Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of bacteria and pattern-recognition receptors in Crohn's disease

A Correction to this article was published on 04 May 2011

This article has been updated

Abstract

Crohn's disease is widely regarded as a multifactorial disease, and evidence from human and animal studies suggests that bacteria have an instrumental role in its pathogenesis. Comparison of the intestinal microbiota of patients with Crohn's disease to that of healthy controls has revealed compositional changes. In most studies these changes are characterized by an increase in the abundance of Bacteroidetes and Proteobacteria and a decrease in that of Firmicutes. In addition, a number of specific mucosa-associated bacteria have been postulated to have a role in Crohn's disease, including Mycobacterium avium subspecies paratuberculosis, adherent and invasive Escherichia coli, Campylobacter and Helicobacter species. The association between mutations in pattern-recognition receptors (Toll-like receptors and Nod-like receptors) and autophagy proteins and Crohn's disease provides further evidence to suggest that defective sensing and killing of bacteria may drive the onset of disease. In this Review, we present recent advances in understanding the role of bacteria and the contribution of pattern-recognition receptors and autophagy in the pathogenesis of Crohn's disease.

Key Points

  • Current evidence suggests that the diversity and abundance of specific groups of bacteria differs between patients with Crohn's disease and healthy controls

  • To date, no specific groups or any single bacterium has been definitively associated with the etiology of Crohn's disease

  • Polymorphisms in pattern-recognition receptors and autophagy proteins are associated with susceptibility to Crohn's disease

  • Defective sensing and killing of bacteria owing to impaired pattern-recognition receptors, autophagy and defensin production may have a role in the etiopathogenesis of Crohn's disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible pathways in the development of Crohn's disease.
Figure 2: Bacterial recognition and signaling via pattern-recognition receptors and autophagy in Crohn's disease.

Similar content being viewed by others

Change history

  • 18 March 2011

    In the Review by Man et al. published in the March 2011 issue of Nature Reviews Gastroenterology & Hepatology, MyD88 was incorrectly labeled as TRIF and shown in yellow instead of purple in Figure 2. The error has been corrected for the HTML and PDF versions of the article.

References

  1. Sartor, R. B. Enteric microflora in IBD: pathogens or commensals? Inflamm. Bowel Dis. 3, 230–235 (1997).

    Google Scholar 

  2. Yamamoto, T., Allan, R. N. & Keighley, M. R. Effect of fecal diversion alone on perianal Crohn's disease. World J. Surg. 24, 1258–1262 (2000).

    CAS  PubMed  Google Scholar 

  3. Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn's disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    CAS  PubMed  Google Scholar 

  4. Zelas, P. & Jagelman, D. G. Loop illeostomy in the management of Crohn's colitis in the debilitated patient. Ann. Surg. 191, 164–168 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. McIlrath, D. C. Diverting ileostomy or colostomy in the management of Crohn's disease of the colon. Arch. Surg. 103, 308–310 (1971).

    CAS  PubMed  Google Scholar 

  6. D'Haens, G. R. et al. Early lesions of recurrent Crohn's disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114, 262–267 (1998).

    CAS  PubMed  Google Scholar 

  7. Shafran, I. & Burgunder, P. Adjunctive antibiotic therapy with rifaximin may help reduce Crohn's disease activity. Dig. Dis. Sci. 55, 1079–1084 (2010).

    CAS  PubMed  Google Scholar 

  8. Prantera, C. et al. Antibiotic treatment of Crohn's disease: results of a multicentre, double blind, randomized, placebo-controlled trial with rifaximin. Aliment. Pharmacol. Ther. 23, 1117–1125 (2006).

    CAS  PubMed  Google Scholar 

  9. Arnold, G. L., Beaves, M. R., Pryjdun, V. O. & Mook, W. J. Preliminary study of ciprofloxacin in active Crohn's disease. Inflamm. Bowel Dis. 8, 10–15 (2002).

    PubMed  Google Scholar 

  10. Steinhart, A. H. et al. Combined budesonide and antibiotic therapy for active Crohn's disease: a randomized controlled trial. Gastroenterology 123, 33–40 (2002).

    CAS  PubMed  Google Scholar 

  11. Colombel, J. F. et al. A controlled trial comparing ciprofloxacin with mesalazine for the treatment of active Crohn's disease. Groupe d'Etudes Therapeutiques des Affections Inflammatoires Digestives (GETAID). Am. J. Gastroenterol. 94, 674–678 (1999).

    CAS  PubMed  Google Scholar 

  12. Prantera, C. et al. An antibiotic regimen for the treatment of active Crohn's disease: a randomized, controlled clinical trial of metronidazole plus ciprofloxacin. Am. J. Gastroenterol. 91, 328–332 (1996).

    CAS  PubMed  Google Scholar 

  13. Greenbloom, S. L., Steinhart, A. H. & Greenberg, G. R. Combination ciprofloxacin and metronidazole for active Crohn's disease. Can. J. Gastroenterol. 12, 53–56 (1998).

    CAS  PubMed  Google Scholar 

  14. Sutherland, L. et al. Double blind, placebo controlled trial of metronidazole in Crohn's disease. Gut 32, 1071–1075 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Leiper, K., Morris, A. I. & Rhodes, J. M. Open label trial of oral clarithromycin in active Crohn's disease. Aliment. Pharmacol. Ther. 14, 801–806 (2000).

    CAS  PubMed  Google Scholar 

  16. Rahimi, R., Nikfar, S., Rezaie, A. & Abdollahi, M. A meta-analysis of broad-spectrum antibiotic therapy in patients with active Crohn's disease. Clin. Ther. 28, 1983–1988 (2006).

    CAS  PubMed  Google Scholar 

  17. Nell, S., Suerbaum, S. & Josenhans, C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat. Rev. Microbiol. 8, 564–577 (2010).

    CAS  PubMed  Google Scholar 

  18. Guarner, F. The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr. Opin. Gastroenterol. 21, 414–418 (2005).

    PubMed  Google Scholar 

  19. Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host–microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283–307 (2002).

    CAS  PubMed  Google Scholar 

  20. Tamboli, C. P., Neut, C., Desreumaux, P. & Colombel, J. F. Dysbiosis in inflammatory bowel disease. Gut 53, 1–4 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tannock, G. W. Analysis of the intestinal microflora using molecular methods. Eur. J. Clin. Nutr. 56 (Suppl. 4), S44–S49 (2002).

    CAS  PubMed  Google Scholar 

  22. Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615 (2008).

    CAS  PubMed  Google Scholar 

  23. Packey, C. D. & Sartor, R. B. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis. 22, 292–301 (2009).

    PubMed  PubMed Central  Google Scholar 

  24. Rehman, A. et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J. Med. Microbiol. 59, 1114–1122 (2010).

    CAS  PubMed  Google Scholar 

  25. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baumgart, M. et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. ISME J. 1, 403–418 (2007).

    CAS  PubMed  Google Scholar 

  27. Kotlowski, R., Bernstein, C. N., Sepehri, S. & Krause, D. O. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 56, 669–675 (2007).

    CAS  PubMed  Google Scholar 

  28. Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W. F. & Veldhuyzen van Zanten, S. J. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol. 44, 4136–4141 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Medina, M., Aldeguer, X., Gonzalez-Huix, F., Acero, D. & Garcia-Gil, L. J. Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm. Bowel Dis. 12, 1136–1145 (2006).

    PubMed  Google Scholar 

  30. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).

    PubMed  PubMed Central  Google Scholar 

  31. Ott, S. J. et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53, 685–693 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prindiville, T., Cantrell, M. & Wilson, K. H. Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn's disease. Inflamm. Bowel Dis. 10, 824–833 (2004).

    PubMed  Google Scholar 

  33. Swidsinski, A. et al. Mucosal flora in inflammatory bowel disease. Gastroenterology 122, 44–54 (2002).

    PubMed  Google Scholar 

  34. Kleessen, B., Kroesen, A. J., Buhr, H. J. & Blaut, M. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand. J. Gastroenterol. 37, 1034–1041 (2002).

    CAS  PubMed  Google Scholar 

  35. Conte, M. P. et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55, 1760–1767 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bibiloni, R., Mangold, M., Madsen, K. L., Fedorak, R. N. & Tannock, G. W. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J. Med. Microbiol. 55, 1141–1149 (2006).

    PubMed  Google Scholar 

  37. Kang, S. et al. Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm. Bowel Dis. 16, 2034–2042 (2010).

    PubMed  Google Scholar 

  38. Mondot, S. et al. Highlighting new phylogenetic specificities of Crohn's disease microbiota. Inflamm. Bowel Dis. 17, 185–192 (2011).

    CAS  PubMed  Google Scholar 

  39. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dicksved, J. et al. Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J. 2, 716–727 (2008).

    CAS  PubMed  Google Scholar 

  41. Takaishi, H. et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 298, 463–472 (2008).

    CAS  PubMed  Google Scholar 

  42. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sokol, H. et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis. 12, 106–111 (2006).

    PubMed  Google Scholar 

  44. Seksik, P. et al. Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237–242 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 204 (2007).

    CAS  PubMed  Google Scholar 

  46. Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kirkwood, C. D. et al. Mycobacterium avium subspecies paratuberculosis in children with early-onset Crohn's disease. Inflamm. Bowel Dis. 15, 1643–1655 (2009).

    PubMed  Google Scholar 

  48. Di Sabatino, A. et al. Detection of Mycobacterium avium subsp. paratuberculosis (MAP)-specific IS900 DNA and antibodies against MAP peptides and lysate in the blood of Crohn's disease patients. Inflamm. Bowel Dis. doi:10.1002/ibd.21461.

    PubMed  Google Scholar 

  49. Mendoza, J. L. et al. High prevalence of viable Mycobacterium avium subspecies paratuberculosis in Crohn's disease. World J. Gastroenterol. 16, 4558–4563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Shin, A. R. et al. Identification of seroreactive proteins in the culture filtrate antigen of Mycobacterium avium ssp. paratuberculosis human isolates to sera from Crohn's disease patients. FEMS Immunol. Med. Microbiol. 58, 128–137 (2010).

    CAS  PubMed  Google Scholar 

  51. Bach, H. et al. Immunogenicity of Mycobacterium avium subsp. paratuberculosis proteins in Crohn's disease patients. Scand. J. Gastroenterol. doi:10.3109/00365521.

  52. Hermon-Taylor, J. Mycobacterium avium subspecies paratuberculosis, Crohn's disease and the Doomsday scenario. Gut Pathog. 1, 15 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Sibartie, S. et al. Mycobacterium avium subsp. paratuberculosis (MAP) as a modifying factor in Crohn's disease. Inflamm. Bowel Dis. 16, 296–304 (2010).

    PubMed  Google Scholar 

  54. Feller, M. et al. Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis. Lancet Infect. Dis. 7, 607–613 (2007).

    PubMed  Google Scholar 

  55. Abubakar, I., Myhill, D., Aliyu, S. H. & Hunter, P. R. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohn's disease using nucleic acid-based techniques: a systematic review and meta-analysis. Inflamm. Bowel Dis. 14, 401–410 (2008).

    CAS  PubMed  Google Scholar 

  56. Boudeau, J., Glasser, A. L., Masseret, E., Joly, B. & Darfeuille-Michaud, A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect. Immun. 67, 4499–4509 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Glasser, A. L. et al. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 69, 5529–5537 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421 (2004).

    PubMed  Google Scholar 

  59. Martin, H. M. et al. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology 127, 80–93 (2004).

    CAS  PubMed  Google Scholar 

  60. Martinez-Medina, M. et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm. Bowel Dis. 15, 872–882 (2009).

    PubMed  Google Scholar 

  61. Meconi, S. et al. Adherent-invasive Escherichia coli isolated from Crohn's disease patients induce granulomas in vitro. Cell. Microbiol. 9, 1252–1261 (2007).

    CAS  PubMed  Google Scholar 

  62. Rolhion, N., Carvalho, F. A. & Darfeuille-Michaud, A. OmpC and the sigma(E) regulatory pathway are involved in adhesion and invasion of the Crohn's disease-associated Escherichia coli strain LF82. Mol. Microbiol. 63, 1684–1700 (2007).

    CAS  PubMed  Google Scholar 

  63. Bringer, M. A., Rolhion, N., Glasser, A. L. & Darfeuille-Michaud, A. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J. Bacteriol. 189, 4860–4871 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rolhion, N. et al. Abnormally expressed ER stress response chaperone Gp96 in CD favours adherent-invasive Escherichia coli invasion. Gut 59, 1355–1362 (2010).

    CAS  PubMed  Google Scholar 

  65. Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117, 1566–1574 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Carvalho, F. A. et al. Crohn's disease-associated Escherichia coli LF82 aggravates colitis in injured mouse colon via signaling by flagellin. Inflamm. Bowel Dis. 14, 1051–1060 (2008).

    PubMed  Google Scholar 

  67. Zhang, L. et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J. Clin. Microbiol. 47, 453–455 (2009).

    PubMed  Google Scholar 

  68. Man, S. M. et al. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm. Bowel Dis. 16, 1008–1016 (2010).

    PubMed  Google Scholar 

  69. Man, S. M. et al. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J. Infect. Dis. 202, 1855–1865 (2010).

    CAS  PubMed  Google Scholar 

  70. Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P. & Smith, S. C. Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus. J. Med. Microbiol. 53, 483–493 (2004).

    CAS  PubMed  Google Scholar 

  71. Istivan, T. S., Smith, S. C., Fry, B. N. & Coloe, P. J. Characterization of Campylobacter concisus hemolysins. FEMS Immunol. Med. Microbiol. 54, 224–235 (2008).

    CAS  PubMed  Google Scholar 

  72. Kaakoush, N. O. et al. The secretome of Campylobacter concisus. FEBS J. 277, 1606–1617 (2010).

    CAS  PubMed  Google Scholar 

  73. Engberg, J. et al. Campylobacter concisus: an evaluation of certain phenotypic and genotypic characteristics. Clin. Microbiol. Infect. 11, 288–295 (2005).

    CAS  PubMed  Google Scholar 

  74. Aabenhus, R., Stenram, U., Andersen, L. P., Permin, H. & Ljungh, A. First attempt to produce experimental Campylobacter concisus infection in mice. World J. Gastroenterol. 14, 6954–6959 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Hansen, R., Thomson, J. M., Fox, J. G., El-Omar, E. M. & Hold, G. L. Could Helicobacter organisms cause inflammatory bowel disease? FEMS Immunol. Med. Microbiol. doi:10.1111/j.1574-695X.2010.00744.x.

    Google Scholar 

  76. Solnick, J. V. & Schauer, D. B. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 14, 59–97 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bohr, U. R. et al. Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J. Clin. Microbiol. 42, 2766–2768 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, L., Day, A., McKenzie, G. & Mitchell, H. Nongastric Helicobacter species detected in the intestinal tract of children. J. Clin. Microbiol. 44, 2276–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Man, S. M., Zhang, L., Day, A. S., Leach, S. & Mitchell, H. Detection of enterohepatic and gastric Helicobacter species in fecal specimens of children with Crohn's disease. Helicobacter 13, 234–238 (2008).

    CAS  PubMed  Google Scholar 

  80. Kaakoush, N. O. et al. Detection of Helicobacteraceae in intestinal biopsies of children with Crohn's disease. Helicobacter 15, 549–557 (2010).

    PubMed  Google Scholar 

  81. Laharie, D. et al. Association between entero-hepatic Helicobacter species and Crohn's disease: a prospective cross-sectional study. Aliment. Pharmacol. Ther. 30, 283–293 (2009).

    CAS  PubMed  Google Scholar 

  82. Varon, C. et al. Study of Helicobacter pullorum proinflammatory properties on human epithelial cells in vitro. Gut 58, 629–635 (2009).

    CAS  PubMed  Google Scholar 

  83. Bell, S. J., Chisholm, S. A., Owen, R. J., Borriello, S. P. & Kamm, M. A. Evaluation of Helicobacter species in inflammatory bowel disease. Aliment. Pharmacol. Ther. 18, 481–486 (2003).

    CAS  PubMed  Google Scholar 

  84. Grehan, M., Danon, S., Lee, A., Daskalopoulos, G. & Mitchell, H. Absence of mucosa-associated colonic Helicobacters in an Australian urban population. J. Clin. Microbiol. 42, 874–876 (2004).

    PubMed  PubMed Central  Google Scholar 

  85. Wagner, J. et al. Identification and characterisation of Pseudomonas 16S ribosomal DNA from ileal biopsies of children with Crohn's disease. PLoS ONE 3, e3578 (2008).

    PubMed  PubMed Central  Google Scholar 

  86. Wei, B. et al. Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen. Infect. Immun. 70, 6567–6575 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Spivak, J. et al. Antibodies to I2 predict clinical response to fecal diversion in Crohn's disease. Inflamm. Bowel Dis. 12, 1122–1130 (2006).

    PubMed  Google Scholar 

  88. Ashorn, S. et al. Fecal calprotectin levels and serological responses to microbial antigens among children and adolescents with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 199–205 (2009).

    PubMed  Google Scholar 

  89. Lamps, L. W. et al. Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am. J. Surg. Pathol. 27, 220–227 (2003).

    PubMed  Google Scholar 

  90. Safa, G., Loppin, M., Tisseau, L. & Lamoril, J. Cutaneous aseptic neutrophilic abscesses and Yersinia enterocolitica infection in a case subsequently diagnosed as Crohn's disease. Dermatology 217, 340–342 (2008).

    CAS  PubMed  Google Scholar 

  91. Zippi, M. et al. Mesenteric adenitis caused by Yersinia pseudotubercolosis in a patient subsequently diagnosed with Crohn's disease of the terminal ileum. World J. Gastroenterol. 12, 3933–3935 (2006).

    PubMed  PubMed Central  Google Scholar 

  92. Saebo, A., Vik, E., Lange, O. J. & Matuszkiewicz, L. Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur. J. Intern. Med. 16, 176–182 (2005).

    PubMed  Google Scholar 

  93. Goodman, M. J., Pearson, K. W., McGhie, D., Dutt, S. & Deodhar, S. G. Campylobacter and Giardia lamblia causing exacerbation of inflammatory bowel disease. Lancet 2, 1247 (1980).

    CAS  PubMed  Google Scholar 

  94. Newman, A. & Lambert, J. R. Campylobacter jejuni causing flare-up in inflammatory bowel disease. Lancet 2, 919 (1980).

    CAS  PubMed  Google Scholar 

  95. Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 137, 495–501 (2009).

    PubMed  Google Scholar 

  96. Ternhag, A., Torner, A., Svensson, A., Ekdahl, K. & Giesecke, J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg. Infect. Dis. 14, 143–148 (2008).

    PubMed  PubMed Central  Google Scholar 

  97. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    CAS  PubMed  Google Scholar 

  98. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    CAS  PubMed  Google Scholar 

  99. Leulier, F. & Lemaitre, B. Toll-like receptors--taking an evolutionary approach. Nat. Rev. Genet. 9, 165–178 (2008).

    CAS  PubMed  Google Scholar 

  100. Silva, M. A. et al. Dendritic cells and toll-like receptors 2 and 4 in the ileum of Crohn's disease patients. Dig. Dis. Sci. 53, 1917–1928 (2008).

    CAS  PubMed  Google Scholar 

  101. Szebeni, B. et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin. Exp. Immunol. 151, 34–41 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cario, E. & Podolsky, D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68, 7010–7017 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Frolova, L., Drastich, P., Rossmann, P., Klimesova, K. & Tlaskalova-Hogenova, H. Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J. Histochem. Cytochem. 56, 267–274 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bryant, C. E., Spring, D. R., Gangloff, M. & Gay, N. J. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8, 8–14 (2010).

    CAS  PubMed  Google Scholar 

  105. Franchimont, D. et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53, 987–992 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ouburg, S. et al. The toll-like receptor 4 (TLR4) Asp299Gly polymorphism is associated with colonic localisation of Crohn's disease without a major role for the Saccharomyces cerevisiae mannan–LBP–CD14–TLR4 pathway. Gut 54, 439–440 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hume, G. E. et al. Novel NOD2 haplotype strengthens the association between TLR4 Asp299gly and Crohn's disease in an Australian population. Inflamm. Bowel Dis. 14, 585–590 (2008).

    PubMed  Google Scholar 

  108. Gazouli, M. et al. Association between polymorphisms in the Toll-like receptor 4, CD14, and CARD15/NOD2 and inflammatory bowel disease in the Greek population. World J. Gastroenterol. 11, 681–685 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zouiten-Mekki, L. et al. Toll-like receptor 4 (TLR4) polymorphisms in Tunisian patients with Crohn's disease: genotype–phenotype correlation. BMC Gastroenterol. 9, 62 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. Lakatos, P. L. et al. Toll-like receptor 4 and NOD2/CARD15 mutations in Hungarian patients with Crohn's disease: phenotype-genotype correlations. World J. Gastroenterol. 11, 1489–1495 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hong, J. et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J. Gastroenterol. Hepatol. 22, 1760–1766 (2007).

    CAS  PubMed  Google Scholar 

  112. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  113. Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    CAS  PubMed  Google Scholar 

  114. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    CAS  PubMed  Google Scholar 

  115. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    CAS  PubMed  Google Scholar 

  116. Pedersen, G., Andresen, L., Matthiessen, M. W., Rask-Madsen, J. & Brynskov, J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol. 141, 298–306 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Torok, H. P. et al. Epistasis between Toll-like receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn's disease. Am. J. Gastroenterol. 104, 1723–1733 (2009).

    PubMed  Google Scholar 

  118. Pierik, M. et al. Toll-like receptor-1, -2, and -6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm. Bowel Dis. 12, 1–8 (2006).

    PubMed  Google Scholar 

  119. Steenholdt, C., Andresen, L., Pedersen, G., Hansen, A. & Brynskov, J. Expression and function of toll-like receptor 8 and Tollip in colonic epithelial cells from patients with inflammatory bowel disease. Scand. J. Gastroenterol. 44, 195–204 (2009).

    CAS  PubMed  Google Scholar 

  120. Kanneganti, T. D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    CAS  PubMed  Google Scholar 

  121. Barnes, P. J. & Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 (1997).

    CAS  PubMed  Google Scholar 

  122. Salucci, V. et al. Monocyte-derived dendritic cells from Crohn patients show differential NOD2/CARD15-dependent immune responses to bacteria. Inflamm. Bowel Dis. 14, 812–818 (2008).

    PubMed  Google Scholar 

  123. Ferwerda, G. et al. Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J. Leukoc. Biol. 82, 1011–1018 (2007).

    CAS  PubMed  Google Scholar 

  124. Brosbol-Ravnborg, A. et al. Toll-like receptor-induced granulocyte–macrophage colony-stimulating factor secretion is impaired in Crohn's disease by nucleotide oligomerization domain 2-dependent and -independent pathways. Clin. Exp. Immunol. 155, 487–495 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hedl, M., Li, J., Cho, J. H. & Abraham, C. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA 104, 19440–19445 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kramer, M., Netea, M. G., de Jong, D. J., Kullberg, B. J. & Adema, G. J. Impaired dendritic cell function in Crohn's disease patients with NOD2 3020insC mutation. J. Leukoc. Biol. 79, 860–866 (2006).

    CAS  PubMed  Google Scholar 

  127. Bonen, D. K. et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology 124, 140–146 (2003).

    CAS  PubMed  Google Scholar 

  128. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139, 1630–1641 e2 (2010).

    CAS  PubMed  Google Scholar 

  129. van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007).

    CAS  PubMed  Google Scholar 

  130. Perez, L. H. et al. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations. PLoS ONE 5, e10915 (2010).

    PubMed  PubMed Central  Google Scholar 

  131. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    CAS  PubMed  Google Scholar 

  132. Hisamatsu, T. et al. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  133. Lipinski, S. et al. DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J. Cell Sci. 122, 3522–3530 (2009).

    CAS  PubMed  Google Scholar 

  134. Magalhaes, J. G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    CAS  PubMed  Google Scholar 

  135. Geddes, K. et al. Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model. Infect. Immun. 78, 5107–5115 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Barreau, F. et al. Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer's patches. Gut 59, 207–217 (2010).

    CAS  PubMed  Google Scholar 

  137. Girardin, S. E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    CAS  PubMed  Google Scholar 

  138. McGovern, D. P. et al. Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum. Mol. Genet. 14, 1245–1250 (2005).

    CAS  PubMed  Google Scholar 

  139. Canto, E. et al. Influence of a nucleotide oligomerization domain 1 (NOD1) polymorphism and NOD2 mutant alleles on Crohn's disease phenotype. World J. Gastroenterol. 13, 5446–5453 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tremelling, M. et al. Complex insertion/deletion polymorphism in NOD1 (CARD4) is not associated with inflammatory bowel disease susceptibility in East Anglia panel. Inflamm. Bowel Dis. 12, 967–971 (2006).

    PubMed  Google Scholar 

  141. Van Limbergen, J. et al. Contribution of the NOD1/CARD4 insertion/deletion polymorphism +32656 to inflammatory bowel disease in Northern Europe. Inflamm. Bowel Dis. 13, 882–889 (2007).

    CAS  PubMed  Google Scholar 

  142. Van Limbergen, J. et al. Investigation of NOD1/CARD4 variation in inflammatory bowel disease using a haplotype-tagging strategy. Hum. Mol. Genet. 16, 2175–2186 (2007).

    CAS  PubMed  Google Scholar 

  143. Lu, W. G. et al. Association of NOD1 (CARD4) insertion/deletion polymorphism with susceptibility to IBD: a meta-analysis. World J. Gastroenterol. 16, 4348–4356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Villani, A. C. et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet. 41, 71–76 (2009).

    CAS  PubMed  Google Scholar 

  146. Lewis, G. J. et al. Genetic association between NLRP3 variants and Crohn's disease does not replicate in a large UK panel. Inflamm Bowel Dis. doi:10.1002/ibd.21499.

    PubMed  Google Scholar 

  147. Schoultz, I. et al. Combined polymorphisms in genes encoding the inflammasome components NALP3 and CARD8 confer susceptibility to Crohn's disease in Swedish men. Am. J. Gastroenterol. 104, 1180–1188 (2009).

    CAS  PubMed  Google Scholar 

  148. Schreiber, S. et al. Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet 353, 459–461 (1999).

    CAS  PubMed  Google Scholar 

  149. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  151. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  154. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Weersma, R. K. et al. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands. Am. J. Gastroenterol. 103, 621–627 (2008).

    CAS  PubMed  Google Scholar 

  156. Glas, J. et al. The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn's disease in the German population. Am. J. Gastroenterol. 103, 682–691 (2008).

    CAS  PubMed  Google Scholar 

  157. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    CAS  PubMed  Google Scholar 

  160. Lapaquette, P., Glasser, A. L., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn's disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 12, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  161. Intemann, C. D. et al. Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog. 5, e1000577 (2009).

    PubMed  PubMed Central  Google Scholar 

  162. Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2009).

    PubMed  Google Scholar 

  163. Perminow, G. et al. Defective paneth cell-mediated host defense in pediatric ileal Crohn's disease. Am. J. Gastroenterol. 105, 452–459 (2010).

    PubMed  Google Scholar 

  164. Wehkamp, J. et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl Acad. Sci. USA 102, 18129–18134 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wehkamp, J. et al. NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expression. Gut 53, 1658–1664 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sim, W. H. et al. Novel Burkholderiales 23S rRNA genes identified in ileal biopsy samples from children: preliminary evidence that a subtype is associated with perianal Crohn's disease. J. Clin. Microbiol. 48, 1939–1942 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Van Etterijck, R. et al. Isolation of Campylobacter concisus from feces of children with and without diarrhea. J. Clin. Microbiol. 34, 2304–2306 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kangro, H. O., Chong, S. K., Hardiman, A., Heath, R. B. & Walker-Smith, J. A. A prospective study of viral and Mycoplasma infections in chronic inflammatory bowel disease. Gastroenterology 98, 549–553 (1990).

    CAS  PubMed  Google Scholar 

  170. Schuller, J. L., Piket-van Ulsen, J., Veeken, I. V., Michel, M. F. & Stolz, E. Antibodies against Chlamydia of lymphogranuloma-venereum type in Crohn's disease. Lancet 1, 19–20 (1979).

    CAS  PubMed  Google Scholar 

  171. Swidsinski, A., Loening-Baucke, V., Vaneechoutte, M. & Doerffel, Y. Active Crohn's disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora. Inflamm. Bowel Dis. 14, 147–161 (2008).

    PubMed  Google Scholar 

  172. Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15, 653–660 (2009).

    PubMed  Google Scholar 

  173. Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 15, 1183–1189 (2009).

    CAS  PubMed  Google Scholar 

  174. Schwiertz, A. et al. Microbiota in pediatric inflammatory bowel disease. J. Pediatr. 157, 240–244 e1 (2010).

    PubMed  Google Scholar 

  175. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jia, W. et al. Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol. Lett. 310, 138–144.

  177. Luther, J., Dave, M., Higgins, P. D. & Kao, J. Y. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm. Bowel Dis. 16, 1077–1084 (2010).

    PubMed  Google Scholar 

  178. Gutierrez, A. et al. Cytokine association with bacterial DNA in serum of patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 508–514 (2009).

    PubMed  Google Scholar 

  179. Liu, Y. et al. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn's disease. Gastroenterology 108, 1396–1404 (1995).

    CAS  PubMed  Google Scholar 

  180. Chen, W., Li, D., Paulus, B., Wilson, I. & Chadwick, V. S. Detection of Listeria monocytogenes by polymerase chain reaction in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. J. Gastroenterol. Hepatol. 15, 1145–1150 (2000).

    CAS  PubMed  Google Scholar 

  181. Chiba, M. et al. Listeria monocytogenes in Crohn's disease. Scand. J. Gastroenterol. 33, 430–434 (1998).

    CAS  PubMed  Google Scholar 

  182. Qual, D. A., Kaneene, J. B., Varty, T. J., Miller, R. & Thoen, C. O. Lack of association between the occurrence of Crohn's disease and occupational exposure to dairy and beef cattle herds infected with Mycobacterium avium subspecies paratuberculosis. J. Dairy Sci. 93, 2371–2376 (2010).

    CAS  PubMed  Google Scholar 

  183. Canto, E. et al. TNF alpha production to TLR2 ligands in active IBD patients. Clin. Immunol. 119, 156–165 (2006).

    CAS  PubMed  Google Scholar 

  184. Ng, M. T. et al. Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect. Immun. 78, 1345–1352 (2010).

    CAS  PubMed  Google Scholar 

  185. Molnar, T. et al. NOD1 gene E266K polymorphism is associated with disease susceptibility but not with disease phenotype or NOD2/CARD15 in Hungarian patients with Crohn's disease. Dig. Liver Dis. 39, 1064–1070 (2007).

    CAS  PubMed  Google Scholar 

  186. Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet. 14, 935–941 (2005).

    CAS  PubMed  Google Scholar 

  187. Lala, S. et al. Crohn's disease and the NOD2 gene: a role for paneth cells. Gastroenterology 125, 47–57 (2003).

    CAS  PubMed  Google Scholar 

  188. Seidelin, J. B., Broom, O. J., Olsen, J. & Nielsen, O. H. Evidence for impaired CARD15 signalling in Crohn's disease without disease linked variants. PLoS ONE 4, e7794 (2009).

    PubMed  PubMed Central  Google Scholar 

  189. Lacher, M. et al. Autophagy 16-like 1 rs2241880 G. allele is associated with Crohn's disease in German children. Acta Paediatr. 98, 1835–1840 (2009).

    CAS  PubMed  Google Scholar 

  190. von Kampen, O. et al. Caspase recruitment domain-containing protein 8 (CARD8) negatively regulates NOD2-mediated signaling. J. Biol. Chem. 285, 19921–19926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. McGovern, D. P. et al. TUCAN (CARD8) genetic variants and inflammatory bowel disease. Gastroenterology 131, 1190–1196 (2006).

    CAS  PubMed  Google Scholar 

  192. Zhernakova, A. et al. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82, 1202–1210 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Klein, W. et al. A polymorphism in the CD14 gene is associated with Crohn disease. Scand. J. Gastroenterol. 37, 189–191 (2002).

    CAS  PubMed  Google Scholar 

  194. Yuan, F. F. et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol. Cell Biol. 86, 268–270 (2008).

    CAS  PubMed  Google Scholar 

  195. Gibot, S., Cariou, A., Drouet, L., Rossignol, M. & Ripoll, L. Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality rate. Crit. Care Med. 30, 969–973 (2002).

    CAS  PubMed  Google Scholar 

  196. De Jager, P. L. et al. The role of the Toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun. 8, 387–397 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not cited due to space limitations. We thank the National Health and Medical Research Council (NHMRC) of Australia and the Broad Medical Foundation for funding our research studies in Crohn's disease. We would also like to acknowledge Dr. P. Tourlomousis and Dr. C. Bryant (University of Cambridge) for providing thoughtful feedback on the manuscript. S. M. M. is a recipient of a Cambridge International Scholarship, and N. O. K. is a recipient of a NHMRC Postdoctoral Training Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this Review.

Corresponding author

Correspondence to Hazel M. Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, S., Kaakoush, N. & Mitchell, H. The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat Rev Gastroenterol Hepatol 8, 152–168 (2011). https://doi.org/10.1038/nrgastro.2011.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing