resection. Surg. Endosc. 17, 1919–1922 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Delaney, C. P. et al. Gastrointestinal recovery after laparoscopic colectomy: results of a prospective, observational, multicenter study. Surg. Endosc. 24, 653–661 (2010).

    Article  PubMed  Google Scholar 

  42. Lacy, A. M. et al. Laparoscopy-assisted colectomy versus open colectomy for treatment of non-metastatic colon cancer: a randomised trial. Lancet 359, 2224–2229 (2002).

    Article  PubMed  Google Scholar 

  43. Milsom, J. W. et al. A prospective, randomized trial comparing laparoscopic versus conventional techniques in colorectal cancer surgery: a preliminary report. J. Am. Coll. Surg. 187, 46–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Schwenk, W., Bohm, B., Haase, O., Junghans, T. & Muller, J. M. Laparoscopic versus conventional colorectal resection: a prospective randomised study of postoperative ileus and early postoperative feeding. Langenbecks Arch. Surg. 383, 49–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Veldkamp, R. et al. Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol. 6, 477–484 (2005).

    Article  PubMed  Google Scholar 

  46. Ohtani, H. et al. A meta-analysis of the short- and long-term results of randomized controlled trials that compared laparoscopy-assisted and open colectomy for colon cancer. J. Cancer 3, 49–57 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Augestad, K. M. Postoperative ileus: Impact of pharmacological treatment, laparoscopic surgery and enhanced recovery pathways. World J. Gastroenterol. 16, 2067–2074 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Delaney, C. P., Chang, E., Senagore, A. J. & Broder, M. Clinical outcomes and resource utilization associated with laparoscopic and open colectomy using a large national database. Ann. Surg. 247, 819–824 (2008).

    Article  PubMed  Google Scholar 

  49. Delaney, C. P. et al. Prospective, randomized, controlled trial between a pathway of controlled rehabilitation with early ambulation and diet and traditional postoperative care after laparotomy and intestinal resection. Dis. Colon Rectum 46, 851–859 (2003).

    Article  PubMed  Google Scholar 

  50. Zargar-Shoshtari, K., Connolly, A. B., Israel, L. H. & Hill, A. G. Fast-track surgery may reduce complications following major colonic surgery. Dis. Colon Rectum 51, 1633–1640 (2008).

    Article  PubMed  Google Scholar 

  51. Tsai, H. L. et al. Comparison of mini laparotomy with conventional laparotomy as the surgical approach in stage i-iii colorectal cancer patients: appealing outcomes. Hepatogastroenterology http://dx.doi.org/10.5754/hge11953.

  52. Traut, U. et al. Systemic prokinetic pharmacologic treatment for postoperative adynamic ileus following abdominal surgery in adults. Cochrane Database Systematic Reviews, Issue 1. Art. No.: CD004930 http://dx.doi.org/10.1002/14651858.CD004930.pub3.

  53. Camilleri, M., Bharucha, A. E. & Farrugia, G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clin. Gastroenterol. Hepatol. 9, 5–12 (2011).

    Article  PubMed  Google Scholar 

  54. Chan, D. C. et al. Preventing prolonged post-operative ileus in gastric cancer patients undergoing gastrectomy and intra-peritoneal chemotherapy. World J. Gastroenterol. 11, 4776–4781 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seta, M. L. & Kale-Pradhan, P. B. Efficacy of metoclopramide in postoperative ileus after exploratory laparotomy. Pharmacotherapy 21, 1181–1186 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Senagore, A. J. Pathogenesis and clinical and economic consequences of postoperative ileus. Clin. Exp. Gastroenterol. 3, 87–89 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Becker, G. & Blum, H. E. Novel opioid antagonists for opioid-induced bowel dysfunction and postoperative ileus. Lancet 373, 1198–1206 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Wolff, B. G. et al. Alvimopan, a novel, peripherally acting mu opioid antagonist: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial of major abdominal surgery and postoperative ileus. Ann. Surg. 240, 728–734 (2004).

    PubMed  PubMed Central  Google Scholar 

  59. Ludwig, K. et al. Gastrointestinal tract recovery in patients undergoing bowel resection: results of a randomized trial of alvimopan and placebo with a standardized accelerated postoperative care pathway. Arch. Surg. 143, 1098–1105 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Delaney, C. P. et al. Phase III trial of alvimopan, a novel, peripherally acting, mu opioid antagonist, for postoperative ileus after major abdominal surgery. Dis. Colon Rectum 48, 1114–1125 (2005).

    Article  PubMed  Google Scholar 

  61. Viscusi, E. R. et al. Alvimopan, a peripherally acting mu-opioid receptor antagonist, compared with placebo in postoperative ileus after major abdominal surgery: results of a randomized, double-blind, controlled study. Surg. Endosc. 20, 64–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Ludwig, K. et al. Alvimopan for the management of postoperative ileus after bowel resection: characterization of clinical benefit by pooled responder analysis. World J. Surg. 34, 2185–2190 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Büchler, M. W. et al. Clinical trial: alvimopan for the management of postoperative ileus after abdominal surgery: results of an international randomised, double-blind, multicentre, placebo-controlled clinical study. Aliment. Pharmacol. Ther. 28, 312–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Touchette, D. R., Yang, Y., Tiryaki, F. & Galanter, W. L. Economic analysis of alvimopan for prevention and management of postoperative ileus. Pharmacotherapy 32, 120–128 (2012).

    Article  PubMed  Google Scholar 

  65. Abodeely, A., Schechter, S., Klipfel, A., Vrees, M. & Lagares-Garcia, J. Does alvimopan enhance return of bowel function in laparoscopic right colectomy? Am. J. Surg. 77, 1460–1462 (2011).

    Google Scholar 

  66. Viscusi, E., Rathmell, J., Fichera, A, Gan, T. J. & Israel, R. J. A double blind, randomized placebo-controlled trial of methylnaltrexone (MNTX) for post-operative bowel dysfunction in segmental colectomy patients [abstract A893]. Anesthesiology 205, A893 (2005).

    Google Scholar 

  67. Viscusi, E. R. et al. Peripherally acting mu-opioid receptor antagonists and postoperative ileus: mechanisms of action and clinical applicability. Anesth. Analg. 108, 1811–1822 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Yu, C. S. et al. Safety and efficacy of methylnaltrexone in shortening the duration of postoperative ileus following segmental colectomy: results of two randomized, placebo-controlled phase 3 trials. Dis. Colon Rectum 54, 570–578 (2011).

    Article  PubMed  Google Scholar 

  69. Herroeder, S. et al. Systemic lidocaine shortens length of hospital stay after colorectal surgery: a double-blinded, randomized, placebo-controlled trial. Ann. Surg. 246, 192–200 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wallin, G. et al. Effects of lidocaine infusion on the sympathetic response to abdominal surgery. Anesth. Analg. 66, 1008–1013 (1987).

    Article  CAS  PubMed  Google Scholar 

  71. Wood, J. D. Excitation of intestinal muscle by atropine, tetrodotoxin, and xylocaine. Am. J. Physiol. 222, 118–125 (1972).

    Article  CAS  PubMed  Google Scholar 

  72. Groudine, S. B. et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth. Analg. 86, 235–239 (1998).

    CAS  PubMed  Google Scholar 

  73. Harvey, K. P., Adair, J. D., Isho, M. & Robinson, R. Can intravenous lidocaine decrease postsurgical ileus and shorten hospital stay in elective bowel surgery? A pilot study and literature review. Am. J. Surg. 198, 231–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Kuo, C. P. et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br. J. Anaesth. 97, 640–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Rimbäck, G., Cassuto, J. & Tollesson, P. O. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth. Analg. 70, 414–419 (1990).

    Article  PubMed  Google Scholar 

  76. Kaba, A. et al. Intravenous lidocaine infusion facilitates acute rehabilitation after laparoscopic colectomy. Anesthesiology 106, 11–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, R. et al. Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit. Care Med. 37, 2421–2426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu, R. et al. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann. Surg. 245, 480–486 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Asakawa, A. et al. Peptide YY3–36 and pancreatic polypeptide suppress food intake. J. Gastroenterol. Hepatol 21, 1501–1502 (2006).

    Article  PubMed  Google Scholar 

  80. Tack, J. et al. Effect of erythromycin on gastric motility in controls and in diabetic gastroparesis. Gastroenterology 103, 72–79 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Trudel, L. et al. Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G948–G952 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Gonzalez-Rey, E., Chorny, A. & Delgado, M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology 130, 1707–1720 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, R. et al. Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion. PLoS ONE 3, e2026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fraser, G. L., Venkova, K., Hoveyda, H. R., Thomas, H. & Greenwood-Van Meerveld, B. Effect of the ghrelin receptor agonist TZP-101 on colonic transit in a rat model of postoperative ileus. Eur. J. Pharmacol. 604, 132–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Popescu, I. et al. The Ghrelin agonist TZP-101 for management of postoperative ileus after partial colectomy: a randomized, dose-ranging, placebo-controlled clinical trial. Dis. Colon Rectum 53, 126–134 (2010).

    Article  PubMed  Google Scholar 

  86. Bochicchio, G., Charlton, P., Pezzullo, J. C., Kosutic, G. & Senagore, A. Ghrelin agonist TZP-101/ulimorelin accelerates gastrointestinal recovery independently of opioid use and surgery type: covariate analysis of phase 2 data. World J. Surg. 36, 39–45 (2012).

    Article  PubMed  Google Scholar 

  87. Gershon, M. D. Review article: serotonin receptors and transporters—roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 20 (Suppl. 7), 3–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. De Winter, B. Y. et al. Effect of different prokinetic agents and a novel enterokinetic agent on postoperative ileus in rats. Gut 45, 713–718 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeinali, F., Stulberg, J. J. & Delaney, C. P. Pharmacological management of postoperative ileus. Can. J. Surg. 52, 153–157 (2009).

    PubMed  PubMed Central  Google Scholar 

  90. Narita, K. et al. Effect of mosapride on recovery of intestinal motility after hand-assisted laparoscopic colectomy for carcinoma. Dis. Colon Rectum 51, 1692–1695 (2008).

    Article  PubMed  Google Scholar 

  91. Toyomasu, Y. et al. Mosapride citrate improves postoperative ileus of patients with colectomy. J. Gastrointest. Surg. 15, 1361–1367 (2011).

    Article  PubMed  Google Scholar 

  92. Tsuchida, Y. et al. Neuronal stimulation with 5-hydroxytryptamine 4 receptor induces anti-inflammatory actions via α7nACh receptors on muscularis macrophages associated with postoperative ileus. Gut 60, 638–647 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Galandiuk, S., Beyens. G., Ausma, J. & Vandeplassche, L. Evaluation of the efficacy, safety and tolerability of prucalopride (Resolor®) given subcutaneously in patients undergoing elective partial colectomies. Gastroenterology 134 (Suppl. 1), A-138 (2008).

    Google Scholar 

  94. Schwarz, N. T. et al. Prostanoid production via COX-2 as a causative mechanism of rodent postoperative ileus. Gastroenterology 121, 1354–1371 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Bakkum-Gamez, J. N. et al. Incidence of and risk factors for postoperative ileus in women undergoing primary staging and debulking for epithelial ovarian carcinoma. Gynecol. Oncol. 125, 614–620 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fearon, K. C. et al. Enhanced recovery after surgery: a consensus review of clinical care for patients undergoing colonic resection. Clin. Nutr. 24, 466–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Wattchow, D. A. et al. Clinical trial: the impact of cyclooxygenase inhibitors on gastrointestinal recovery after major surgery—a randomized double blind controlled trial of celecoxib or diclofenac vs. placebo. Aliment. Pharmacol. Ther. 30, 987–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Sim, R., Cheong, D. M., Wong, K. S., Lee, B. M. & Liew, Q. Y. Prospective randomized, double-blind, placebo-controlled study of pre- and postoperative administration of a COX-2-specific inhibitor as opioid-sparing analgesia in major colorectal surgery. Colorectal Dis. 9, 52–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Bahena-Aponte, J. A., Cardenas-Lailson, E., Chavez-Tapia, N. & Flores-Gama, F. Usefulness of chewing gum for the resolution of postoperative ileus in left colon resections [Spanish]. Rev. Gastroenterol. Mex. 75, 369–373 (2010).

    CAS  PubMed  Google Scholar 

  100. Choi, H. et al. Chewing gum has a stimulatory effect on bowel motility in patients after open or robotic radical cystectomy for bladder cancer: a prospective randomized comparative study. Urology 77, 884–890 (2011).

    Article  PubMed  Google Scholar 

  101. Ngowe, M. N., Eyenga, V. C., Kengne, B. H., Bahebeck, J. & Sosso, A. M. Chewing gum reduces postoperative ileus after open appendectomy. Acta Chir. Belg. 110, 195–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Marwah, S., Singla, S. & Tinna, P. Role of gum chewing on the duration of postoperative ileus following ileostomy closure done for typhoid ileal perforation: a prospective randomized trial. Saudi J. Gastroenterol. 18, 111–117 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Noble, E. J., Harris, R., Hosie, K. B., Thomas, S. & Lewis, S. J. Gum chewing reduces postoperative ileus? A systematic review and meta-analysis. Int. J. Surg. 7, 100–105 (2009).

    Article  PubMed  Google Scholar 

  104. Fitzgerald, J. E. & Ahmed, I. Systematic review and meta-analysis of chewing-gum therapy in the reduction of postoperative paralytic ileus following gastrointestinal surgery. World J. Surg. 33, 2557–2566 (2009).

    Article  PubMed  Google Scholar 

  105. The, F. O. et al. The role of mast cell stabilization in treatment of postoperative ileus: a pilot study. Am. J. Gastroenterol. 104, 2257–2266 (2009).

    Article  PubMed  Google Scholar 

  106. Rivera, J. & Olivera, A. A current understanding of Fcε RI-dependent mast cell activation. Curr. Allergy Asthma Rep. 8, 14–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Rossi, A. B. et al. Identification of the Syk kinase inhibitor R112 by a human mast cell screen. J. Allergy Clin. Immunol. 118, 749–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. van Bree, S. H. W. Mast cell inhibition by a new spleen tyrosine kinase inhibitor in the treatment of postoperative ileus [abstract 40]. Gut 60 (Suppl. 3), OP172 (2011).

    Google Scholar 

  109. Long, E. O. ICAM-1: getting a grip on leukocyte adhesion. J. Immunol. 186, 5021–5023 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Rothlein, R. et al. Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines. Regulation by pharmacologic agents and neutralizing antibodies. J. Immunol. 141, 1665–1669 (1988).

    CAS  PubMed  Google Scholar 

  111. Stoolman, L. M. Adhesion molecules controlling lymphocyte migration. Cell 56, 907–910 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. The, F. O., de Jonge, W. J., Bennink, R. J., van den Wijngaard, R. M. & Boeckxstaens, G. E. The ICAM-1 antisense oligonucleotide ISIS-3082 prevents the development of postoperative ileus in mice. Br. J. Pharmacol. 146, 252–258 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stoffels, B. et al. Anti-inflammatory role of glycine in reducing rodent postoperative inflammatory ileus. Neurogastroenterol. Motil. 23, 76–87, e8 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Moore, B. A., Manthey, C. L., Johnson, D. L. & Bauer, A. J. Matrix metalloproteinase-9 inhibition reduces inflammation and improves motility in murine models of postoperative ileus. Gastroenterology 141, 1283–1292 e1–e4 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported in part by governmental grants from Netherlands Organization for Scientific Research (NWO Vici grant 918-76 623), of the Flemish Fonds Wetenschappelijk Onderzoek (FWO), Odysseus program grant G.0905.07 and by the Maag Lever Darm Stichting (W09-30).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching, discussing, writing, reviewing and/or editing this manuscript. S. H. W. van Bree and A. Nemethova contributed equally to all aspects of the review.

Corresponding author

Correspondence to Guy E. Boeckxstaens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bree, S., Nemethova, A., Cailotto, C. et al. New therapeutic strategies for postoperative ileus. Nat Rev Gastroenterol Hepatol 9, 675–683 (2012). https://doi.org/10.1038/nrgastro.2012.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing