Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of HCV survival in the host

Abstract

HCV infection is an important cause of liver disease worldwide—nearly 80% of infected patients develop chronic liver disease, which leads to the development of liver cirrhosis and hepatocellular carcinoma. The ability of HCV to persist within a host is believed to be related to the numerous mechanisms by which it evades the immune response of the host. These mechanisms can be divided into defensive and offensive strategies. Examples of defensive mechanisms include replication within enclosed structures, which provides protection from the host's antiviral defenses, genetic diversity created by inaccurate replication, which yields mutants resistant to the cell's antiviral strategies, and association of the virion with protective lipoproteins. Offensive mechanisms include virally encoded proteins and other factors that disrupt the ability of the host cells to detect the virus and downregulate its ability to respond to interferon, impair innate immune defense mechanisms and alter T-cell responses, and prevent the development of an effective B-cell-mediated humoral response. Greater understanding of these viral survival strategies will ultimately translate into more effective antiviral therapies and better prognosis for patients.

Key Points

  • At each stage of the life cycle of the virus, HCV interfaces with antiviral mechanisms of the host

  • Multiple, individual viral proteins inhibit key, cellular, antiviral defense pathways

  • HCV infection is associated with impairment of virtually all parts of the adaptive immune system, although our understanding of the mechanistic details remains incomplete

  • New therapeutic strategies are emerging that seek to translate this knowledge into improved outcomes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viral life cycle and major host cell defense pathways.
Figure 2: Innate immune signaling pathways interdicted by HCV.

Similar content being viewed by others

References

  1. The Global Burden of Hepatitis C Working Group. Global Burden of Disease (GBD) for Hepatitis C. J. Clin. Pharmacol. 44, 20–29 (2004).

  2. Shepard, C. W. et al. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5, 558–567 (2005).

    Article  PubMed  Google Scholar 

  3. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Scarselli, E. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21, 5017–5025 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Acton, S. et al. Identification of scavenger receptor SR-BI as a high-density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Connelly, M. A. & Williams, D. L. Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15, 287–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Lavie, M. et al. Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology 44, 1626–1634 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Von Hahn, T. et al. Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells. Hepatology 43, 932–942 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Bartosch, B. et al. An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of Infection and protection against neutralizing antibodies. J. Virol. 79, 8217–8229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Voisset, C. et al. High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J. Biol. Chem. 280, 7793–7799 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Murao, K. et al. Interferon alpha decreases expression of human scavenger receptor class BI, a possible HCV receptor in hepatocytes. Gut 57, 664–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Bartosch, B. et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J. Biol. Chem. 278, 41624–41630 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Hsu, M. et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl Acad. Sci. USA 100, 7271–7276 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans, M. J. et al. Claudin-1 is a hepatitis C virus coreceptor required for a late step in entry. Nature 446, 801–805 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ploss, A. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457, 882–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozach, P. et al. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 278, 20358–20366 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Cormier, E. G. et al. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl Acad. Sci. USA 101, 14067–14072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weiner, A. J. et al. Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180, 842–848 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Forns, X. et al. Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees. Proc. Natl Acad. Sci. USA 97, 13318–13323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roccasecca, R. et al. Binding of the hepatitis C virus E2 glycoprotein to CD81 Is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J. Virol. 77, 1856–1867 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofmann, W. P. et al. Mutations within the CD81-binding sites and hypervariable region 2 of the envelope 2 protein: correlation with treatment response in hepatitis C virus-infected patients. J. Infect. Dis. 187, 982–987 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Jackson, R. J. & Kaminski, A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaufman, R. J. Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: a new role for an old actor. Proc. Natl Acad. Sci. USA 96, 11693–11695 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moradpour, D. et al. Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase. J. Biol. Chem. 277, 593–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Miyanari, Y. et al. Hepatitis C virus nonstructural proteins in the probable membranous compartment function in viral genome replication. J. Biol. Chem. 278, 50301–50308 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Chu, P. W. & Westaway, E. G. Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140, 68–79 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Chang, M. et al. Dynamics of hepatitis C virus replication in human liver. Am. J. Pathol. 163, 433–444 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinkert, D. et al. Quantitative analysis of the hepatitis C virus replication complex. J. Virol. 79, 13594–13605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Targett-Adams, P. et al. Visualization of double-stranded RNA in cells supporting hepatitis C virus RNA replication. J. Virol. 82, 2182–2195 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Martell, M. et al. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J. Virol. 66, 3225–3229 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J. Virol. 82, 2120–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Konan, K. V. et al. Nonstructural protein precursor NS4A/B from hepatitis C virus alters function and ultrastructure of host secretory apparatus. J. Virol. 77, 7843–7855 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sklan, E. H. et al. TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. J. Biol. Chem. 282, 36354–36361 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Sklan, E. H. et al. A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J. Virol. 81, 11096–11105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hobert, O. Gene regulation by transcription factors and microRNAs. Science 319, 1785–1786 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Pedersen, I. M. et al. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449, 919–922 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jopling, C. L. et al. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Sarasin-Filipowicz, M. et al. Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nat. Med. 15, 31–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Cullen, B. R. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat. Immunol. 7, 563–567 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Randall, G. et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl Acad. Sci. USA 104, 12884–12889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wohnsland, A. et al. Viral determinants of resistance to treatment in patients with hepatitis C. Clin. Microbiol Rev. 20, 23–38 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gale, M. Jr & Foy, E. M. Evasion of intracellular host defence by hepatitis C virus. Nature 436, 939–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Moradpour, D. et al. Replication of hepatitis C virus. Nat. Rev. Microbiol. 5, 453–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Miyamoto, M. et al. Comparison between subgenomic replicons of hepatitis C virus genotypes 2a (JFH-1) and 1b (Con1 NK5.1). Intervirology 49, 37–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Meylan, E. et al. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Foy, E. et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl Acad. Sci. USA 102, 2986–2991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, X.-D. et al. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl Acad. Sci. USA 102, 17717–17722 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loo, Y. M. et al. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc. Natl Acad. Sci. USA 103, 6001–6006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarasin-Filipowicz, M. et al. Interferon signaling and treatment outcome in chronic hepatitis, C. Proc. Natl Acad. Sci. USA 105, 7034–7039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lanford, R. E. et al. Lack of response to exogenous interferon-alpha in the liver of chimpanzees chronically infected with hepatitis C virus. Hepatology 46, 999–1008 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Bigger, C. B. et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J. Virol. 78, 13779–13792 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Janssens, V. & Goris, J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353, 417–439 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duong, F. H. et al. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 126, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Christen, V. et al. Activation of endoplasmic reticulum stress response by hepatitis viruses up-regulates protein phosphatase 2A. Hepatology 46, 558–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Taylor, D. R. et al. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science 285, 107 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Gale, M. J. Jr et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 230, 217–227 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Noguchi, T. et al. Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol Immunol. 45, 829–840 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Enomoto, N. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334, 77–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Szabo, G. et al. Altered innate immunity in chronic hepatitis C infection: cause or effect? Hepatology 46, 1279–1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Dolganiuc, A. et al. Hepatitis C virus (HCV) core protein-induced, monocyte-mediated mechanisms of reduced IFN-alpha and plasmacytoid dendritic cell loss in chronic HCV infection. J. Immunol. 177, 6758–6768 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Jeffers, L. J. et al. Peginterferon alfa-2a (40 kd) and ribavirin for black American patients with chronic HCV genotype 1. Hepatology 39, 1702–1708 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. He, X. S. et al. Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race. Hepatology 44, 352–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Lanford, R. E. et al. Antiviral effect and virus–host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J. Virol. 77, 1092–1104 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayashi, J. et al. Age-related response to interferon alfa treatment in women vs men with chronic hepatitis C virus infection. Arch. Intern. Med. 158, 177–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Bakr, I. et al. Higher clearance of hepatitis C virus infection in females compared with males. Gut 55, 1183–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thursz, M. et al. Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet 354, 2119–2124 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Houldsworth, A. et al. Polymorphisms in the IL-12B gene and outcome of HCV infection. J. Interferon Cytokine Res. 25, 271–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Gao, B. et al. Host factors and failure of interferon-alpha treatment in hepatitis C virus. Hepatology 39, 880–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Farci, P. et al. Lack of protective immunity against reinfection with hepatitis C virus. Science 258, 135–140 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Longman, R. S. et al. Presence of functional dendritic cells in patients chronically infected with hepatitis C virus. Blood 103, 1026–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Piccioli, D. et al. Comparable functions of plasmacytoid and monocyte-derived dendritic cells in chronic hepatitis C patients and healthy donors. J. Hepatol. 42, 61–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Tsubouchi, E. et al. Infection and dysfunction of circulating blood dendritic cells and their subsets in chronic hepatitis C virus infection. J. Gastroenterol. 39, 754–762 (2004).

    Article  PubMed  Google Scholar 

  79. Della Bella, S. et al. Decrease and dysfunction of dendritic cells correlate with impaired hepatitis C virus-specific CD4+ T-cell proliferation in patients with hepatitis C virus infection. Immunology 121, 283–292 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dolganiuc, A. et al. Myeloid dendritic cells of patients with chronic HCV infection induce proliferation of regulatory T lymphocytes. Gastroenterology 135, 2119–2127 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Owsianka, A. M. et al. Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein. J. Gen. Virol. 89, 653–659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Helle, F. et al. The neutralizing activity of anti-hepatitis C virus antibodies is modulated by specific glycans on the E2 envelope protein. J. Virol. 81, 8101–8111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thimme, R. et al. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc. Natl Acad. Sci. USA 99, 15661–15668 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Grakoui, A. et al. HCV persistence and immune evasion in the absence of memory T-cell help. Science 302, 659–662 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Waggoner, S. N. et al. HCV core protein interaction with gC1q receptor inhibits TH1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production. J. Leukoc. Biol. 82, 1407–1419 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, H. & Eckels, D. D. Mutations in immunodominant T-cell epitopes derived from the nonstructural 3 protein of hepatitis C virus have the potential for generating escape variants that may have important consequences for T-cell recognition. J. Immunol. 162, 4177–4183 (1999).

    CAS  PubMed  Google Scholar 

  87. Wang, J. H. et al. Modulation of the peripheral T-cell response by CD4 mutants of hepatitis C virus: transition from a TH1 to a TH2 response. Hum. Immunol. 64, 662–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Wedemeyer, H. et al. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J. Immunol. 169, 3447–3458 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Lucas, M. et al. Pervasive influence of hepatitis C virus on the phenotype of antiviral CD8+ T cells. J. Immunol. 172, 1744–1753 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Penna, A. et al. Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology 45, 588–601 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Spangenberg, H. C. et al. Intrahepatic CD8+ T-cell failure during chronic hepatitis C virus infection. Hepatology 42, 828–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Neumann-Haefelin, C. et al. Virological and immunological determinants of intrahepatic virus-specific CD8+ T-cell failure in chronic hepatitis C virus infection. Hepatology 47, 1824–1836 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Seifert, U. et al. Hepatitis C virus mutation affects proteasomal epitope processing. J. Clin. Invest. 114, 250–259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeong, H.-Y. et al. Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection. J. Leukoc. Biol. 83, 755–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Kaplan, M. et al. Peripheral virus-specific T-cell interleukin-10 responses develop early in acute hepatitis C infection and become dominant in chronic hepatitis. J. Hepatol. 48, 903–913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ebinuma, H. et al. Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J. Virol. 82, 5043–5053 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roque-Afonso, A.-M. et al. Compartmentalization of hepatitis C virus genotypes between plasma and peripheral blood mononuclear cells. J. Virol. 79, 6349–6357 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zehender, G. et al. Compartmentalization of hepatitis C virus quasispecies in blood mononuclear cells of patients with mixed cryoglobulinemic syndrome. J. Virol. 79, 9145–9156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sung, V. M. et al. Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J. Virol. 77, 2134–2146 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Han, J. Q. & Barton, D. J. Activation and evasion of the antiviral 2'-5' oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA 8, 512–525 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sumpter, R. J. et al. Viral evolution and interferon resistance of hepatitis C virus RNA replication in a cell-culture model. J. Virol. 78, 11591–11604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bode, J. G. et al. IFN-alpha; antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 17, 488–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Pflugheber, J. et al. Regulation of PKR and IRF-1 during hepatitis C virus RNA replication. Proc. Natl Acad. Sci. USA 99, 4650–4655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Polyak, S. J. et al. Hepatitis C virus nonstructural 5A protein induces interleukin-8, leading to partial inhibition of the interferon-induced antiviral response. J. Virol. 75, 6095–6106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Polyak, S. J. et al. Elevated levels of interleukin-8 in serum are associated with hepatitis C virus infection and resistance to interferon therapy. J. Virol. 75, 6209–6211 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Burroughs Wellcome Fund Clinical Scientist Award in Translational Research (JS Glenn), NIH RO1 DK066793, NIH RO1 DK064223 and the Center for Translational Research in Chronic Viral Infections. EH Sklan is the recipient of an ALF Postdoctoral Research Fellow Award and an Israel Science Foundation Bikura Post-doctoral Fellowship. PS Pang is the recipient of a Dean's Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Glenn.

Ethics declarations

Competing interests

JS Glenn declared associations with the following companies: Eiger Pharmaceuticals, Epiphany Biosciences, Genentech, Presidio Pharmaceuticals, and Romark Laboratories. The other authors declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklan, E., Charuworn, P., Pang, P. et al. Mechanisms of HCV survival in the host. Nat Rev Gastroenterol Hepatol 6, 217–227 (2009). https://doi.org/10.1038/nrgastro.2009.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing