Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypoxia: an alarm signal during intestinal inflammation

Abstract

Intestinal epithelial cells that line the mucosal surface of the gastrointestinal tract are positioned between an anaerobic lumen and a highly metabolic lamina propria. As a result of this unique anatomy, intestinal epithelial cells function within a steep physiologic oxygen gradient relative to other cell types. Furthermore, during active inflammatory disease such as IBD, metabolic shifts towards hypoxia are severe. Studies in vitro and in vivo have shown that the activation of hypoxia-inducible factor (HIF) serves as an alarm signal to promote the resolution of inflammation in various mouse models of disease. Amelioration of disease occurs, at least in part, through transcriptional upregulation of nonclassic epithelial barrier genes. There is much interest in harnessing hypoxia-inducible pathways, including stabilizing HIF directly or via inhibition of prolyl hydroxylase enzymes, for therapy of IBD. In this Review, we discuss the signaling pathways involved in the regulation of hypoxia and discuss how hypoxia may serve as an endogenous alarm signal for the presence of mucosal inflammatory disease. We also discuss the pros and cons of targeting these pathways to treat patients with IBD.

Key Points

  • A steep oxygen gradient exists from the anaerobic lumen of the intestine, across the intestinal epithelial barrier and into the highly vascular subepithelium

  • Loss of function of the intestinal epithelial barrier, together with hypoxia and inflammation, underlie the pathology of IBD

  • Expression of hypoxia-inducible factor 1 (HIF1) is induced in inflamed lesions, enabling HIF1 to trigger the transcription of many genes that allow the intestinal epithelial cells to act as an effective barrier, and, it is thought, to protect against inflammation and IBD

  • Prolyl hydroxylases (PHDs) and factor inhibiting HIF1 (FIH1) are expressed in the intestinal mucosal tissue and regulate the stability of HIF

  • Targeted therapies to stabilize HIF, for instance by inhibiting PHDs, are in development to treat IBD

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential sources of hypoxia in mucosal inflammation.
Figure 2: Detection of hypoxia in the mucosa.
Figure 3: Structural features of HIF and the mechanism of HIF stabilization.
Figure 4: Activation of HIF and NFκB in intestinal epithelial cells during inflammation.

Similar content being viewed by others

References

  1. Laukoetter, M. G., Bruewer, M. & Nusrat, A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr. Opin. Gastroenterol. 22, 85–89 (2006).

    Article  PubMed  Google Scholar 

  2. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, C. T. & Colgan, S. P. Hypoxia and gastrointestinal disease. J. Mol. Med. 85, 1295–1300 (2008).

    Article  Google Scholar 

  4. Furuta, G. T. et al. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193, 1027–1034 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Borregaard, N. & Herlin, T. Energy metabolism of human neutrophils during phagocytosis. J. Clin. Invest. 70, 550–557 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El-Benna, J., Dang, P. M. & Gougerot-Pocidalo, M. A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 30, 279–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Gabig, T. G., Bearman, S. I. & Babior, B. M. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53, 1133–1139 (1979).

    CAS  PubMed  Google Scholar 

  9. Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Sitkovsky, M. & Lukashev, D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat. Rev. Immunol. 5, 712–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hatoum, O. A., Heidemann, J. & Binion, D. G. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease. Ann. NY Acad. Sci. 1072, 78–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Danese, S., Dejana, E. & Fiocchi, C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J. Immunol. 178, 6017–6022 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans, S. M. et al. Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res. 60, 2018–2024 (2000).

    CAS  PubMed  Google Scholar 

  15. Takasawa, M., Moustafa, R. R. & Baron, J. C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39, 1629–1637 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol. 25, 4066–4074 (2007).

    Article  PubMed  Google Scholar 

  17. Kizaka-Kondoh, S. & Konse-Nagasawa, H. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Sci. 100, 1366–1373 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Mastrogiannaki, M. et al. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ratcliffe, P. J. HIF-1 and HIF-2: working alone or together in hypoxia? J. Clin. Invest. 117, 862–865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Comerford, K. M. et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62, 3387–3394 (2002).

    CAS  PubMed  Google Scholar 

  21. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 (HIF-1) mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eltzschig, H. K. et al. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198, 783–796 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134, 156–165 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Han, I. O., Kim, H. S., Kim, H. C., Joe, E. H. & Kim, W. K. Synergistic expression of inducible nitric oxide synthase by phorbol ester and interferon-gamma is mediated through NF-kappaB and ERK in microglial cells. J. Neurosci. Res. 73, 659–669 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Morote-Garcia, J. C., Rosenberger, P., Nivillac, N. M., Coe, I. R. & Eltzschig, H. K. Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology 136, 607–618 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134, 145–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Shah, Y. M. et al. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology 134, 2036–2048 (2008).

    Article  PubMed  Google Scholar 

  28. Giatromanolaki, A. et al. Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J. Clin. Pathol. 56, 209–213 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mariani, F. et al. Cyclooxygenase-2 and hypoxia-inducible factor-1alpha protein expression is related to inflammation, and up-regulated since the early steps of colorectal carcinogenesis. Cancer Lett. 279, 221–229 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Matthijsen, R. A. et al. Enterocyte shedding and epithelial lining repair following ischemia of the human small intestine attenuate inflammation. PLoS One 4, e7045 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Louis, N. A. et al. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J. Cell Biochem. 99, 1616–1627 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Makino, Y. et al. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. Immunol. 171, 6534–6540 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Nizet, V. & Johnson, R. S. Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol. 9, 609–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong, T., Eltzschig, H. K., Karhausen, J., Colgan, S. P. & Shelley, C. S. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc. Natl Acad. Sci. USA 101, 10440–10445 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong, T., Scully, M., Shelley, C. S. & Colgan, S. P. Identification of Pur alpha as a new hypoxia response factor responsible for coordinated induction of the beta 2 integrin family. J. Immunol. 179, 1934–1941 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kuhl, A. A. et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133, 1882–1892 (2007).

    Article  PubMed  Google Scholar 

  37. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Schneider, M. et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology doi:10/1053/j.gastro.2009.09.057.

  41. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ozolins, T. R. et al. Defects in embryonic development of EGLN1/PHD2 knockdown transgenic mice are associated with induction of Igfbp in the placenta. Biochem. Biophys. Res. Commun. 390, 372–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bishop, T. et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol. Cell Biol. 28, 3386–3400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J. Physiol. 586, 4055–4059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenberger, P. et al. Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia. FASEB J. 21, 2613–2621 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, Z. et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Luo, J. L., Kamata, H. & Karin, M. IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J. Clin. Invest. 115, 2625–2632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, Z. J. Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA 103, 14767–14772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaph, C. et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Rius, J. et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453, 807–811 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282, 24027–24038 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Koditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610–3617 (2007).

    Article  PubMed  Google Scholar 

  54. Mole, D. R. et al. 2-oxoglutarate analogue inhibitors of HIF prolyl hydroxylase. Bioorg. Med. Chem. Lett. 13, 2677–2680 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Masson, N. & Ratcliffe, P. J. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J. Cell Sci. 116, 3041–3049 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Bruick, R. K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Nwogu, J. I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104, 2216–2221 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Schlemminger, I. et al. Analogues of dealanylalahopcin are inhibitors of human HIF prolyl hydroxylases. Bioorg. Med. Chem. Lett. 13, 1451–1454 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Jelkmann, W. Control of erythropoietin gene expression and its use in medicine. Methods Enzymol. 435, 179–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Semenza, G. Defining the role of hypoxia-inducible factor in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. P. Colgan is supported by NIH grants DK50189, DE016191, HL60569 and by a grant from the Crohn's and Colitis Foundation of America. C. T. Taylor is supported by a grant from the Science Foundation of Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Colgan.

Ethics declarations

Competing interests

S. P. Colgan declares no competing interests.

C. T. Taylor declares associations with Sigmoid Pharma and Johnson & Johnson. He is collaborating with Sigmoid Pharma to formulate drugs for better delivery to the gastrointestinal tract and with Johnson & Johnson to test new therapeutic approaches in models of IBD. These companies have provided some financial support for laboratory expenses only.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colgan, S., Taylor, C. Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7, 281–287 (2010). https://doi.org/10.1038/nrgastro.2010.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing