Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signatures of natural selection in the human genome

Key Points

  • Natural selection leaves signatures in our genome that can be used to identify the genes that might underlie variation in disease resistance or drug metabolism.

  • Signatures of natural selection are confounded by population history and variation in local recombination rates.

  • Demographic processes should affect all loci in a similar way, whereas the effects of selection should be restricted to specific loci.

  • Selection might have been more important in shaping patterns of variation in the genome than was previously anticipated, although the relative importance of background selection and genetic hitchhiking remains unknown.

  • Most strategies that are used to detect whether natural selection has affected a specific allele measure the departure of the allele's frequency from expectations under a neutral model.

  • Evidence of positive selection acting on genes is beginning to accumulate.

  • Many coding regions in the human genome do not show an excess of low-frequency alleles. This indicates that balancing selection might be more common than generally perceived.

  • The wealth of nucleotide polymorphism data that has become available during the past few years has provided an exciting opportunity to carry out genome scans for selection.

  • Continued progress towards identifying genes that are subject to selection will depend on understanding more about the demographic structure of human populations.

  • Even after a candidate locus has been shown to be subject to selection, it will require a substantial amount of work to identify the causal variants and to understand its relationship to a human phenotype.

Abstract

During their dispersal from Africa, our ancestors were exposed to new environments and diseases. Those who were better adapted to local conditions passed on their genes, including those conferring these benefits, with greater frequency. This process of natural selection left signatures in our genome that can be used to identify genes that might underlie variation in disease resistance or drug metabolism. These signatures are, however, confounded by population history and by variation in local recombination rates. Although this complexity makes finding adaptive polymorphisms a challenge, recent discoveries are instructing us how and where to look for the signatures of selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of natural selection on gene genealogies and allele frequencies.
Figure 2: The effects of selection on the distribution of genetic variation.
Figure 3: Using phylogenetic techniques to infer haplotype structure.
Figure 4: Detecting recent positive selection using linkage disequilibrium analysis.
Figure 5: Screening the human genome for signatures of natural selection.

Similar content being viewed by others

References

  1. Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. of Chicago Press, Chicago, 1999).

    Google Scholar 

  2. Klein, J. & Takahata, N. Where Do We Come From? The Molecular Evidence for Human Descent (Springer, New York, 2002).

    Google Scholar 

  3. Sober, E. The Nature of Selection: Evolutionary Theory in Philosophical Focus (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  4. Li, W. Molecular Evolution (Sinauer Associates, Sunderland, Massachusetts, 1997). An excellent introductory text that outlines the theoretical basis of molecular evolutionary analyses and provides insightful empirical examples.

    Google Scholar 

  5. Nei, M. Molecular Evolutionary Genetics (Columbia Univ. Press, New York, 1987).

    Google Scholar 

  6. Endler, J. A. Natural Selection in the Wild (Princeton Univ. Press, New Jersey, 1986).

    Google Scholar 

  7. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    CAS  PubMed  Google Scholar 

  8. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS  PubMed  Google Scholar 

  9. Kimura, M. Neutral Theory of Molecular Evolution (Cambridge Univ. Press,Cambridge, UK, 1985).

    Google Scholar 

  10. Fay, J. C. & Wu, C. I. The neutral theory in the genomic era. Curr. Opin. Genet. Dev. 11, 642–646 (2001).

    CAS  PubMed  Google Scholar 

  11. Fay, J. C., Wyckoff, G. J. & Wu, C. I. Positive and negative selection on the human genome. Genetics 158, 1227–1234 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kreitman, M. Methods to detect selection in populations with applications to the human. Annu. Rev. Genomics Hum. Genet. 1, 539–559 (2000). A detailed review of analytical methods to detect the effects of natural selection on patterns of polymorphism.

    CAS  PubMed  Google Scholar 

  13. Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Simonsen, K. L., Churchill, G. A. & Aquadro, C. F. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141, 413–429 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wall, J. D. Recombination and the power of statistical tests of neutrality. Genet. Res. 74, 65–79 (1999).

    Google Scholar 

  16. Jorde, L. B., Watkins, W. S. & Bamshad, M. J. Human population genomics: a bridge from evolutionary history to genetic medicine. Mol. Genet. 10, 2199–2207 (2001).

    CAS  Google Scholar 

  17. Przeworski, M., Hudson, R. R. & Di Rienzo, A. Adjusting the focus on human variation. Trends. Genet. 16, 296–302 (2000).

    CAS  PubMed  Google Scholar 

  18. Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).

    CAS  PubMed  Google Scholar 

  19. Ke, Y. et al. African origin of modern humans in East Asia: a tale of 12,000 Y chromosomes. Science 292, 1151–1153 (2001).

    CAS  PubMed  Google Scholar 

  20. Jorde, L. B. et al. The distribution of human genetic diversity: a comparison of mitochondrial, autosomal and Y-chromosome data. Am. J. Hum. Genet. 66, 979–988 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimmel, M. et al. Signatures of population expansion in microsatellite repeat data. Genetics 148, 1921–1930 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reich, D. E. & Goldstein, D. B. Genetic evidence for a Paleolithic human population expansion in Africa. Proc. Natl Acad. Sci. USA 95, 8119–8123 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wooding, S. & Rogers, A. R. A Pleistocene population X-plosion? Hum. Biol. 72, 693–695 (2000).

    CAS  PubMed  Google Scholar 

  24. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002). The most comprehensive analysis of global patterns of human population structure completed so far. It shows that there is substantial geographical structure among populations, although the proportion of an individual's ancestry from one or more of these populations is highly variable.

    CAS  PubMed  Google Scholar 

  25. Bamshad, M. et al. Human population genetic structure and inference of group membership. Am. J. Hum. Genet. (in the press).

  26. Harpending, H. C. Genetic traces of ancient demography. Proc. Natl Acad. Sci. USA 95, 1961–1967 (1995).

    Google Scholar 

  27. Takahata, N. Allelic genealogy and human evolution. Mol. Biol. Evol. 10, 2–22 (1993).

    CAS  PubMed  Google Scholar 

  28. Braverman, J. M., Hudson, R. R., Kaplan, N. L., Langley, C. H. & Stephan, W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 140, 783–796 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fullerton, S. M. et al. Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. Am. J. Hum. Genet. 70, 1096–1106 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bamshad, M. J. et al. A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. Proc. Natl Acad. Sci. USA 99, 10539–10544 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Stephens, J. C. et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 293, 489–493 (2001). An extensive survey of the level of polymorphism found in and near more than 300 genes, which includes a preliminary test of whether the patterns are consistent with neutrality.

    CAS  PubMed  Google Scholar 

  32. Prezworski, M. The signature of positive selection at randomly chosen loci. Genetics 160, 1179–1189 (2002).

    Google Scholar 

  33. Charlesworth, B. et al. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hudson, R. R. & Kaplan, N. L. Deleterious background selection with recombination. Genetics 141, 1605–1617 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maynard-Smith, J. & Haigh, J. The hitch-hiking effect of a favorable gene. Genet. Res. 23, 23–35 (1974). A noteworthy exposition of the impact of positive selection on linked neutral polymorphisms.

    Google Scholar 

  36. Kaplan, N. L., Hudson, R. R. & Langley, C. H. The 'hitchhiking effect' revisited. Genetics 123, 887–899 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Begun, J. J. & Aquadro, C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356, 519–520 (1992).

    CAS  PubMed  Google Scholar 

  38. Nachman, M. W. Patterns of DNA variability at X-linked loci in Mus domesticus. Genetics 147, 1303–1316 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nachman, M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 17, 481–485 (2001).

    CAS  PubMed  Google Scholar 

  40. Kim, Y. & Stephan, W. Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics 155, 1415–1427 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fay, J. C., Wyckoff, G. J. & Wu, C. I. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–1026 (2002).

    CAS  PubMed  Google Scholar 

  42. Yang, Z. Inference of selection from multiple species alignments. Curr. Opin. Genet. Dev. 12, 1–7 (2002).

    Google Scholar 

  43. Bush, R. M. Predicting adaptive evolution. Nature Rev. Genet. 2, 387–392 (2001).

    CAS  PubMed  Google Scholar 

  44. Wyckoff, G. J., Wang, W. & Wu, C. I. Rapid evolution of male reproductive genes in the descent of man. Nature 403, 304–309 (2000).

    CAS  PubMed  Google Scholar 

  45. Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature 413, 514–519 (2001).

    CAS  PubMed  Google Scholar 

  46. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    CAS  PubMed  Google Scholar 

  47. Olsen, M. V. & Varki, A. Sequencing the chimpanzee genome: insights into human evolution and disease. Genetics 4, 20–28 (2003).

    Google Scholar 

  48. Neel, J. V. Diabetes mellitus: a 'thrifty' genotype rendered detrimental by 'progress'? Am. J. Hum. Genet. 14, 353–362 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wooding, S. P. et al. DNA sequence variation in a 3.7-kb noncoding sequence 5′ of the CYP1A2 gene: implications for human population history and natural selection. Am. J. Hum. Genet. 71, 528–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  51. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    CAS  PubMed  Google Scholar 

  52. Saunders, M. A., Hammer, M. F. & Nachman M. W. Nucleotide variability at G6PD and the signature of malarial selection in humans. Genetics (in the press).

  53. Toomajian, C. & Kreitman, M. Sequence variation and haplotype structure at the human HFE locus. Genetics 161, 1609–1623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Harding, R. M. Archaic African and Asian lineages in the genetic ancestry of modern humans. Am. J. Hum. Genet. 70, 369–383 (1997).

    Google Scholar 

  55. Wooding, S. & Rogers, A. The matrix coalescent and an application to human single-nucleotide polymorphisms. Genetics 161, 1641–1650 (2002).

    PubMed  PubMed Central  Google Scholar 

  56. Hamblin, M. T. & Di Rienzo, A. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet. 66, 1669–1679 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hamblin, M. T., Thompson, E. E. & Di Rienzo, A. Complex signatures of natural selection at the Duffy blood group locus. Am. J. Hum. Genet. 70, 369–383 (2002). A meticulous analysis of the molecular signature of selection on a classical human trait, which illustrates the potential confounding effects of population history and the interaction of several selective forces.

    PubMed  Google Scholar 

  58. Harding, R. M. et al. Evidence for variable selective pressures at MC1R. Am. J. Hum. Genet. 66, 1351–1361 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Makova, K. D., Ramsay, M., Jenkins, T. & Li, W. H. Human DNA sequence variation in a 6.6-kb region containing the melanocortin 1 receptor promoter. Genetics 158, 1253–1268 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ding, Y. C. et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl Acad. Sci. USA 99, 309–314 (2002).

    CAS  PubMed  Google Scholar 

  61. Harris, E. E. & Hey, J. Human populations show reduced DNA sequence variation at the factor IX locus. Curr. Biol. 11, 774–778 (2001).

    CAS  PubMed  Google Scholar 

  62. Nachman, M. W. & Crowell, S. L. Contrasting evolutionary histories of two introns of the Duchenne muscular dystrophy gene, Dmd, in humans. Genetics 155, 1855–1864 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gilad, Y., Rosenberg, S., Przeworski, M., Lancet, D. & Skorecki, K. Evidence for positive selection and population structure at the human MAO-A gene. Proc. Natl Acad. Sci. USA 99, 862–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia. Nature Genet. 30, 233–237 (2002). A good example of the difficulties of finding the functional variants under selection at a locus with a signature of positive selection.

    CAS  PubMed  Google Scholar 

  65. Stephens, J. C. et al. Dating the origin of the CCR5-Δ32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Leber, F. et al. The Δ32-ccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum. Mol. Genet. 7, 399–406 (1998).

    Google Scholar 

  67. Roses, A. D. Pharmacogenetics and the practice of medicine. Nature 405, 857–865 (2001).

    Google Scholar 

  68. Scordo, M. G. & Spina M. Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics 31, 1–18 (2002).

    Google Scholar 

  69. Ikeya, K. et al. Human CYP1A2: sequence, gene structure, comparison with the mouse and rat orthologous gene, and differences in liver 1A2 mRNA expression. Mol. Endocrinol. 3, 1399–1408 (1989).

    CAS  PubMed  Google Scholar 

  70. Rosenberg, N. A. & Nordborg, M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Rev. Genet. 3, 380–390 (2002).

    CAS  PubMed  Google Scholar 

  71. Hudson, R. R. & Kaplan, N. L. The coalescent process in models with selection and recombination. Genetics 120, 831–840 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi, Y., Radlwimmer, F. B. & Yokoyama, S. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc. Natl Acad. Sci. USA 98, 11731–11736 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nordborg, M. & Tavare, S. Linkage disequilibrium: what history has to tell us. Trends Genet. 18, 83–90 (2002).

    CAS  PubMed  Google Scholar 

  74. Livingstone, F. B. Malaria and human polymorphisms. Annu. Rev. Genet. 5, 33–64 (1974).

    Google Scholar 

  75. Cooke, G. S. & Hill, A. V. S. Genetics of susceptibility to human infectious disease. Nature Rev. Genet. 2, 967–977 (2001).

    CAS  PubMed  Google Scholar 

  76. Miller, L. H. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc. Natl Acad. Sci. USA 91, 2415–2419 (1974).

    Google Scholar 

  77. Vulliamy, T. J., Mason, P. & Luzzatto, L. The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet. 8, 138–142 (1992).

    CAS  PubMed  Google Scholar 

  78. Beutler, E. G6PD deficiency. Blood 84, 3613–3636 (1994).

    CAS  PubMed  Google Scholar 

  79. Ruwende, C. et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376, 246–249 (1995).

    CAS  PubMed  Google Scholar 

  80. Austin, L. H. & Federica, V. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B 268, 1855–1860 (2001).

    Google Scholar 

  81. Coluzzi, M. The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum. Parassitologia 41, 277–283 (1999).

    CAS  PubMed  Google Scholar 

  82. Feder, J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996).

    CAS  PubMed  Google Scholar 

  83. Merryweather-Clarke, A. T., Pointon, J. J., Shearman, J. D. & Robson, K. J. Global prevalence of putative haemochromatosis mutations. J. Med. Genet. 34, 275–278 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ajioka, R. S. et al. Haplotype analysis of hemochromatosis: evaluation of different linkage-disequilibrium approaches and evolution of disease chromosomes. Am. J. Hum. Genet. 60, 1439–1447 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas, W. et al. Haplotype and linkage disequilibrium analysis of the hereditary hemochromatosis gene region. Hum. Genet. 102, 517–525 (1998).

    CAS  PubMed  Google Scholar 

  86. Bulaj, Z. J., Griffen, L. M., Jorde, L. B., Edwards, C. Q. & Kushner, J. P. Clinical and biochemical abnormalities in people heterozygous for hemochromatosis. N. Engl. J. Med. 335, 1799–1805 (1996).

    CAS  PubMed  Google Scholar 

  87. Scholl, T. O., Hediger, M. L., Fischer, R. L. & Shearer, J. W. Anemia vs. iron deficiency: increased risk of preterm delivery in a prospective study. Am. J. Clin. Nutr. 55, 985–988 (1992).

    CAS  PubMed  Google Scholar 

  88. Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 69, 124–137 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hawkes, K., O'Connell, J. F., Blurton Jones, N. G., Alvarez, H. & Charnov, E. L. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl Acad. Sci. USA 95, 1336–1339 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lewontin, R. C. & Hubby, J. L. A molecular approach to the study of genetic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595–609 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kaplan, N. L., Darden, T. & Hudson, R. R. The coalescent process in models with selection. Genetics 120, 819–829 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Richman, A. D. & Kohn, J. R. Self-incompatibility alleles from Physalis: implications for historical inference from balanced genetic polymorphisms. Proc. Natl Acad. Sci. USA 96, 168–172 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415–435 (1998).

    CAS  PubMed  Google Scholar 

  94. Verrelli, B. C. et al. Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am. J. Hum. Genet. 71, 1112–1128 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baum, J., Ward, R. H. & Conway, D. H. Natural selection on the erythrocyte surface. Mol. Biol. Evol. 19, 223–229 (2002).

    CAS  PubMed  Google Scholar 

  96. Wu, X., Di Rienzo, A. & Ober, C. A population genetics study of single nucleotide polymorphisms in the interleukin 4 receptor a (IL4RA) gene. Genes Immun. 2, 128–134 (2001).

    CAS  PubMed  Google Scholar 

  97. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    CAS  PubMed  Google Scholar 

  98. Schierup, M. H., Vekemans, X. & Charlesworth, D. The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet. Res. 76, 51–62 (2000).

    CAS  PubMed  Google Scholar 

  99. Charlesworth, B., Nordborg, M. & Charlesworth, D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70, 155–174 (1997).

    CAS  PubMed  Google Scholar 

  100. Takahata, N. & Nei, M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124, 967–978 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Salamon, H. et al. Evolution of HLA class II molecules: allelic and amino acid site variability across populations. Genetics 152, 393–400 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Grimsley, C., Mather, K. A. & Ober, C. HLA-H: a pseudogene with increased variation due to balancing selection at neighboring loci. Mol. Biol. Evol. 15, 1581–1588 (1998).

    CAS  PubMed  Google Scholar 

  103. Muller, H. J. Our load of mutation. Am. J. Hum. Genet. 2, 111–176 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  105. Payseur, B. A., Cutter, A. D. & Nachman, M. W. Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol. Biol. Evol. 19, 1143–1153 (2002).

    CAS  PubMed  Google Scholar 

  106. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    CAS  PubMed  Google Scholar 

  107. Sunyaev, S. R., Lathe, W. C., Ramensky, V. E. & Bork, P. SNP frequencies in human genes an excess of rare alleles and differing modes of selection. Trends Genet. 16, 335–337 (2000).

    CAS  PubMed  Google Scholar 

  108. Akey, J. M., Zhang, G., Zhang, K., Jin, L. & Shriver, M. D. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12, 1805–1814 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wiehe, T. The effect of selective sweeps on the variance of the allele distribution of a linked multiallele locus: hitchhiking of microsatellites. Theor. Popul. Biol. 53, 272–283 (1998).

    CAS  PubMed  Google Scholar 

  110. Comeron, J. M. & Kreitman, M. Population, evolutionary and genomic consequences of interference selection. Genetics 161, 389–410 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Navarro, A. & Barton, N. H. The effects of multilocus balancing selection on neutral variability. Genetics 161, 849–863 (2002).

    PubMed  PubMed Central  Google Scholar 

  112. Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    CAS  PubMed  Google Scholar 

  113. Tajima, F. Evolutionary relationships of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    CAS  PubMed  Google Scholar 

  115. Li, W. H. & Sadler, L. A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet. 32, 135–142 (2002).

    CAS  PubMed  Google Scholar 

  117. Zietkiewicz, E. et al. Genetic structure of the ancestral population of modern humans. J. Mol. Evol. 47, 146–155 (1998).

    CAS  PubMed  Google Scholar 

  118. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Fay, J. C. & Wu, C. I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000). Introduces a new statistical test of neutrality on the basis of the prediction that, immediately after a selective sweep, an excess of high-frequency-derived polymorphisms is expected at linked sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Przeworski, M. The signature of positive selection at randomly chosen loci. Genetics 160, 1179–1189 (2002).

    PubMed  PubMed Central  Google Scholar 

  121. Gilad, Y. et al. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nature Genet. 26, 221–224 (2000).

    CAS  PubMed  Google Scholar 

  122. Huttley, G. A. et al. Adaptive evolution of the tumor suppressor BRCA1 in humans and chimpanzees. Nature Genet. 25, 410–413 (2000).

    CAS  PubMed  Google Scholar 

  123. Suzuki, Y. & Gojobori, T. A method for detecting positive selection at single amino acid sites. Mol. Biol. Evol. 16, 1315–1328 (1999).

    CAS  PubMed  Google Scholar 

  124. Schlotterer, C. Towards a molecular characterization of adaptation in local populations. Curr. Opin. Genet. Dev. 12, 1–4 (2002).

    Google Scholar 

  125. Lewontin, R. C. & Krakauer, J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74, 175–195 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bowcock, A. M. et al. Drift, admixture, and selection in human evolution: a study with DNA polymorphisms. Proc. Natl Acad. Sci. USA 88, 839–843 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Beaumont, M. A. & Nichols, R. A. Evaluating loci for use in genetic analysis of population structure. Proc. R. Soc. Lond. B 263, 1619–1626 (1996).

    Google Scholar 

  128. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the ADH locus in Drosophila. Nature 351, 652–654 (1991).

    CAS  PubMed  Google Scholar 

  129. Fu, X. Y. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, W. H., Wu, C. I. & Luo, C. C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).

    PubMed  Google Scholar 

  131. Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1985).

    Google Scholar 

  132. Hudson, R. R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. B. Jorde, A. R. Rogers and three anonymous reviewers for comments and criticisms. The authors are supported by funds from the US National Institutes of Health and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Bamshad or Stephen P. Wooding.

Related links

Related links

DATABASES

LocusLink

BRCA1

calpain-10

CCR5

CYP1A2

DRD4

G6PD

MAOA

MC1R

PPARG

OMIM

idiopathic haemochromatosis

type II diabetes

Glossary

FITNESS

The ability of an individual to reproduce his or her genetic makeup, which is not always equivalent to individual reproductive success.

FIXATION

The increase in the frequency of a genetic variant in a population to 100%.

BALANCING SELECTION

A selection regime that results in the maintenance of two or more alleles at a single locus in a population.

BACKGROUND SELECTION

The elimination of neutral polymorphisms as a result of the negative selection of deleterious mutations at linked sites.

POLYMORPHISM

The contemporary definition refers to any site in the DNA sequence that is present in the population in more than one state. By contrast, the traditional definition referred to an allele with a population frequency >1% and <99%.

GENETIC DRIFT

The random fluctuations of allele frequencies over time due to chance alone.

GENETIC LOAD

The proportion of a population's maximum fitness that is lost as a result of selection against the deleterious genotypes it contains.

EFFECTIVE POPULATION SIZE

The size of the ideal population in which the effects of random drift would be the same as those seen in the actual population.

POPULATION STRUCTURE

A departure from random mating as a consequence of factors such as inbreeding, overlapping generations, finite population size and geographical subdivision.

SELECTIVE SWEEP

The process by which positive selection for a mutation eliminates neutral variation at linked sites.

STANDARD NEUTRAL MODEL

A hypothetical panmictic (randomly mating) population of constant size in which genetic variation is neutral and follows a model (the 'infinite sites model') in which each new mutation occurs at a site that has not previously mutated.

VARIANCE

A statistic that quantifies the dispersion of data about the mean.

MINOR ALLELE

The less frequent of two alleles at a locus.

OUTGROUP

A closely related species that is used for comparison, for example, to infer the ancestral versus the derived state of a polymorphism.

LIKELIHOOD ANALYSIS

A statistical method that calculates the probability of the observed data under varying hypotheses, in order to estimate model parameters that best explain the observed data and determine the relative strengths of alternative hypotheses.

PHYLOGENETICS

Reconstruction of the evolutionary relationships (that is, the phylogeny) of a group of taxa, such as species.

LINKAGE DISEQUILIBRIUM

(LD). The non-random association of alleles in haplotypes.

HAPLOTYPE

The combination of alleles or genetic markers found on a single chromosome of a given individual.

SITE FREQUENCY SPECTRUM

The fraction of polymorphic sites at which a minor or derived allele is present in one copy, two copies and so on.

SINGLE-LINKAGE JOINING ALGORITHM

A simple clustering algorithm that begins with all data points (for example, haplotypes) in separate clusters, and then iteratively joins pairs of similar clusters.

DUFFY BLOOD GROUP

This group is defined by variants in a chemokine receptor that is present on the surface of several types of cell, including red blood cells. This receptor must be present for Plasmodium vivax to invade cells and cause malaria.

WRIGHT'S FIXATION INDEX

(FST). The fraction of the total genetic variation that is distributed among subpopulations in a subdivided population.

2 × 2 CONTINGENCY TABLE

A 2 × 2 table that describes the cross-classification of data that are divided into two groups with two categories in each.

EPISTATIC

An interaction between non-allelic genes, such that one gene masks, interferes with or enhances the expression of the other gene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamshad, M., Wooding, S. Signatures of natural selection in the human genome. Nat Rev Genet 4, 99–110 (2003). https://doi.org/10.1038/nrg999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing