Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatocellular carcinoma: insight from animal models

Abstract

Hepatocellular carcinoma (HCC) ranks as the third most common cause of death from cancer worldwide. Although major risk factors for the development of HCC have been defined, many aspects of the evolution of hepatocellular carcinogenesis and metastasis are still unknown. Suitable animal models are, therefore, essential to promote our understanding of the molecular, cellular and pathophysiological mechanisms of HCC and for the development of new therapeutic strategies. This Review provides an overview of animal models that are relevant to HCC development, metastasis and treatment. For HCC development, this Review focuses on transgenic mouse models of HBV and HCV infection, which provide experimental evidence that viral genes could initiate or promote liver carcinogenesis. Animal models of HCC metastasis provide platforms to elucidate the mechanisms of HCC metastasis, to study the interaction between the microenvironment and HCC invasion and to conduct intervention studies. In addition, animal models have been developed to investigate the effects of new treatment modalities. The criteria for establishing ideal HCC animal models are also discussed.

Key Points

  • Suitable animal models are necessary to provide information on the molecular, cellular and pathophysiological mechanisms of hepatocellular carcinoma (HCC)

  • Transgenic mouse models have provided reliable experimental evidence suggesting that viral hepatitis genes could have a primary role in initiating or promoting liver carcinogenesis

  • Nonviral factors, including oncogenes and environmental carcinogens, might only have a secondary role in liver carcinogenesis, but they could considerably accelerate the transformation of hepatocytes

  • An animal model of metastatic human HCC that incorporates the effects of variation in metastatic potential would provide a unique tool for the study of HCC metastasis

  • Animal models of HCC could be useful for developing and testing novel therapeutic modalities

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of liver carcinogenesis based on evidence obtained from transgenic mice.
Figure 2: Theoretical basis for, and description of, a mouse model of HCC incorporating a variation in the propensity for lung metastasis.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Ming, L. et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36, 1214–1220 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. El-Serag, H. B. & Mason, A. C. Rising incidence of hepatocellular carcinoma in the United States. N. Engl. J. Med. 340, 745–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. El-Serag, H. B. Epidemiology of hepatocellular carcinoma in USA. Hepatol. Res. 37 (Suppl. 2), S88–S94 (2007).

    Article  PubMed  Google Scholar 

  6. Tsai, W. L. & Chung, R. T. Viral hepatocarcinogenesis. Oncogene 29, 2309–2324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J. Hepatol. 45, 529–538 (2006).

    Article  PubMed  Google Scholar 

  8. Chen, C. J. et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 295, 65–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Liang, T. J. & Heller, T. Pathogenesis of hepatitis C-associated hepatocellular carcinoma. Gastroenterology 127, S62–S71 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Heindryckx, F., Colle, I. & Van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol. 90, 367–386 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, L., Tang, Z. Y. & Li, Y. Experimental models of hepatocellular carcinoma: developments and evolution. J. Cancer Res. Clin. Oncol. 135, 969–981 (2009).

    Article  PubMed  Google Scholar 

  12. Fausto, N. & Campbell, J. S. Mouse models of hepatocellular carcinoma. Semin. Liver Dis. 30, 87–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Aravalli, R. N., Steer, C. J., Sahin, M. B. & Cressman, E. N. Stem cell origins and animal models of hepatocellular carcinoma. Dig. Dis. Sci. 55, 1241–1250 (2010).

    Article  PubMed  Google Scholar 

  14. Kalra, N. & Kumar, V. c-Fos is a mediator of the c-myc-induced apoptotic signaling in serum-deprived hepatoma cells via the p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 279, 25313–25319 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Singh, M. & Kumar, V. Transgenic mouse models of hepatitis B virus-associated hepatocellular carcinoma. Rev. Med. Virol. 13, 243–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Murata, M. et al. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology 49, 1203–1217 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Gearhart, T. L. & Bouchard, M. J. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J. Virol. 84, 2675–2686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, J. et al. Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology 51, 142–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, B., Zheng, Y., Guo, X., Wang, Y. & Liu, C. Hepatitis B viral X protein alters the biological features and expressions of DNA repair enzymes in LO2 cells. Liver Int. 30, 319–326 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, C. M., Koike, K., Saito, I., Miyamura, T. & Jay, G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317–320 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Yu, D. Y. et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J. Hepatol. 31, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S. Y. et al. Proteomic analysis of liver tissue from HBx-transgenic mice at early stages of hepatocarcinogenesis. Proteomics 9, 5056–5066 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Cui, F. et al. The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice. Proteomics 6, 498–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. HBsAg and HBx knocked into the p21 locus causes hepatocellular carcinoma in mice. Hepatology 39, 318–324 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huebner, R. J. & Todaro, G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl Acad. Sci. USA 64, 1087–1094 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakhtakia, R. et al. Hepatocellular carcinoma in a hepatitis B 'x' transgenic mouse model: a sequential pathological evaluation. J. Gastroenterol. Hepatol. 18, 80–91 (2003).

    Article  PubMed  Google Scholar 

  28. Dunsford, H. A., Sell, S. & Chisari, F. V. Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res. 50, 3400–3407 (1990).

    CAS  PubMed  Google Scholar 

  29. Chisari, F. V. et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 230, 1157–1160 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Chisari, F. V. et al. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proc. Natl Acad. Sci. USA 84, 6909–6913 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toshkov, I., Chisari, F. V. & Bannasch, P. Hepatic preneoplasia in hepatitis B virus transgenic mice. Hepatology 20, 1162–1172 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, S. N. & Chisari, F. V. Strong, sustained hepatocellular proliferation precedes hepatocarcinogenesis in hepatitis B surface antigen transgenic mice. Hepatology 21, 620–626 (1995).

    CAS  PubMed  Google Scholar 

  33. Barone, M. et al. Gene expression analysis in HBV transgenic mouse liver: a model to study early events related to hepatocarcinogenesis. Mol. Med. 12, 115–123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakamoto, Y., Guidotti, L. G., Kuhlen, C. V., Fowler, P. & Chisari, F. V. Immune pathogenesis of hepatocellular carcinoma. J. Exp. Med. 188, 341–350 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su, S. B. et al. Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer. Clin. Cancer Res. 7, 1320–1324 (2001).

    CAS  PubMed  Google Scholar 

  36. Ray, R. et al. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. J. Biol. Chem. 275, 1439–1448 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Sell, S., Hunt, J. M., Dunsford, H. A. & Chisari, F. V. Synergy between hepatitis B virus expression and chemical hepatocarcinogens in transgenic mice. Cancer Res. 51, 1278–1285 (1991).

    CAS  PubMed  Google Scholar 

  38. Koike, K., Moriya, K. & Matsuura, Y. Animal models for hepatitis C and related liver disease. Hepatol. Res. 40, 69–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Koike, K. et al. Expression of hepatitis C virus envelope proteins in transgenic mice. J. Gen. Virol. 76 (Pt 12), 3031–3038 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Moriya, K. et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat. Med. 4, 1065–1067 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Koike, K., Moriya, K. & Kimura, S. Role of hepatitis C virus in the development of hepatocellular carcinoma: transgenic approach to viral hepatocarcinogenesis. J. Gastroenterol. Hepatol. 17, 394–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ichibangase, T., Moriya, K., Koike, K. & Imai, K. A proteomics method revealing disease-related proteins in livers of hepatitis-infected mouse model. J. Proteome Res. 6, 2841–2849 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Lerat, H. et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 122, 352–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Kamegaya, Y. et al. Hepatitis C virus acts as a tumor accelerator by blocking apoptosis in a mouse model of hepatocarcinogenesis. Hepatology 41, 660–667 (2005).

    Article  PubMed  Google Scholar 

  45. Li, Y. et al. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics. J. Cancer Res. Clin. Oncol. 130, 460–468 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, F. X. et al. Metastatic models of human liver cancer in nude mice orthotopically constructed by using histologically intact patient specimens. J. Cancer Res. Clin. Oncol. 122, 397–402 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Tian, J. et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br. J. Cancer 81, 814–821 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y. et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97. World J. Gastroenterol. 7, 630–636 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, Y. et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray. J. Cancer Res. Clin. Oncol. 129, 43–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Ding, S. J. et al. From proteomic analysis to clinical significance: overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol. Cell. Proteomics 3, 73–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Andersen, J. B. et al. Progenitor-derived hepatocellular carcinoma model in the rat. Hepatology 51, 1401–1409 (2010).

    Article  PubMed  Google Scholar 

  52. Shi, Y. H. et al. Expression of X-linked inhibitor-of-apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology 48, 497–507 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bai, D. S. et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology 49, 460–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Gao, Q. et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 15, 971–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, X. R. et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin. Cancer Res. 15, 5518–5527 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Shi, G. M. et al. CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology 52, 183–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, L. et al. Activation of β-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin. Cancer Res. 16, 2740–2750 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, Z. F. et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, L. et al. High-dose and long-term therapy with interferon-alpha inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential. Hepatology 32, 43–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, H. C. et al. Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J. Cancer Res. Clin. Oncol. 132, 458–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  62. Tang, Z. Y. et al. A decade's studies on metastasis of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 130, 187–196 (2004).

    Article  PubMed  Google Scholar 

  63. Yuki, K., Hirohashi, S., Sakamoto, M., Kanai, T. & Shimosato, Y. Growth and spread of hepatocellular carcinoma. A review of 240 consecutive autopsy cases. Cancer 66, 2174–2179 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Ye, Q. H. et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat. Med. 9, 416–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Futakuchi, M. et al. Establishment of an in vivo highly metastatic rat hepatocellular carcinoma model. Jpn J. Cancer Res. 90, 1196–1202 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Futakuchi, M., Ogawa, K., Tamano, S., Takahashi, S. & Shirai, T. Suppression of metastasis by nuclear factor kappaB inhibitors in an in vivo lung metastasis model of chemically induced hepatocellular carcinoma. Cancer Sci. 95, 18–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Yoshino, H. et al. Modification of an in vivo lung metastasis model of hepatocellular carcinoma by low dose N.-nitrosomorpholine and diethylnitrosamine. Clin. Exp. Metastasis 22, 441–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Scatton, O. et al. Fate and characterization of circulating tumor cells in a NOD/SCID mouse model of human hepatocellular carcinoma. Oncogene 25, 4067–4075 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Scatton, O. et al. Generation and modulation of hepatocellular carcinoma circulating cells: a new experimental model. J. Surg. Res. 150, 183–189 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Cabibbo, G. et al. A meta-analysis of survival rates of untreated patients in randomized clinical trials of hepatocellular carcinoma. Hepatology 51, 1274–1283 (2010).

    Article  PubMed  Google Scholar 

  71. Zhong, J. H. & Li, L. Q. Postoperative adjuvant transarterial chemoembolization for participants with hepatocellular carcinoma: a meta-analysis. Hepatol. Res. 40, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, W., Shi, J. & Xie, W. F. Transarterial chemoembolization in combination with percutaneous ablation therapy in unresectable hepatocellular carcinoma: a meta-analysis. Liver Int. 30, 741–749 (2010).

    Article  PubMed  Google Scholar 

  73. Zhou, Y. et al. Meta-analysis of radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma. BMC Gastroenterol. 10, 78 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Germani, G. et al. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocelullar carcinoma: a meta-analysis. J. Hepatol. 52, 380–388 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Shen, Y. C. et al. Adjuvant interferon therapy after curative therapy for hepatocellular carcinoma (HCC): a meta-regression approach. J. Hepatol. 52, 889–894 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Singal, A. K., Freeman, D. H. Jr & Anand, B. S. Meta-analysis: interferon improves outcomes following ablation or resection of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 32, 851–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Newell, P., Villanueva, A., Friedman, S. L., Koike, K. & Llovet, J. M. Experimental models of hepatocellular carcinoma. J. Hepatol. 48, 858–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelland, L. R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer 40, 827–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Newell, P., Villanueva, A. & Llovet, J. M. Molecular targeted therapies in hepatocellular carcinoma: from pre-clinical models to clinical trials. J. Hepatol. 49, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huynh, H., Soo, K. C., Chow, P. K., Panasci, L. & Tran, E. Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin. Cancer Res. 12, 4306–4314 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Huynh, H., Chow, P. K. & Soo, K. C. AZD6244 and doxorubicin induce growth suppression and apoptosis in mouse models of hepatocellular carcinoma. Mol. Cancer Ther. 6, 2468–2476 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Huynh, H. et al. Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J. Hepatol. 49, 52–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Huynh, H. et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res. 14, 6146–6153 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Huynh, H. et al. RAD001 (everolimus) inhibits tumour growth in xenograft models of human hepatocellular carcinoma. J. Cell. Mol. Med. 13, 1371–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Huynh, H. et al. Sunitinib (SUTENT, SU11248) suppresses tumor growth and induces apoptosis in xenograft models of human hepatocellular carcinoma. Curr. Cancer Drug Targets 9, 738–747 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Huynh, H. et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J. Cell. Mol. Med. 13, 2673–2683 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Huynh, H. AZD6244 (ARRY-142886) enhances the antitumor activity of rapamycin in mouse models of human hepatocellular carcinoma. Cancer 116, 1315–1325 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Huynh, H. et al. AZD6244 enhances the anti-tumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J. Hepatol. 52, 79–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Park, J. W. et al. Phase II, open-label study of brivanib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 17, 1973–1983 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, R. et al. A reproducible rat liver cancer model for experimental therapy: introducing a technique of intrahepatic tumor implantation. J. Surg. Res. 52, 193–198 (1992).

    Article  CAS  PubMed  Google Scholar 

  92. Semela, D. et al. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J. Hepatol. 46, 840–848 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Piguet, A. C. et al. Inhibition of mTOR in combination with doxorubicin in an experimental model of hepatocellular carcinoma. J. Hepatol. 49, 78–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Piguet, A. C. et al. Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol. Cancer Ther. 10, 1007–1017 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Tang, T. C., Man, S., Lee, C. R., Xu, P. & Kerbel, R. S. Impact of metronomic UFT/cyclophosphamide chemotherapy and antiangiogenic drug assessed in a new preclinical model of locally advanced orthotopic hepatocellular carcinoma. Neoplasia 12, 264–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schiffer, E. et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology 41, 307–314 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Huang, K. W. et al. Dual therapeutic effects of interferon-α gene therapy in a rat hepatocellular carcinoma model with liver cirrhosis. Mol. Ther. 16, 1681–1687 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Qian, J. et al. Application of poly-lactide-co-glycolide-microspheres in the transarterial chemoembolization in an animal model of hepatocellular carcinoma. World J. Gastroenterol. 9, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Maataoui, A. et al. Transarterial chemoembolization alone and in combination with other therapies: a comparative study in an animal HCC model. Eur. Radiol. 15, 127–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Vanpouille-Box, C. et al. Lipid nanocapsules loaded with rhenium-188 reduce tumor progression in a rat hepatocellular carcinoma model. PLoS ONE 6, e16926 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Graepler, F. et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC. Hepatology 41, 879–886 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Stefani, A. L. et al. Systemic efficacy of combined suicide/cytokine gene therapy in a murine model of hepatocellular carcinoma. J. Hepatol. 42, 728–735 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Schmitz, V. et al. Plasminogen fragment K1–5 improves survival in a murine hepatocellular carcinoma model. Gut 56, 271–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Iida, T. et al. Adenovirus-mediated CD40L gene therapy induced both humoral and cellular immunity against rat model of hepatocellular carcinoma. Cancer Sci. 99, 2097–2103 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Y. et al. The efficacy of combination therapy using adeno-associated virus-TRAIL targeting to telomerase activity and cisplatin in a mice model of hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 136, 1827–1837 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Ramirez, L. H. et al. Pharmacokinetics and antitumor effects of mitoxantrone after intratumoral or intraarterial hepatic administration in rabbits. Cancer Chemother. Pharmacol. 37, 371–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Gu, T. et al. Trans-arterial gene therapy for hepatocellular carcinoma in a rabbit model. World J. Gastroenterol. 13, 2113–2117 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hsieh, J. L. et al. Transthyretin-driven oncolytic adenovirus suppresses tumor growth in orthotopic and ascites models of hepatocellular carcinoma. Cancer Sci. 100, 537–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Guo, Y. et al. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 70, 1555–1563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Romano, P. R., McCallus, D. E. & Pachuk, C. J. RNA interference-mediated prevention and therapy for hepatocellular carcinoma. Oncogene 25, 3857–3865 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Arbuthnot, P. & Thompson, L. J. Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J. Gastroenterol. 14, 1670–1681 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, H. et al. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 128, 2029–2041 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Cho-Rok, J. et al. Adenovirus-mediated transfer of siRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology 43, 1042–1052 (2006).

    Article  PubMed  CAS  Google Scholar 

  114. Salvi, A., Arici, B., Alghisi, A., Barlati, S. & De Petro, G. RNA interference against urokinase in hepatocellular carcinoma xenografts in nude mice. Tumour Biol. 28, 16–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Lin, R. X., Tuo, C. W., Lu, Q. J., Zhang, W. & Wang, S. Q. Inhibition of tumor growth and metastasis with antisense oligonucleotides (Cantide) targeting hTERT in an in situ human hepatocellular carcinoma model. Acta Pharmacol. Sin. 26, 762–768 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Sun, Y., Lin, R., Dai, J., Jin, D. & Wang, S. Q. Suppression of tumor growth using antisense oligonucleotide against survivin in an orthotopic transplant model of human hepatocellular carcinoma in nude mice. Oligonucleotides 16, 365–374 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Lin, R. X. et al. Inhibition of hepatocellular carcinoma growth by antisense oligonucleotides to type I insulin-like growth factor receptor in vitro and in an orthotopic model. Hepatol. Res. 37, 366–375 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive funding from the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 20921062), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (No. 4103005; both to Y. Li).

Author information

Authors and Affiliations

Authors

Contributions

Y. Li, Z.-Y. Tang and J.-X. Hou jointly researched data for the article, wrote the manuscript, and made substantial contributions to discussions of the content. In addition, Z.-Y. Tang reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Zhao-You Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tang, ZY. & Hou, JX. Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 9, 32–43 (2012). https://doi.org/10.1038/nrgastro.2011.196

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing