Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles and clinical implications of the brain–gut–enteric microbiota axis

Abstract

While bidirectional brain–gut interactions are well known mechanisms for the regulation of gut function in both healthy and diseased states, a role of the enteric flora—including both commensal and pathogenic organisms—in these interactions has only been recognized in the past few years. The brain can influence commensal organisms (enteric microbiota) indirectly, via changes in gastrointestinal motility and secretion, and intestinal permeability, or directly, via signaling molecules released into the gut lumen from cells in the lamina propria (enterochromaffin cells, neurons, immune cells). Communication from enteric microbiota to the host can occur via multiple mechanisms, including epithelial-cell, receptor-mediated signaling and, when intestinal permeability is increased, through direct stimulation of host cells in the lamina propria. Enterochromaffin cells are important bidirectional transducers that regulate communication between the gut lumen and the nervous system. Vagal, afferent innervation of enterochromaffin cells provides a direct pathway for enterochromaffin-cell signaling to neuronal circuits, which may have an important role in pain and immune-response modulation, control of background emotions and other homeostatic functions. Disruption of the bidirectional interactions between the enteric microbiota and the nervous system may be involved in the pathophysiology of acute and chronic gastrointestinal disease states, including functional and inflammatory bowel disorders.

Key Points

  • Bidirectional brain–gut interactions have an important role in the modulation of gastrointestinal functions, such as motility, secretion, blood flow, intestinal permeability, mucosal immune activity, and visceral sensations, including pain

  • Evidence suggests that the enteric microbiota has an important role in the above interactions

  • Brain to gut signaling can affect host–bacteria interactions in the gastrointestinal tract indirectly by increasing permeability of the intestinal epithelium, modulating the mucosal immune response and effecting changes in gastrointestinal secretion

  • Evidence supports direct communication between epithelial cells and enteric bacteria via luminal release from neurons, immune cells, Paneth cells and enterochromaffin cells of signaling molecules that can modulate microbial virulence

  • Evidence supports a communication pathway between microbes in the gut lumen and the host's central nervous system via enteric microbiota–enterochromaffin cells–vagal afferent nerves signaling

  • Bidirectional interactions between brain and enteric microbes might have an important role in modulating gut function and may be involved in the modulation of emotions, pain perception and general well-being

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of the pattern of bidirectional brain–gut–microbe interactions.
Figure 2: Interface between the enteric microbiota, immune cells in the lamina propria and the ANS.
Figure 3: Schematic representation of the interkingdom, adrenergic signaling between host and enteric microbiota.
Figure 4: Schematic representation of endocrine cell-mediated signaling from enteric microbiota to host.
Figure 5: Enterochromaffin cells as bidirectional signal transducers between host and enteric microbiota.

References

  1. 1

    Mayer, E. A. The neurobiology of stress and gastrointestinal disease. Gut 47, 861–869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Levenstein, S. et al. Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am. J. Gastroenterol. 95, 1213–1220 (2000).

    CAS  PubMed  Google Scholar 

  3. 3

    Whitehead, W. E., Crowell, M. D., Robinson, J. C., Heller, B. R. & Schuster, M. M. Effects of stressful life events on bowel symptoms: subjects with irritable bowel syndrome compared with subjects without bowel dysfunction. Gut 33, 825–830 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Urban, M. O. & Gebhart, G. F. Central mechanisms in pain. Med. Clin. North Am. 83, 585–596 (1999).

    CAS  PubMed  Google Scholar 

  5. 5

    Castagliuolo, I. et al. Neuronal involvement in the intestinal effects of Clostridium difficile toxin A and Vibrio cholerae enterotoxin in rat ileum. Gastroenterology 107, 657–665 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Mazmanian, S. K. et al. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  7. 7

    Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    PubMed  Google Scholar 

  8. 8

    Husebye, E., Hellstrom, P. M., Sundler, F., Chen, J. & Midtvedt, T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G368–G380 (2001).

    CAS  PubMed  Google Scholar 

  9. 9

    Rhee, S. H. et al. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl Acad. Sci. USA 102, 13610–13615 (2005).

    CAS  PubMed  Google Scholar 

  10. 10

    Ait-Belgnaoui, A. et al. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction. Gut 55, 1090–1094 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Spiller, P. Review article: probiotics and prebiotics in irritable bowel syndrome (IBS). Aliment. Pharmacol. Ther. (2008).

    Google Scholar 

  13. 13

    Agrawal, A. et al. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173-010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment. Pharmacol. Ther. (In press).

  14. 14

    Vanderpool, C., Yan, F. & Polk, D. B. Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm. Bowel Dis. 14, 1585–1596 (2008).

    PubMed  Google Scholar 

  15. 15

    Schaedler, R. W. & Dubos, R. J. The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin. J. Exp. Med. 115, 1149–1160 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Bailey, M. T. & Coe, C. L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–155 (1999).

    CAS  PubMed  Google Scholar 

  17. 17

    Bailey, M. T. et al. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J. Pediatr. Gastroenterol. Nutr. 38, 414–421 (2004).

    PubMed  Google Scholar 

  18. 18

    Holstege, G. et al. The Emotional Motor System (Elsevier, Amsterdam, 1996).

    Google Scholar 

  19. 19

    Macfarlane, S. & Dillon, J. F. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102, 1187–1196 (2007).

    CAS  PubMed  Google Scholar 

  20. 20

    Van Felius, I. D. et al. Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol. Motil. 15, 267–276 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Lembo, A. & Camilleri, M. Chronic constipation. N. Engl. J. Med. 349, 1360–1368 (2003).

    CAS  PubMed  Google Scholar 

  22. 22

    Chey, W. Y. et al. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol. 96, 1499–1506 (2001).

    CAS  PubMed  Google Scholar 

  23. 23

    Kiliaan, A. J. et al. Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am. J. Physiol. 275, G1037–G1044 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Groot, J. et al. Stress-induced decrease of the intestinal barrier function. The role of muscarinic receptor activation. Ann. NY Acad. Sci. 915, 237–246 (2000).

    CAS  PubMed  Google Scholar 

  25. 25

    Yates, D. A., Santos, J., Soderholm, J. D. & Perdue, M. H. Adaptation of stress-induced mucosal pathophysiology in rat colon involves opioid pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G124–G128 (2001).

    CAS  PubMed  Google Scholar 

  26. 26

    Soderholm, J. D. et al. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G1257–G1263 (2002).

    CAS  PubMed  Google Scholar 

  27. 27

    Jacob, C. et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J. Biol. Chem. 280, 31936–31948 (2005).

    CAS  PubMed  Google Scholar 

  28. 28

    Demaude, J. et al. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55, 655–661 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Salzman, N. H., Underwood, M. A. & Bevins, C. L. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol. 19, 70–83 (2007).

    CAS  PubMed  Google Scholar 

  30. 30

    Alonso, C. et al. Maladaptive intestinal epithelial responses to life stress may predispose healthy women to gut mucosal inflammation. Gastroenterology 135, 163–172 (2008).

    PubMed  Google Scholar 

  31. 31

    Stephens, R. L. & Tache, Y. Intracisternal injection of a TRH analogue stimulates gastric luminal serotonin release in rats. Am. J. Physiol. 256, G377–G383 (1989).

    CAS  PubMed  Google Scholar 

  32. 32

    Yang, H. et al. TRH analogue microinjected into specific medullary nuclei stimulates gastric serotonin secretion in rats. Am. J. Physiol. 262, G216–G222 (1992).

    CAS  Google Scholar 

  33. 33

    Santos, J. et al. Release of mast cell mediators into the jejunum by cold pain stress in humans. Gastroenterology 114, 640–648 (1998).

    CAS  PubMed  Google Scholar 

  34. 34

    Hughes, D. T. & Sperandio, V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat. Rev. Microbiol. 6, 111–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Alverdy, J. et al. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann. Surg. 232, 480–489 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Cogan, T. A. et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56, 1060–1065 (2007).

    CAS  PubMed  Google Scholar 

  37. 37

    Dunlop, S. P., Jenkins, D. & Spiller, R. C. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am. J. Gastroenterol. 98, 1578–1583 (2003).

    PubMed  Google Scholar 

  38. 38

    Barbara, G. et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am. J. Gastroenterol. 100, 2560–2568 (2005).

    CAS  PubMed  Google Scholar 

  39. 39

    Dass, N. B. et al. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol. Motil. 19, 66–74 (2007).

    CAS  PubMed  Google Scholar 

  40. 40

    Malbert, C. H. The ileocolonic sphincter. Neurogastroenterol. Motil. 17 (Suppl. 1), 41–49 (2005).

    PubMed  Google Scholar 

  41. 41

    Nealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–322 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Mayer, E. A. & Baldi, J. P. Can regulatory peptides be regarded as words of a biological language? Am. J. Physiol. 261, G171–G184 (1991).

    CAS  PubMed  Google Scholar 

  43. 43

    Roth, J. et al. Molecules of intercellular communication in vertebrates, invertebrates and microbes: do they share common origins? Prog. Brain Res. 68, 71–79 (1986).

    CAS  PubMed  Google Scholar 

  44. 44

    Reading, N. C. et al. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J. Bacteriol. 189, 2468–2476 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

    CAS  Google Scholar 

  46. 46

    Irie, Y. & Parsek, M. R. Quorum sensing and microbial biofilms. Curr. Top. Microbiol. Immunol. 322, 67–84 (2008).

    CAS  PubMed  Google Scholar 

  47. 47

    Callaway, T. R. et al. Social stress increases fecal shedding of Salmonella typhimurium by early weaned piglets. Curr. Issues Intest. Microbiol. 7, 65–71 (2006).

    CAS  PubMed  Google Scholar 

  48. 48

    Rhee, S. H., Keates, A. C., Moyer, M. P. & Pothoulakis, C. MEK is a key modulator for TLR5-induced interleukin-8 and MIP3alpha gene expression in non-transformed human colonic epithelial cells. J. Biol. Chem. 279, 25179–25188 (2004).

    CAS  PubMed  Google Scholar 

  49. 49

    Rhee, S. H., Kim, H., Moyer, M. P. & Pothoulakis, C. Role of MyD88 in phosphatidylinositol 3-kinase activation by flagellin/Toll-like receptor 5 engagement in colonic epithelial cells. J. Biol. Chem. 281, 18560–18568 (2006).

    CAS  PubMed  Google Scholar 

  50. 50

    Charrier, L. et al. hPepT1 mediates bacterial tripeptide fMLP uptake in human monocytes. Lab. Invest. 86, 490–503 (2006).

    CAS  PubMed  Google Scholar 

  51. 51

    Valet, P. et al. Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa. J. Clin. Invest. 91, 2049–2055 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Walsh, J. H. & Mayer, E. A. Gastrointestinal peptide hormones and signal transduction. In Gastrointestinal Disease: Pathophysiology, Diagnosis, Management 5th edn (Eds Sleizenger, M. & Fordtran, J.) 18–44 (WB Saunders, Philadelphia, 1993).

    Google Scholar 

  53. 53

    Braun, T., Voland, P., Kunz, L., Prinz, C. & Gratzl, M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132, 1890–1901 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Gershon, M. D. & Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 132, 397–414 (2007).

    CAS  PubMed  Google Scholar 

  55. 55

    Gershon, M. D. Nerves, reflexes, and the enteric nervous system: athogenesis of the irritable bowel syndrome. J. Clin. Gastroenterol. 39, S184–S193 (2005).

    PubMed  Google Scholar 

  56. 56

    Grider, J. R., Kuemmerle, J. F. & Jin, J. G. 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons. Am. J. Physiol. 270, G778–G782 (1996).

    CAS  PubMed  Google Scholar 

  57. 57

    Peregrin, A. T., Ahlman, H., Jodal, M. & Lundgren, O. Involvement of serotonin and calcium channels in the intestinal fluid secretion evoked by bile salt and cholera toxin. Br. J. Pharmacol. 127, 887–894 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Raybould, H. E. Visceral perception: sensory transduction in visceral afferents and nutrients. Gut 51 (Suppl. 1), i11–i14 (2002).

    PubMed  PubMed Central  Google Scholar 

  59. 59

    Hansen, M. B. & Witte, A. B. The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol. (Oxf.) 193, 311–323 (2008).

    CAS  Google Scholar 

  60. 60

    Bogunovic, M. et al. Enteroendocrine cells express functional Toll-like receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1770–G1783 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Lencer, W. I. Microbes and microbial toxins: paradigms for microbial-mucosal toxins. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G781–G786 (2001).

    CAS  PubMed  Google Scholar 

  62. 62

    Costedio, M. M. et al. Serotonin and its role in colonic function and in gastrointestinal disorders. Dis. Colon Rectum 50, 376–388 (2007).

    PubMed  Google Scholar 

  63. 63

    Spiller, R. C. Role of infection in irritable bowel syndrome. J. Gastroenterol. 42 (Suppl. 17), 41–47 (2007).

    PubMed  Google Scholar 

  64. 64

    Grondahl, M. L. et al. Effects of nitric oxide in 5-hydroxytryptamine-, cholera toxin-, enterotoxigenic Escherichia coli and Salmonella typhimurium-induced secretion in the porcine small intestine. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 141, 476–484 (2005).

    PubMed  Google Scholar 

  65. 65

    Xue, J., Askwith, C., Javed, N. H. & Cooke, H. J. Autonomic nervous system and secretion across the intestinal mucosal surface. Auton. Neurosci. 133, 55–63 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Wheatcroft, J. et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol. Motil. 17, 863–870 (2005).

    CAS  PubMed  Google Scholar 

  67. 67

    Raybould, H. E., Cooke, H. J. & Christofi, F. L. Sensory mechanisms: transmitters, modulators and reflexes. Neurogastroenterol. Motil. 16 (Suppl. 1), 60–63 (2004).

    PubMed  Google Scholar 

  68. 68

    Schonhoff, S. E., Giel-Moloney, M. & Leiter, A. B. Minireview: development and differentiation of gut endocrine cells. Endocrinology 145, 2639–2644 (2004).

    CAS  PubMed  Google Scholar 

  69. 69

    O'Hara, J. R., Ho, W., Linden, D. R., Mawe, G. M. & Sharkey, K. A. Enteroendocrine cells and 5-HT availability are altered in mucosa of guinea pigs with TNBS ileitis. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G998–G1007 (2004).

    CAS  PubMed  Google Scholar 

  70. 70

    Li, Y. Sensory signal transduction in the vagal primary afferent neurons. Curr. Med. Chem. 14, 2554–2563 (2007).

    CAS  PubMed  Google Scholar 

  71. 71

    Watkins, L. R. & Maier, S. F. Immune regulation of central nervous system functions: from sickness responses to pathological pain. J. Intern. Med. 257, 139–155 (2005).

    CAS  PubMed  Google Scholar 

  72. 72

    Watkins, L. R. & Maier, S. F. The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu. Rev. Psychol. 51, 29–57 (2000).

    CAS  PubMed  Google Scholar 

  73. 73

    Lyte, M., Li, W., Opitz, N., Gaykema, R. P. & Goehler, L. E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol. Behav. 89, 350–357 (2006).

    CAS  PubMed  Google Scholar 

  74. 74

    Jänig, W., Khasar, S. G., Levine, J. D. & Miao, F. J. P. The role of visceral afferents in the control of nociception. In The Biological Basis for Mind Body Interactions 1st edn ( Eds Mayer, E. A. & Saper, C. B. ) 273–287 (Elsevier Science, Amsterdam, 2000).

    Google Scholar 

  75. 75

    Amaral, F. A. et al. Commensal microbiota is fundamental for the development of inflammatory pain. Proc. Natl Acad. Sci. USA 105, 2193–2197 (2008).

    CAS  PubMed  Google Scholar 

  76. 76

    Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007).

    CAS  PubMed  Google Scholar 

  78. 78

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    CAS  PubMed  Google Scholar 

  80. 80

    Moayyedi, P. et al. The efficacy of probiotics in the therapy of irritable bowel syndrome: a systematic review. Gut [doi:10.1136/gut.2008.167270] (2008).

    PubMed  Google Scholar 

  81. 81

    Gwee, K. A. et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 44, 400–406 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Bailey, M. T. et al. In vivo adaptation of attenuated Salmonella typhimurium results in increased growth upon exposure to norepinephrine. Physiol. Behav. 67, 359–364 (1999).

    CAS  PubMed  Google Scholar 

  83. 83

    O'Mahony, L. et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541–551 (2005).

    PubMed  Google Scholar 

  84. 84

    Elenkov, I. J. & Chrousos, G. P. Stress system—organization, physiology and immunoregulation. Neuroimmunomodulation 13, 257–267 (2006).

    CAS  PubMed  Google Scholar 

  85. 85

    Elenkov, I. J. et al. The sympathetic nerve—an interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institute of Health/National Institute of Diabetes and Digestive and Kidney Diseases grants R01 DK 48,351, P50 DK64539 and R24 AT002681, RO1 DK47343, P01 DK 33,506, R01 DK072471, and RO1 DK060729. The authors thank Jennifer Drader for excellent editorial services.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emeran A. Mayer.

Ethics declarations

Competing interests

E. A. Mayer declared association with the following companies: Eli Lilly and Company as consultant, GlaxoSmithKline as consultant and recipient of grant/research support, Groupe Danone as consultant and recipient of grant/research support, Johnson & Johnson as recipient of grant/research support, Nestlé and Prometheus Laboratories as consultant. C. Pothoulakis and S. H. Rhee declared no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rhee, S., Pothoulakis, C. & Mayer, E. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6, 306–314 (2009). https://doi.org/10.1038/nrgastro.2009.35

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing