Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The art and design of genetic screens: filamentous fungi

Key Points

  • Filamentous fungi represent a billion years of evolutionary divergence and show a developmental complexity that allows the design of new screens.

  • The relationship between genes and proteins was first clearly established using auxotrophic mutants of Neurospora crassa.

  • The fungi that have been most useful for genetic analysis are haploid and reproduce asexually, as well as sexually.

  • Methods used to mutagenize fungi include radiation, chemicals, and plasmid or transposon insertion.

  • Growth over a wide temperature range allows isolation of temperature-sensitive mutants with mutations in essential genes.

  • The filamentous hypha and the regular distribution of its nuclei lends itself to screens for genes that are required for mitosis and nuclear migration.

  • Fungi develop a wide range of multicellular structures, composed of several cell types, for vegetative growth, asexual and sexual reproduction. These lend themselves to visual screens for genes that are involved in many developmental pathways. Mutants that are unable to produce sexual spores are particularly relevant to studies on meiosis.

  • N. crassa is an important model for studying circadian rhythm. Mutants can be identified by a race-tube assay in which the distance between bands of conidiospores is a measure of circadian day length.

  • Quelling is a post-transcriptional gene-silencing mechanism that is analogous to co-suppression in plants and RNA interference in Caenorhabditis elegans. Quelling-defective mutants are selected in N. crassa using a conidiospore colour assay.

  • Genes are generally cloned using transformation to screen available genomic libraries for sequences that complement a mutation of interest. Techniques for insertional mutagenesis have been developed that allow recovery of genes tagged by the inserted sequence.

Abstract

In the 1940s, screens for metabolic mutants of the filamentous fungus Neurospora crassa established the fundamental, one-to-one relationship between a gene and a specific protein, and also established fungi as important genetic organisms. Today, a wide range of filamentous species, which represents a billion years of evolutionary divergence, is used for experimental studies. The developmental complexity of these fungi sets them apart from unicellular yeasts, and allows the development of new screens that enable us to address biological questions that are relevant to all eukaryotes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Morphological variation of filamentous fungi.
Figure 2: ropy mutants of Neurospora crassa.
Figure 3: Race-tube assay to detect circadian rhythm mutants in Neurospora crassa.
Figure 4: Fluorescence in situ hybridization analysis of meiotic mutants of Coprinus cinereus.

References

  1. Beadle, G. W. & Tatum, E. L. Genetic control of biochemical reactions in Neurospora. Proc. Natl Acad. Sci. USA 27, 499–506 (1941).The classic paper that describes the first auxotrophic mutants of N. crassa.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Horowitz, N. H. Fifty years ago: the Neurospora revolution. Genetics 127, 631–635 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Davis, R. H. & Perkins, D. D. Neurospora: a model of model microbes. Nature Rev. Genet. 3, 397–403 (2002).

    CAS  PubMed  Article  Google Scholar 

  4. Berbee, M. L. & Taylor, J. W. Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71, 1114–1127 (1993).

    Article  Google Scholar 

  5. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).

    CAS  PubMed  Article  Google Scholar 

  6. Davis, R. H. Neurospora: Contributions of a Model Organism (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  7. Clutterbuck, A. J. in Handbook of Genetics. I. Bacteria, Bacteriophages and Fungi (ed. King, R. C.) 447–510 (Plenum, New York, 1974).

    Book  Google Scholar 

  8. Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. Camb. 5, 282–304 (1964).

    Article  Google Scholar 

  9. Whitehouse, H. L. K. & Hastings, P. J. The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. Camb. 6, 27–92 (1965).

    CAS  Article  Google Scholar 

  10. Whitehouse, H. L. K. Genetic Recombination: Understanding the Mechanisms (John Wiley & Sons, London, 1982).

    Google Scholar 

  11. Casselton, L. A. Mate recognition in fungi. Heredity 88, 142–147 (2002).

    CAS  PubMed  Article  Google Scholar 

  12. Fincham, J. R., Day, P. R. & Radford, A. Fungal Genetics (Blackwell Scientific, Oxford, 1979).

    Google Scholar 

  13. Woodward, V. W., De Zeeuw, J. R. & Srb, A. M. The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia followed by filtration and selective plating. Proc. Natl Acad. Sci. USA 40, 192–200 (1954).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Cove, D. J. Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Mol. Gen. Genet. 146, 147–159 (1976).

    CAS  PubMed  Article  Google Scholar 

  15. Apirion, D. The two-way selection of mutants and revertants in respect of acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet. Res. 6, 317–329 (1965).

    CAS  PubMed  Article  Google Scholar 

  16. Romano, A. H. & Kornberg, H. L. Regulation of sugar uptake by Aspergillus nidulans. Proc. R. Soc. Lond. B 173, 475–490 (1968).

    Google Scholar 

  17. Sheir-Neiss, G., Lai, M. H. & Morris, N. R. Identification of a gene for β-tubulin in Aspergillus nidulans. Cell 15, 639–647 (1978).This important paper confirms that mutations conferring benomyl resistance occur in a gene that encodes a fungal tubulin.

    CAS  PubMed  Article  Google Scholar 

  18. Oakley, B. R. & Morris, N. R. A β-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24, 837–845 (1981).

    CAS  PubMed  Article  Google Scholar 

  19. Forsburg, S. L. The art and design of genetic screens: yeast. Nature Rev. Genet. 2, 659–668 (2001).

    CAS  PubMed  Article  Google Scholar 

  20. Jarvik, J. & Botstein, D. Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc. Natl Acad. Sci. USA 72, 2738–2742 (1975).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Morris, N. R., Lai, M. H. & Oakley, C. E. Identification of a gene for α-tubulin in Aspergillus nidulans. Cell 16, 437–442 (1979).

    CAS  PubMed  Article  Google Scholar 

  22. Weil, C. F., Oakley, C. E. & Oakley, B. R. Isolation of mip (microtubule-interacting protein) mutations of Aspergillus nidulans. Mol. Cell. Biol. 6, 2963–2968 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oakley, C. E. & Oakley, B. R. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–664 (1989).This is a landmark paper, as it describes a new member of the tubulin family, which was identified by a genetic suppressor screen.

    CAS  PubMed  Article  Google Scholar 

  24. Zheng, Y., Jung, M. K. & Oakley, B. R. γ-Tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823 (1991).

    CAS  PubMed  Article  Google Scholar 

  25. Morris, N. R. Mitotic mutants of Aspergillus nidulans. Genet. Res. 26, 237–254 (1975).The description of the cytological screen that identified temperature-sensitive mutants that were unable to complete mitosis or correctly distribute their nuclei after mitosis.

    CAS  PubMed  Article  Google Scholar 

  26. Aist, J. R. & Morris, N. R. Mitosis in filamentous fungi: how we got where we are. Fungal Genet. Biol. 27, 1–25 (1999).

    CAS  PubMed  Article  Google Scholar 

  27. Osmani, S. A., May, G. S. & Morris, N. R. Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J. Cell Biol. 104, 1495–1504 (1987).

    CAS  PubMed  Article  Google Scholar 

  28. Enos, A. P. & Morris, N. R. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60, 1019–1027 (1990).

    CAS  PubMed  Article  Google Scholar 

  29. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Xiang, X., Osmani, A. H., Osmani, S. A., Xin, M. & Morris, N. R. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol. Biol. Cell 6, 297–310 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Efimov, V. P. & Morris, N. R. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis. Genetics 149, 101–116 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Yarden, O., Plamann, M., Ebbole, D. J. & Yanofsky, C. cot-1, a gene required for hyphal elongation in Neurospora crassa, encodes a protein kinase. EMBO J. 11, 2159–2166 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Bruno, K. S., Tinsley, J. H., Minke, P. F. & Plamann, M. Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc. Natl Acad. Sci. USA 93, 4775–4780 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Bell-Pedersen, D. Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genet. Biol. 29, 1–18 (2000).

    CAS  PubMed  Article  Google Scholar 

  35. Loros, J. J. & Dunlap, J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol. 63, 757–794 (2001).An excellent account of this rapidly moving field, giving a detailed historical perspective as well as current models for clock regulation.

    CAS  PubMed  Article  Google Scholar 

  36. Feldman, J. Genetic approaches to circadian clocks. Annu. Rev. Plant Physiol. 33, 583–608 (1982).

    CAS  Article  Google Scholar 

  37. Zhu, H. et al. Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics 157, 1057–1065 (2001).

    PubMed  PubMed Central  Article  Google Scholar 

  38. Linden, H. & Macino, G. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 16, 98–109 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Dunlap, J. Circadian rhythms. An end in the beginning. Science 280, 1548–1549 (1998).

    CAS  PubMed  Article  Google Scholar 

  40. Cogoni, C. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55, 381–406 (2001).This review covers our current understanding of gene-silencing mechanisms in eukaryotic cells.

    CAS  PubMed  Article  Google Scholar 

  41. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353 (1992).

    CAS  Article  PubMed  Google Scholar 

  42. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    CAS  Article  PubMed  Google Scholar 

  43. Cogoni, C. & Macino, G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286, 2342–2344 (1999).

    CAS  PubMed  Article  Google Scholar 

  44. Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev. 16, 790–795 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Matzke, M. A., Mette, M. F. & Matzke, A. J. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol. 43, 401–415 (2000).

    CAS  PubMed  Article  Google Scholar 

  46. Clutterbuck, A. J. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63, 317–327 (1969).Illustrates the scope of filamentous fungi as genetic models for studying development, and describes the genetic characterization of mutants that have been subject to molecular analysis.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Springer, M. L. & Yanofsky, C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 3, 559–571 (1989).

    CAS  PubMed  Article  Google Scholar 

  48. Timberlake, W. E. Molecular genetics of Aspergillus development. Annu. Rev. Genet. 24, 5–36 (1990).

    CAS  PubMed  Article  Google Scholar 

  49. de Jong, J. C., McCormack, B. J., Smirnoff, N. & Talbot, N. J. Glycerol generates turgor in rice blast. Nature 389, 244–245 (1997).

    CAS  Article  Google Scholar 

  50. Tucker, S. L. & Talbot, N. J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39, 385–417 (2001).

    CAS  PubMed  Article  Google Scholar 

  51. Le Chevanton, L. & Zickler, D. in More Gene Manipulations in Fungi (eds Bennett, J. W. & Lasure, L. L.) 291–303 (Academic, San Diego, 1991).

    Book  Google Scholar 

  52. Raju, N. B. Genetic control of the sexual cycle in Neurospora. Mycol. Res. 96, 241–262 (1992).

    Article  Google Scholar 

  53. Takemaru, T. & Kamada, T. The induction of morphogenetic variations in Coprinus basidiocarps by UV irradiation. Rep. Tottori Mycol. Inst. 7, 71–77 (1969).

    Google Scholar 

  54. Takemaru, T. & Kamada, T. Basidiocarp development in Coprinus macrorhizus. I. Induction of developmental variations. Bot. Mag. Tokyo 85, 51–57 (1972).

    CAS  Article  Google Scholar 

  55. Pukkila, P. J. in The Mycota. I. Growth, Differentiation and Sexuality (eds Wessels, J. G. H. & Meinhardt, F.) 267–280 (Springer, Berlin and Heidelberg, 1994).

    Book  Google Scholar 

  56. Kanda, T. et al. Isolation and characterization of recessive sporeless mutants in the basidiomycete Coprinus cinereus. Mol. Gen. Genet. 216, 526–529 (1989).

    Article  Google Scholar 

  57. Raju, N. B. & Lu, B. C. Meiosis in Coprinus. III. Timing of meiotic events in C. lagopus (sensu Buller). Can. J. Bot. 48, 2183–2186 (1970).

    Article  Google Scholar 

  58. Swamy, S., Uno, I. & Ishikawa, T. Morphogenetic effects of mutations at the A and B incompatibility factors in Coprinus cinereus. J. Gen. Microbiol. 130, 3219–3224 (1984).

    Google Scholar 

  59. Inada, K., Morimoto, Y., Arima, T., Murata, Y. & Kamada, T. The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157, 133–140 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Lu, B. C. in Fungal Genetics: Principles and Practice (ed. Bos, C. J.) 119–176 (Marcel Dekker, Inc., New York, 1996).

    Google Scholar 

  61. Gerecke, E. E. & Zolan, M. E. An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 154, 1125–1139 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Merino, S. T., Cummings, W. J., Acharya, S. N. & Zolan, M. E. Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc. Natl Acad. Sci. USA 97, 10477–10482 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. van Heemst, D. et al. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol. Gen. Genet. 254, 654–664 (1997).

    CAS  PubMed  Article  Google Scholar 

  64. Goldman, G. H., McGuire, S. L. & Harris, S. D. The DNA damage response in filamentous fungi. Fungal Genet. Biol. 35, 183–195 (2002).

    CAS  PubMed  Article  Google Scholar 

  65. Leslie, J. F. & Raju, N. B. Recessive mutations from natural populations of Neurospora crassa that are expressed in the sexual diplophase. Genetics 111, 759–777 (1985).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Raju, N. B. & Leslie, J. F. Cytology of recessive sexual-phase mutants from wild strains of Neurospora crassa. Genome 35, 815–826 (1992).

    CAS  PubMed  Article  Google Scholar 

  67. Moreau, P. J. F., Zickler, D. & Leblon, G. One class of mutants with disturbed centromere cleavage and chromosome pairing in Sordaria macrospora. Mol. Gen. Genet. 198, 189–197 (1985).

    CAS  Article  Google Scholar 

  68. van Heemst, D., James, F., Poggeler, S., Berteaux-Lecellier, V. & Zickler, D. Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98, 261–271 (1999).Illustrates the powerful cytogenetic analysis of meiosis in S. macrospora and shows that Spo76, an evolutionarily conserved protein, is required for mitotic and meiotic chromosome morphogenesis.

    CAS  PubMed  Article  Google Scholar 

  69. van Heemst, D. et al. BimD/SPO76 is at the interface of cell cycle progression, chromosome morphogenesis, and recombination. Proc. Natl Acad. Sci. USA 98, 6267–6272 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Denison, S. H., Kafer, E. & May, G. S. Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents. Genetics 134, 1085–1096 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. Geck, P., Maffini, M. V., Szelei, J., Sonnenschein, C. & Soto, A. M. Androgen-induced proliferative quiescence in prostate cancer cells: the role of AS3 as its mediator. Proc. Natl Acad. Sci. USA 97, 10185–10190 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Kanda, T., Arakawa, H., Yasuda, Y. & Takemaru, T. Basidiospore formation in a mutant of incompatibility factors and in mutants that arrest at meta-anaphase I in Coprinus cinereus. Exp. Mycol. 14, 218–226 (1990).

    Article  Google Scholar 

  73. Pukkila, P. J., Shannon, K. B. & Skrzynia, C. Independent synaptic behavior of sister chromatids in Coprinus cinereus. Can. J. Bot. 73, S215–S220 (1995).

    Article  Google Scholar 

  74. Hollingsworth, N. M., Ponte, L. & Halsey, C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 9, 1728–1739 (1995).

    CAS  PubMed  Article  Google Scholar 

  75. Kelly, K. O., Dernburg, A. F., Stanfield, G. M. & Villeneuve, A. M. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis. Genetics 156, 617–630 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Wang, J., Holden, D. W. & Leong, S. A. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc. Natl Acad. Sci. USA 85, 865–869 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. Gems, D., Johnstone, I. L. & Clutterbuck, A. J. An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98, 61–67 (1991).

    CAS  PubMed  Article  Google Scholar 

  78. Barreau, C., Iskandar, M., Turcq, B. & Javerzat, J. P. Use of a linear plasmid containing telomeres as an efficient vector for direct cloning in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 25, 22–30 (1998).

    CAS  PubMed  Article  Google Scholar 

  79. Timberlake, W. E. in More Gene Manipulations in Fungi (eds Bennett, J. W. & Lasure, L. L.) 126–150 (Academic, San Diego, California, 1991).

    Google Scholar 

  80. Zolan, M. E., Crittenden, J. R., Heyler, N. K. & Seitz, L. C. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome-specific libraries. Nucleic Acids Res. 20, 3993–3999 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Mutasa, E. S. et al. Molecular organisation of an A mating type factor of the basidiomycete fungus Coprinus cinereus. Curr. Genet. 18, 223–229 (1990).

    CAS  Article  Google Scholar 

  82. Riggle, P. J. & Kumamoto, C. A. Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr. Opin. Microbiol. 1, 395–399 (1998).

    CAS  PubMed  Article  Google Scholar 

  83. Mullins, E. D. & Kang, S. Transformation: a tool for studying fungal pathogens of plants. Cell. Mol. Life Sci. 58, 2043–2052 (2001).A good account of REMI mutagenesis and other insertional mutagenesis procedures that are being developed to aid the rapid isolation of fungal genes.

    CAS  PubMed  Article  Google Scholar 

  84. Kahmann, R. & Basse, C. Fungal gene expression during pathogenesis-related development and host plant colonization. Curr. Opin. Microbiol. 4, 374–380 (2001).

    CAS  PubMed  Article  Google Scholar 

  85. Maier, F. J. & Schafer, W. Mutagenesis via insertional- or restriction enzyme-mediated-integration (REMI) as a tool to tag pathogenicity related genes in plant pathogenic fungi. Biol. Chem. 380, 855–864 (1999).

    CAS  PubMed  Article  Google Scholar 

  86. Schiestl, R. H. & Petes, T. D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 88, 7585–7589 (1991).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. Cummings, W. J., Celerin, M., Crodian, J., Brunick, L. K. & Zolan, M. E. Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr. Genet. 36, 371–382 (1999).

    CAS  PubMed  Article  Google Scholar 

  88. Azpiroz-Leehan, R. & Feldmann, K. A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13, 152–156 (1997).

    CAS  PubMed  Article  Google Scholar 

  89. Villalba, F., Lebrun, M. H., Hua-Van, A., Daboussi, M. J. & Grosjean-Cournoyer, M. C. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 14, 308–315 (2001).

    CAS  PubMed  Article  Google Scholar 

  90. Li Destri Nicosia, M. G. et al. Heterologous transposition in Aspergillus nidulans. Mol. Microbiol. 39, 1330–1344 (2001).

    CAS  PubMed  Article  Google Scholar 

  91. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).Shows an elegant use of N. crassa genomic sequence and the candidate-gene approach to gene isolation. The characterization of dim-5 showed that DNA methylation is dependent on histone methylation.

    CAS  PubMed  Article  Google Scholar 

  92. Hamer, L. et al. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl Acad. Sci. USA 98, 5110–5115 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. Pontecorvo, G. & Kafer, E. Genetic analysis by means of mitotic recombination. Adv. Genet. 9, 71–104 (1958).

    CAS  PubMed  Article  Google Scholar 

  94. Clutterbuck, A. J. in Aspergillus: Biology and Industrial Applications (eds Bennett, J. W. & Klich, M. A.) 3–18 (Butterworth–Heinemann, Boston, Massachusetts, 1992).

    Google Scholar 

  95. Casselton, L. A. The production and behaviour of diploids of Coprinus lagopus. Genet. Res. Camb. 6, 190–208 (1965).

    CAS  Article  Google Scholar 

  96. Casselton, L. A. & Olesnicky, N. S. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol. Mol. Biol. Rev. 62, 55–70 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Banuett, F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu. Rev. Genet. 29, 179–208 (1995).

    CAS  PubMed  Article  Google Scholar 

  98. van Burik, J. A. & Magee, P. T. Aspects of fungal pathogenesis in humans. Annu. Rev. Microbiol. 55, 743–772 (2001).

    CAS  PubMed  Article  Google Scholar 

  99. Fincham, J. R. S. Genetic Analysis (Blackwell Science, Oxford, 1994).

    Book  Google Scholar 

  100. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J. & Stahl, F. W. The double-strand-break repair model for recombination. Cell 33, 25–35 (1983).

    CAS  PubMed  Article  Google Scholar 

  101. Raju, N. B. Meiosis and ascospore genesis in Neurospora. Eur. J. Cell Biol. 23, 208–223 (1980).

    CAS  PubMed  Google Scholar 

  102. Chun, K. T., Edenberg, H. J., Kelley, M. R. & Goebl, M. G. Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast 13, 233–240 (1997).

    CAS  PubMed  Article  Google Scholar 

  103. Celerin, M., Merino, S. T., Stone, J. E., Menzie, A. M. & Zolan, M. E. Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J. 19, 2739–2750 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Riquelme, M., Gierz, G. & Bartnicki-Garcia, S. Dynein and dynactin deficiencies affect the formation and function of the Spitzenkorper and distort hyphal morphogenesis of Neurospora crassa. Microbiology 146, 1743–1752 (2000).

    CAS  PubMed  Article  Google Scholar 

  105. Pukkila, P. J., Yashar, B. M. & Binninger, D. M. in Controlling Events in Meiosis (eds Evans, C. W. & Dickinson, H. G.) 177–194 (Society for Experimental Biology, Cambridge, UK, 1984).

    Google Scholar 

  106. Valentine, G., Wallace, Y. J., Turner, F. R. & Zolan, M. E. Pathway analysis of radiation-sensitive meiotic mutants of Coprinus cinereus. Mol. Gen. Genet. 247, 169–179 (1995).

    CAS  PubMed  Article  Google Scholar 

  107. Holm, P. B., Rasmussen, S. W., Zickler, D., Lu, B. C. & Sage, J. Chromosome pairing, recombination nodules and chiasma formation in the basidiomycete Coprinus cinereus. Carlsberg Res. Commun. 46, 305–346 (1981).

    Article  Google Scholar 

  108. Pukkila, P. J. & Lu, B. C. Silver staining of meiotic chromosomes in the fungus, Coprinus cinereus. Chromosoma 91, 108–112 (1985).

    CAS  PubMed  Article  Google Scholar 

  109. Li, L., Gerecke, E. E. & Zolan, M. E. Homolog pairing and meiotic progression in Coprinus cinereus. Chromosoma 108, 384–392 (1999).

    CAS  PubMed  Article  Google Scholar 

  110. McFadden, G. I. In situ hybridization. Methods Cell Biol. 49, 165–183 (1995).

    CAS  PubMed  Article  Google Scholar 

  111. Scherthan, H., Loidl, J., Schuster, T. & Schweizer, D. Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma 101, 590–595 (1992).

    CAS  Article  PubMed  Google Scholar 

  112. Weiner, B. M. & Kleckner, N. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77, 977–991 (1994).

    CAS  PubMed  Article  Google Scholar 

  113. O'Shea, S. F. et al. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148, 1081–1090 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Rizet, G. & Engelmann, C. Contribution à l'étude génétique d'un ascomycète tétrasporé: Podospora anserina. Rev. Cytol. Biol. Végétales 11, 203–304 (1949).

    Google Scholar 

  115. Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. J. W. The genetics of Aspergillus nidulans. Adv. Genet. 5, 141–238 (1953).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank numerous colleagues for figures, preprints and advice, and we apologize to those whose work was not cited due to the breadth of this topic and our space limitations. We thank B. Metzenberg, R. Davis, R. Morris, J. Hamer, J. Clutterbuck, S. Crosthwaite, D. Bell-Pedersen, S. Gold, S. Gurr, M. Riquelme, A. Radford and R. Aramayo for valuable discussions; E. Selker for sharing unpublished results; and R. Morris, M. Celerin, D. Maillet, J. Loros, M. Riquelme, R. Kahmannn, J. Kämper, N. Talbot, M. Momony, H. Wosten, L. Lugones and N. Raju for figures. Work in the Zolan lab is supported by the National Institutes of Health, and the research of L.A.C. is supported by the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorna Casselton.

Related links

Related links

DATABASES

LocusLink

AS3

BMAL1

Clk

CLOCK

CRY1

CRY2

Cyc

LIS1

Msh5

Per

Tim

<i>Saccharomyces</i> Genome Database

BUB1

BUB3

LEU1

TRP4

FURTHER INFORMATION

Fungal Genetics Stock Center

Fungal genome sequencing programmes

Nature Reviews Genetics focus on 'The art and design of genetic screens'

Neurospora crassa genome database

Glossary

CONDITIONAL LETHAL

A mutation that inhibits growth under some conditions, such as high or low temperature or in the absence of a specific growth supplement, but allows growth under other conditions.

GENE CONVERSION

A non-reciprocal recombination process that results in an alteration of the sequence of a gene to that of its homologue.

SAPROPHYTIC

An organism that obtains nutrition from dead or decaying plant or animal tissue.

KINESIN

A motor protein that is involved in organelle transport towards the plus end of microtubules.

DYNEIN

A multisubunit motor enzyme that is involved in the transport of organelles to the minus end of microtubules.

DYNACTIN

A multisubunit complex that is required for activating cytoplasmic dynein.

PAS DOMAIN PROTEINS

A family of proteins that are related by the presence of a conserved 300 amino-acid sequence that promotes dimerization. PAS is an acronym for the Drosophila melanogaster and mammalian proteins PER, ARNT and SIM that originally defined this family of transcriptional regulatory proteins.

CO-SUPPRESSION

The phenomenon whereby an endogenous plant gene is silenced owing to the presence of a homologous transgene.

RNA INTERFERENCE

(RNAi). The process by which double-stranded RNA specifically silences the expression of homologous genes through degradation of their cognate mRNA.

SEMI-RANDOM, TWO-STEP PCR

(ST-PCR). A procedure that is used to isolate unknown genomic DNA that flanks a known insert. One primer that binds to the known sequence and a degenerate primer with a non-degenerate 5′ end are used to amplify products. A second round of PCR uses a second primer in the known sequence and a primer to the non-degenerate 5′ end of the degenerate primer. This process is repeated until a single PCR product is obtained.

REPLICATIVE PLASMID

A plasmid molecule that contains in its sequence an origin for DNA replication and can replicate autonomously after transformation into host cells.

PROTOPLAST

A cell from which the cell wall has been removed by enzymatic digestion.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Casselton, L., Zolan, M. The art and design of genetic screens: filamentous fungi. Nat Rev Genet 3, 683–697 (2002). https://doi.org/10.1038/nrg889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg889

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing