Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-wide association studies and genetic risk assessment of liver diseases

Abstract

Genetic tests can help clinicians to diagnose rare monogenic liver diseases. For most common liver diseases, however, multiple gene variants that have small to moderate individual phenotypic effects contribute to the overall risk of disease. An individual's level of risk depends on interactions between environmental factors and a wide range of modifier genes, which are yet to be identified systematically. The latest genome-wide association studies in large cohorts of patients with gallstones, fatty liver disease, viral hepatitis, chronic cholestatic liver diseases or drug-induced liver injury have provided new insights into the pathophysiology of these illnesses and have suggested the contribution of previously unsuspected pathogenic pathways. Studies in mouse models have identified further susceptibility genes for several complex liver diseases. As a result, in the future polygenic risk scores might help to define subgroups of patients at risk of developing liver diseases who would benefit from preventative measures and/or personalized therapy. Now that whole-genome sequencing is possible, comprehensive strategies for integrating genomic data and counseling of patients need to be developed.

Key Points

  • Many so-called simple genetic tests do not provide a clear-cut diagnosis of monogenic liver diseases

  • Future risk assessments for complex, multifactorial, liver diseases might be based on polygenic risk scores (derived from genome-wide association studies) that illustrate disease predisposition

  • Risk information based on genome-wide association studies will be difficult to communicate to patients, but its individualized nature might help motivate patients to make lifestyle modifications

  • Polygenic risk scores will require rigorous prospective evaluation before they are used in clinical practice

  • Hepatologists need to develop concepts for personalized prevention and therapy that integrate genetic risk assessment (and, perhaps, the results of direct-to-consumer genetic tests)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Most common liver diseases are complex (multifactorial), which means that they are determined by multiple genetic factors and their interactions (also termed epistasis).
Figure 2: Genetic risk factors for liver diseases.
Figure 3: Schematic Manhattan plot presenting the results of a hypothetical genome-wide association study.

Similar content being viewed by others

References

  1. Lammert, F. in Textbook of Hepatology: From Basic Science to Clinical Practice (eds Rodés, J., Benhamou, J.-P., Blei, A., Reichen, J. & Rizzetto, M.) 371–383 (Blackwell Publishing, Oxford, 2007).

    Google Scholar 

  2. Cordell, H. J. Detecting gene-gene interactions that underlie human diseases. Nat. Rev. Genet. 10, 392–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Human Genetics Commission. A common framework of principles for direct-to-consumer genetic testing services [online], (2010).

  4. Sheldon, J. H. Haemochromatosis (Oxford University Press, London, 1935).

    Google Scholar 

  5. Feder, J. N. et al. The discovery of the new haemochromatosis gene. J. Hepatol. 38, 704–709 (2003).

    CAS  PubMed  Google Scholar 

  6. Zerres, K. in Was ist uns die Gesundheit wert? Gerechte Verteilung knapper Ressourcen (eds Schumpelick, V. & Vogel, B.) 97–108 (Herder Verlag, Freiburg, 2007).

    Google Scholar 

  7. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Villanueva, A., Newell, P. & Hoshida, Y. Inherited hepatocellular carcinoma. Best Pract. Res. Clin. Gastroenterol. 24, 725–734 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. European Association for the Study of the Liver. EASL clinical practice guidelines for HFE hemochromatosis. J. Hepatol. 53, 3–22 (2010).

  10. UK Genetic Testing Network [online], (2010).

  11. Bensaid, M. et al. Multigenic control of hepatic iron loading in a murine model of hemochromatosis. Gastroenterology 126, 1400–1408 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Rochette, J., Le Gac, G., Lassoued, K., Férec, C. & Robson, K. J. Factors influencing disease phenotype and penetrance in HFE haemochromatosis. Hum. Genet. 128, 233–248 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Tendler, D. A. in Medical Care of the Liver Transplant Patient. Total Pre-, Intra- and Post-Operative Management 3rd edn (eds Killenberg, P. G. & Clavien, P. A.) 172–194 (Blackwell, Malden, MA, 2006).

    Book  Google Scholar 

  14. Laurell, C, B. & Eriksson, S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15, 132–140 (1963).

    Article  CAS  Google Scholar 

  15. Herrmann, U., Dockter, G. & Lammert, F. Cystic fibrosis-associated liver disease. Best Pract. Res. Clin. Gastroenterol. 24, 585–592 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Lomas, D. A. & Mahadeva, R. α1-Antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J. Clin. Invest. 110, 1585–1590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudnick, D. A. & Perlmutter, D. H. Alpha-1-antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology 42, 514–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Stoller, J. K. & Aboussouan, L. S. α1-Antitrypsin deficiency. Lancet 365, 2225–2236 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Fischer, H. P., Ortiz-Pallardó, M. E., Ko, Y., Esch, C. & Zhou, H. Chronic liver disease in heterozygous α1-antitrypsin deficiency PiZ. J. Hepatol. 33, 883–892 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bartlett, J. R. et al. Genetic modifiers of liver disease in cystic fibrosis. JAMA 302, 1076–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bowlus, C. L. et al. Factors associated with advanced liver disease in adults with alpha1-antitrypsin deficiency. Clin. Gastroenterol. Hepatol. 3, 390–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Mencin, A. et al. Alpha-1 antitrypsin Z protein (PiZ) increases hepatic fibrosis in a murine model of cholestasis. Hepatology 46, 1443–1452 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R. & Cox, D. W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 5, 327–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Huster, D. Wilson disease. Best Pract. Res. Clin. Gastroenterol. (in press).

  25. Department of Medical Genetics at the University of Alberta. Wilson Disease Mutation Database [online], (2010).

  26. Ferenci, P. et al. Late-onset Wilson's disease. Gastroenterology 132, 1294–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gow, P. J. et al. Diagnosis of Wilson's disease: an experience over three decades. Gut 46, 415–419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts, E. A. & Schilsky, M. L. Diagnosis and treatment of Wilson disease: an update. Hepatology 47, 2089–2111 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Xuan, A., Bookman, I., Cox, D. W. & Heathcote, J. Three atypical cases of Wilson disease: assessment of the Leipzig scoring system in making a diagnosis. J. Hepatol. 47, 428–433 (2007).

    Article  PubMed  Google Scholar 

  30. Weiss, K. H. et al. Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J. Inherit. Metab. Dis. doi:10.1007/s10545-010-9123-5.

    Article  Google Scholar 

  31. Rogowski, W. H. The cost-effectiveness of screening for hereditary hemochromatosis in Germany: a remodeling study. Med. Decis. Making 29, 224–238 (2009).

    Article  PubMed  Google Scholar 

  32. Schöffski, O., Schmidtke, J. & Stuhrmann, M. Cost-effectiveness of population-based genetic hemochromatosis screening. Community Genet. 3, 2–11 (2000).

    Google Scholar 

  33. Stuhrmann, M., Hoy, L., Nippert, I. & Schmidtke, J. Genotype-based screening for hereditary hemochromatosis: II. Attitudes toward genetic testing and psychosocial impact--a report from a German pilot study. Genet. Test. 9, 242–254 (2005).

    Article  PubMed  Google Scholar 

  34. Bryant, J. et al. Diagnostic strategies using DNA testing for hereditary haemochromatosis in at-risk populations: a systematic review and economic evaluation. Health Technol. Assess. 13, 1–126 (2009).

    Google Scholar 

  35. Elsass, P., Pedersen, P., Husum, K. & Milman, N. Assessment of the psychological effects of genetic screening for hereditary hemochromatosis. Ann. Hematol. 87, 397–404 (2008).

    Article  PubMed  Google Scholar 

  36. Phatak, P. D., Bonkovsky, H. L. & Kowdley, K. V. Hereditary hemochromatosis: time for targeted screening. Ann. Intern. Med. 149, 270–272 (2008).

    Article  PubMed  Google Scholar 

  37. Adams, P. C. & Barton, J. C. Haemochromatosis. Lancet 37, 1855–1860 (2007).

    Article  CAS  Google Scholar 

  38. McLaren, G. D. & Gordeuk, V. R. Hereditary hemochromatosis: insights from the Hemochromatosis and Iron Overload Screening (HEIRS) Study. Hematology Am. Soc. Hematol. Educ. Program 2009, 195–206 (2009).

    Article  Google Scholar 

  39. Acton, R. T. et al. A genome-wide linkage scan for iron phenotype quantitative trait loci: the HEIRS Family Study. Clin. Genet. 71, 518–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zondervan, K. T. & Cardon, L. R. The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raber, J., Huang, Y. & Ashford, J. W. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol. Aging 25, 641–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber, S., Gressner, O. A., Hall, R., Grünhage, F. & Lammert, F. Genetic determinants in hepatic fibrosis: from experimental models to fibrogenic gene signatures in humans. Clin. Liver Dis. 12, 747–757 (2008).

    Article  PubMed  Google Scholar 

  45. Weber, S., Grünhage, F., Hall, R. & Lammert, F. Genome-wide association studies in hepatology [German]. Z. Gastroenterol. 48, 56–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Ioannidis, J. P., Trikalinos, T. A., Ntzani, E. E. & Contopoulos-Ioannidis, D. G. Genetic associations in large versus small studies: an empirical assessment. Lancet 361, 567–571 (2003).

    Article  PubMed  Google Scholar 

  47. Bataller, R., North, K. E. & Brenner, D. A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37, 493–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Falleti, E. et al. TGF-β1 genotypes in cirrhosis: relationship with the occurrence of liver cancer. Cytokine 44, 256–261 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Gewaltig, J., Mangasser-Stephan, K., Gartung, C., Biesterfeld, S. & Gressner, A. M. Association of polymorphisms of the transforming growth factor-β1 gene with the rate of progression of HCV-induced liver fibrosis. Clin. Chim. Acta 316, 83–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Powell, E. E. et al. Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 31, 828–833 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Tag, C. G. et al. Analysis of the transforming growth factor-β1 (TGF-β1) codon 25 gene polymorphism by LightCycler-analysis in patients with chronic hepatitis C infection. Cytokine 24, 173–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Transforming growth factor-beta1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J. Gastroenterol. 11, 1929–1936 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karlsen, T. H., Melum, E. & Franke, A. The utility of genome-wide association studies in hepatology. Hepatology 51, 1833–1842 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. National Human Genome Research Institute. A catalog of published genome-wide association studies [online], (2010).

  58. Lammert, F. & Sauerbruch, T. Mechanisms of disease: the genetic epidemiology of gallbladder stones. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 423–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Katsika, D. et al. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs. Hepatology 41, 1138–1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Buch, S. et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. Nat. Genet. 39, 995–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Yu, L. et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110, 671–680 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, D. Q., Cohen, D. E. & Carey, M. C. Biliary lipids and cholesterol gallstone disease. J. Lipid Res. 50 (Suppl.), S406–S411 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lammert, F., Carey, M. C. & Paigen, B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map. Gastroenterology 120, 221–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Lyons, M. A. & Wittenburg, H. Cholesterol gallstone susceptibility loci: a mouse map, candidate gene evaluation, and guide to human LITH genes. Gastroenterology 131, 1943–1970 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Wasmuth, H. E. et al. Coinheritance of Gilbert syndrome-associated UGT1A1 mutation increases gallstone risk in cystic fibrosis. Hepatology 43, 738–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Buch, S. et al. Loci from a genome-wide analysis of bilirubin levels are associated with gallstone risk and composition. Gastroenterology doi:10.1053/j.gastro.2010.09.003.

    Article  PubMed  CAS  Google Scholar 

  67. Sanna, S. et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum. Mol. Genet. 18, 2711–2718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnson, A. D. et al. Genome-wide association meta-analysis for total serum bilirubin levels. Hum. Mol. Genet. 18, 2700–2710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, J. P. et al. Conditional linkage and genome-wide association studies identify UGT1A1 as a major gene for anti-atherogenic serum bilirubin levels—the Framingham Heart Study. Atherosclerosis 206, 228–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ostrow, J. D. Unconjugated bilirubin and cholesterol gallstone formation. Hepatology 12, 219S–226S (1990).

    CAS  PubMed  Google Scholar 

  71. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Bathum, L. et al. Evidence for a substantial genetic influence on biochemical liver function tests: results from a population-based Danish twin study. Clin. Chem. 47, 81–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Whitfield, J. B., Zhu, G., Nestler, J. E., Heath, A. C. & Martin, N. G. Genetic covariation between serum gamma-glutamyltransferase activity and cardiovascular risk factors. Clin. Chem. 48, 1426–1431 (2002).

    CAS  Google Scholar 

  75. Tian, C., Stokowski, R. P., Kershenobich, D., Ballinger, D. G. & Hinds, D. A. Variant in PNPLA3 is associated with alcoholic liver disease. Nat. Genet. 42, 21–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    Article  PubMed  Google Scholar 

  77. Chalasani, N. et al. Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology doi:10.1053/j.gastro.2010.07.057.

    Article  Google Scholar 

  78. Hirschfield, G. M. et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360, 2544–2555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, X. et al. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat. Genet. 42, 658–660 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Karlsen, T. H. et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138, 1102–1111 (2010).

    Article  PubMed  Google Scholar 

  81. Karlsen, T. H. Primary sclerosing cholangitis. Best Pract. Res. Clin. Gastroenterol. 24, 655–666 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Fellay, J. et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464, 405–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Kamatani, Y. et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 41, 591–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Frodsham, A. J. et al. Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. Proc. Natl Acad. Sci. USA 103, 9148–9153 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, H. et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nat. Genet. 42, 755–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Singer, J. B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8, 186–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Hillebrandt, S. et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat. Genet. 37, 835–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Hillebrandt, S., Goos, C., Matern, S. & Lammert, F. Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 123, 2041–2051 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Overall, R. W. et al. Genetics of the hippocampal transcriptome in mouse: a systematic survey and online neurogenomics resource. Front. Neurosci. 3, 55 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Gatti, D. et al. Genome-level analysis of genetic regulation of liver gene expression networks. Hepatology 46, 548–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Schughart, K. et al. SYSGENET: a meeting report from a new European network for systems genetics. Mamm. Genome 21, 331–336 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Flint, J. & Mott, R. Applying mouse complex-trait resources to behavioural genetics. Nature 456, 724–727 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Rockman, M. V. Reverse engineering the genotype-phenotype map with natural genetic variation. Nature 456, 738–744 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Argmann, C. A., Chambon, P. & Auwerx, J. Mouse phenogenomics: the fast track to “systems metabolism”. Cell Metab. 2, 349–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Peters, L. L. et al. The mouse as a model for human biology: a resource guide for complex trait analysis. Nat. Rev. Genet. 8, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Burgess-Herbert, S. L. et al. An experimental assessment of in silico haplotype association mapping in laboratory mice. BMC Genet. 10, 81 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cervino, A. C., Darvasi, A., Fallahi, M., Mader, C. C. & Tsinoremas, N. F. An integrated in silico gene mapping strategy in inbred mice. Genetics 175, 321–333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Plomin, R., Haworth, C. M. & Davis, O. S. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Richardson, M. M. et al. A combination of genetic polymorphisms increases the risk of progressive disease in chronic hepatitis C. J. Med. Genet. 42, e45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Huang, H. et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 46, 297–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Guo, J. et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology 49, 960–968 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Li, Y. et al. Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol. 51, 750–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Marcolongo, M. et al. A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology 50, 1038–1044 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Pradat, P. et al. The cirrhosis risk score predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology 51, 356–357 (2010).

    Article  PubMed  Google Scholar 

  114. Wei, Z. et al. From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet. 5, e1000678 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kotronen, A. et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 137, 865–872 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Pawitan, Y., Seng, K. C. & Magnusson, P. K. How many genetic variants remain to be discovered? PLoS ONE 4, e7969 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kraft, P. & Hunter, D. J. Genetic risk prediction—are we there yet? N. Engl. J. Med. 360, 1701–1703 (2007).

    Article  Google Scholar 

  118. Gibson, G. Hints of hidden heritability in GWAS. Nat. Genet. 42, 558–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 17, 1520–1528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Xu, J. et al. Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate 69, 1565–1572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Grünhage, F. et al. Lower copy numbers of the chemokine CCL3L1 gene in patients with chronic hepatitis C. J. Hepatol. 52, 153–159 (2010).

    Article  PubMed  CAS  Google Scholar 

  124. Thomas, D. Gene-environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 259–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ashley, E. A. et al. Clinical assessment incorporating a personal genome. Lancet 375, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ormond, K. E. et al. Challenges in the clinical application of whole-genome sequencing. Lancet 375, 1749–1751 (2010).

    Article  PubMed  Google Scholar 

  127. Hogarth, S., Javitt, G. & Melzer, D. The current landscape for direct-to-consumer genetic testing: legal, ethical, and policy issues. Annu. Rev. Genomics Hum. Genet. 9, 161–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. McBride, C. M. et al. Putting science over supposition in the arena of personalized genomics. Nat. Genet. 40, 939–942 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gulcher, J. & Stefansson, K. Genetic risk information for common diseases may indeed be already useful for prevention and early detection. Eur. J. Clin. Invest. 40, 56–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Cassiman, D. & Jaeken, J. NASH may be trash. Gut 57, 141–144 (2008).

    Article  PubMed  Google Scholar 

  131. [No authors listed] Positively disruptive. Nat. Genet. 40, 119 (2008).

  132. Office of Science Policy, National Institutes of Health. Direct-to-consumer genetic testing. Report of the Secretary's Advisory Committee on Genetics, Health, and Society [online], (2010).

  133. Personal Genome Project [online], (2010).

  134. Church, G. M. The personal genome project. Mol. Syst. Biol. 1, 2005.0030 (2005).

    Google Scholar 

  135. Centers for Disease Control and Prevention. Genomic Translation [online], (2010).

  136. Ransohoff, D. F. & Khoury, M. J. Personal genomics: information can be harmful. Eur. J. Clin. Invest. 40, 64–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. 1000 Genomes. A Deep Catalog of Human Genetic Variation [online], (2010).

  138. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Huang, H. et al. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology 130, 1679–1687 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J. Hum. Genet. 83, 520–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ochi, H. et al. Inosine triphosphate pyrophophatase polymorphism affects ribavirin-induced anemia and outcome of therapy—a genome-wide study of Japanese hepatitis C virus patients. Gastroenterology 139, 1190–1197 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review extends the concepts presented by F. Lammert in an invited lecture, “Assessment of genetic risk in liver disease”, which formed part of the postgraduate course The changing face of hepatology—integrating scientific concepts into patient care of the Annual Meeting of the American Association for the Study of Liver Diseases (AASLD), San Francisco, CA, USA, October 2008.

Experimental work related to the topic is supported by Deutsche Forschungsgemeinschaft (SFB/TRR 57), Helmholtz Association (German Network for Systems Genetics GENESYS) and EU (COST Action BM0901 SYSGENET).

Author information

Authors and Affiliations

Authors

Contributions

M. Krawczyk contributed to researching data for the article, writing and reviewing and editing the manuscript before submission. R. Müllenbach contributed to discussion of the content, writing and reviewing and editing the manuscript before submission. S. N. Weber contributed to researching data for the article and writing the article. V. Zimmer contributed to researching data for the article and to discussion of the content. F. Lammert contributed to researching data for the article, writing and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Frank Lammert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawczyk, M., Müllenbach, R., Weber, S. et al. Genome-wide association studies and genetic risk assessment of liver diseases. Nat Rev Gastroenterol Hepatol 7, 669–681 (2010). https://doi.org/10.1038/nrgastro.2010.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing