Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetics and geography of wild cereal domestication in the near east

Key Points

  • Molecular markers, which provide genome-wide measures of genetic similarity, are pinpointing the geographical origin of Western agriculture.

  • Cereal domestication occurred in the Fertile Crescent — a region of the Near East in which wild progenitors of modern cereals still occur.

  • New geographical and genetic evidence point to a specific 'core area' in the Fertile Crescent, near the sources of the Tigris and the Euphrates, as the cradle of agriculture.

  • The transition from wild to domesticated forms mainly entails changes in three key traits: seed size, ear rachis stiffness and the free-threshing habit.

  • The genes that govern these traits have similar morphological effects in different species and are syntenic.

  • Reconstructing the genetics of cereal domestication, which occurred 10,000 years ago, is a challenging undertaking, but is facilitated by the genetic analysis of polyploid species.

  • The traits that distinguish wild from domesticated cereals are preserved in archaeological remains, which supplement the genetic evidence in providing landmarks for the timing and location of the origin of agriculture.

Abstract

About 12,000 years ago, humans began the transition from hunter-gathering to a sedentary, agriculture-based society. From its origins in the Near East, farming expanded throughout Europe, Asia and Africa, together with various domesticated plants and animals. Where, how and why agriculture originated is still debated. But newer findings, on the basis of genome-wide measures of genetic similarity, have traced the origins of some domesticated cereals to wild populations of naturally occurring grasses that persist in the Near East. A better understanding of the genetic differences between wild grasses and domesticated crops adds important facets to the continuing debate on the origin of Western agriculture and the societies to which it gave rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map of the Near East.
Figure 2: Phylogenetic trees showing a single origin for domesticated varieties of einkorn and barley.
Figure 3: Genetic similarities of cultivated tetraploid wheats (hulled emmer and hard wheat) to wild emmer populations from different regions.
Figure 4: Models for the evolution of polyploid wheats under cultivation and domestication.
Figure 5: Geography of early domestication and of later events during crop differentiation.

References

  1. 1

    Childe, V. G. New Light on the Most Ancient Near East (Praeger, New York, 1953).

  2. 2

    Moore, A. M. T., Hillman, G. C. & Legge, A. J. Village on the Euphrates, from Foraging to Farming at Abu Hureyra (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  3. 3

    Gopher, A., Abbo, S. & Lev-Yadun, S. The 'when', the 'where' and the 'why' of the Neolithic revolution in the Levant. Documenta Praehistorica 28, 49–62 (2002).

    Google Scholar 

  4. 4

    Diamond, J. Guns, Germs and Steel (Random House, London, 1997).

    Google Scholar 

  5. 5

    Zohary, D. & Hopf, M. Domestication of Plants in the Old World 3rd edn (Oxford Univ. Press, Oxford, 2000).A good and detailed starting point for understanding the origin of agriculture.

    Google Scholar 

  6. 6

    Bar-Yosef, O. The Natufian culture in the Levant, threshold of the origin of agriculture. Evol. Anthropol. 6, 159–177 (1998).

    Google Scholar 

  7. 7

    Smith, B. D. The Emergence of Agriculture (Scientific American Library, New York, 1995).

    Google Scholar 

  8. 8

    Nesbitt, M. & Samuel, D. in Hulled Wheats. Promoting the Conservation and Use of Underutilized and Neglected Crops. 4. Proc. First Int. Workshop on Hulled Wheats, 21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy (eds Padulosi, S., Hammer, K. & Heller, J.) 41–100 (International Plant Genetic Resources Institute, Rome, 1996).

    Google Scholar 

  9. 9

    Belfer-Cohen, A. & Bar-Yosef, O. in Life in Neolithic Farming Communities: Social Organization, Identity, and Differentiation (ed. Kuijz, I.) 19–37 (Kluwer Academic and Plenum, New York, 2000).

    Google Scholar 

  10. 10

    Martin, W. & Salamini, F. A meeting at the gene. Biodiversity and natural history. EMBO Rep. 1, 208–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Heun, M. Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278, 1312–1314 (1997).Traces the origin of einkorn domestication to natural populations that are still present in southeast Turkey.

    CAS  Google Scholar 

  12. 12

    Badr, A. et al. On the origin and domestication history of barley. Mol. Biol. Evol. 17, 499–510 (2000).Presents evidence for a single origin of domesticated barley; however, this is proposed to have arisen outside the Turkish 'core area'.

    CAS  PubMed  Google Scholar 

  13. 13

    Van Zeist, W., Wasylikowa, K. & Behre, K. E. Progress in Old World Palaeoethnobotany (Balkema, Rotterdam, The Netherlands, 1991).

    Google Scholar 

  14. 14

    Harlan, J. R. & Zohary, D. Distribution of wild wheats and barley. Science 153, 1074–1080 (1966).

    CAS  PubMed  Google Scholar 

  15. 15

    Schiemann, E. Weizen, Roggen, Gerste Systematik, Geschichte und Verwendung (Fischer, Jena, Germany, 1948).

    Google Scholar 

  16. 16

    Van Zeist, W. in Un site Néolithique Précéramique en Chypre: Cap Andreas-Kastros. 5. Recherche sur les Grandes Civilisations (ed. Le Brun, A.) Appendix VI, 95–100 (Editions ADPF, Paris, 1981).

    Google Scholar 

  17. 17

    Renfrew, J. M. The first farmers in South East Europe. Archaeo-Physika 8, 243–265 (1979).

    Google Scholar 

  18. 18

    Jones, M. K., Allaby, R. G. & Brown, T. A. Wheat domestication. Science 279, 302–303 (1998).

    CAS  Google Scholar 

  19. 19

    Nesbitt, M. & Samuel, D. Wheat domestication: archaeological evidence. Science 279, 1433 (1998).

  20. 20

    De Moulins, D. Les restes de plantes carbonisées de Çafer Höyük. Cahiers de l'Euphrate 7, 191–234 (1993).

    Google Scholar 

  21. 21

    Van Zeist, W. & de Roller, G. J. The plant husbandry of aceramic Çayönü, S. E. Turkey. Palaeohistoria 33/34, 65–96 (1991–1992).

  22. 22

    Pasternak, R. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B., Valkoun, J., Willcox, G. & Qualset, C. O.) 170–176 (ICARDA, Aleppo, Syria, 1998).

    Google Scholar 

  23. 23

    Hillman, G. C. in Village on the Euphrates, from Foraging to Farming at Abu Hureyra (eds Moore, A. M. T., Hillman, G. C. & Legge, A. J.) 327–398 (Oxford Univ. Press, Oxford, 2000).Original description of a key archaeological site that contains detailed archaeobotanical evidence. The remains strengthen the view that the cultivation of wild rye was important for understanding its subsequent domestication.

    Google Scholar 

  24. 24

    De Moulins, D. in Village on the Euphrates, from Foraging to Farming at Abu Hureyra (eds Moore, A. M. T., Hillman, G. C. & Legge, A. J.) 399–422 (Oxford Univ. Press, Oxford, 2000).

  25. 25

    Lev-Yadun, S., Gopher, A. & Abbo, S. The cradle of agriculture. Science 288, 1602–1603 (2000).A lucid summary that supports the view that agriculture originated in a restricted region of southeast Turkey, the so-called 'core area'.

    CAS  PubMed  Google Scholar 

  26. 26

    Zohary, D. in The Origins and Spread of Agriculture and Pastoralism in Eurasia (ed. Harris, D. R.) 142–157 (Univ. College Press, London, 1996).

    Google Scholar 

  27. 27

    Sharma, H. C. & Waines, J. G. Inheritance of tough rachis in crosses of Triticum monococcum and T. boeoticum. J. Hered. 7, 214–216 (1980).

    Google Scholar 

  28. 28

    Szabó, A. T. & Hammer, K. in Hulled Wheats. Promoting the Conservation and Use of Underutilized and Neglected Crops. 4. Proc. First Int. Workshop on Hulled Wheats,21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy (eds Padulosi, S., Hammer, K. & Heller, J.) 2–30 (International Plant Genetic Resources Institute, Rome, 1996).

    Google Scholar 

  29. 29

    Taenzler, B. et al. A molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet. Res. (in the press).

  30. 30

    Dvorák, J., Di Terlizzi, P., Zhang, H. B. & Resta, P. The evolution of polyploid wheats: identification of the A genome donor species. Genome 36, 21–31 (1993).

    PubMed  Google Scholar 

  31. 31

    Dvorák, J., Luo, M. C., Yang, Z. L. & Zhang, H. B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 67, 657–670 (1998).Discusses alternative possibilities for the origin of bread wheat through hybridization.

    Google Scholar 

  32. 32

    Van Zeist, W. & Bakker-Heeres, J. A. H. Archaeobotanical studies in the Levant. 1. Neolithic sites in the Damascus basin: Aswad, Ghoraifé, Ramad. Palaeohistoria 24, 165–256 (1982).

    Google Scholar 

  33. 33

    Helmer, D., Roitel, V., Sana, M. & Willcox, G. Interpretations environmentales des données archéozoologiques et archeobotaniques en Syrie du Nord de 16000 bp à 7000 bp, et les débuts de la domestication des plantes et des animales. Bull. Can. Soc. Mesopotamian Stud. 33, 9–34 (1998).

    Google Scholar 

  34. 34

    Kislev, M. E. Triticum parvicoccum sp. nov., the oldest naked wheat. Israel J. Bot. 28, 95–107 (1980).

    Google Scholar 

  35. 35

    Täckholm, V. Faraos Blomster (Generalstabens Litografiska, Trelleborg, Sweden, 1976).

    Google Scholar 

  36. 36

    Poyarkova, U. Morphology, geography and infraspecific taxonomics of Triticum dicoccoides, Körn. A retrospective of 80 years of research. Euphytica 38, 11–23 (1988).

    Google Scholar 

  37. 37

    Johnson, B. L. Identification of the apparent B-genome donor of wheat. Can. J. Genet. Cytol. 17, 21–39 (1975).

    Google Scholar 

  38. 38

    Maan, S. S. Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22, 287–300 (1973).

    Google Scholar 

  39. 39

    Elias, E. M., Steiger, K. D. & Cantrell, R. G. Evaluation of lines derived from wild emmer chromosome substitutions. II. Agronomic traits. Crop Sci. 36, 228–233 (1996).An analysis of domestication traits that was carried out using substitution lines; this method is germane to polyploid genetics.

    Google Scholar 

  40. 40

    Cantrell, R. G. & Joppa, L. R. Genetic analysis of quantitative traits in wild emmer (Triticum tugidum L. var. dicoccoides). Crop Sci. 31, 645–649 (1991).

    Google Scholar 

  41. 41

    McFadden, E. S. & Sears, E. R. The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37, 81–89 (1946).

    PubMed  Google Scholar 

  42. 42

    Cox, T. S. Deepening the wheat gene pool. J. Crop Prod. 1, 1–25 (1998).

    Google Scholar 

  43. 43

    Lelley, T., Stachel, M., Grausgruber, H. & Vollmann, J. Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43, 661–668 (2000).

    CAS  PubMed  Google Scholar 

  44. 44

    Sears, E. R. The aneuploids of common wheat. Missouri Agric. Exp. Stn Res. Bull. 572, 1–59 (1954).

    Google Scholar 

  45. 45

    Liu, Y. G. & Tsunewaki, K. Restriction fragment length polymorphism (RFLP) analysis in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn. J. Genet. 66, 617–633 (1991).

    CAS  PubMed  Google Scholar 

  46. 46

    Kato, K., Miura, H., Akiyama, M., Kuroshima, M. & Sawada, S. RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101, 91–95 (1998).

    CAS  Google Scholar 

  47. 47

    Snape, J. W., Law, C. N., Parker, B. B. & Worland, A. J. Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor. Appl. Genet. 71, 518–526 (1985).

    CAS  PubMed  Google Scholar 

  48. 48

    MacKey, J. Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40, 65–180 (1954).

    Google Scholar 

  49. 49

    Muramatsu, M. Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48, 469–482 (1963).A classical paper that reports the functioning of both q and Q alleles, which govern the free-threshing phenotype in hexaploid wheat. The analysis was carried out using chromosome addition lines.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Muramatsu, M. Spike type in two cultivars of Triticum dicoccum with the spelta gene q compared with the Q-bearing variety liguliforme. Jpn. J. Breed. 35, 255–267 (1985).

    Google Scholar 

  51. 51

    Kerber, E. R. & Rowland, G. G. Origin of the free threshing character in hexaploid wheat. Can. J. Genet. Cytol. 16, 145–154 (1974).

    Google Scholar 

  52. 52

    Villareal, R. L., Mujeeb-Kazi, A. & Rajaram, S. Inheritance of threshability in synthetic hexaploid (Triticum turgidum (T. tauschii) by T. aestivum crosses. Plant Breed. 115, 407–409 (1996).

    Google Scholar 

  53. 53

    Cao, W., Scoles, G. J. & Hucl, P. The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94, 119–124 (1997).

    Google Scholar 

  54. 54

    Luo, M. C., Yang, Z. L. & Dvorák, J. The Q locus of Iranian and European spelt wheat. Theor. Appl. Genet. 100, 602–606 (2000).

    CAS  Google Scholar 

  55. 55

    Ternowskaya, T. K. & Zhirov, E. G. Bread wheat genome D. Genetic control of tender glume and depression at its base. Tsitologiya I Genetica 27, 78–83 (1993).

    Google Scholar 

  56. 56

    Simonetti, M. C. et al. Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet. Resources Crop Evol. 46, 267–271 (1999).One of the few quantitative genetic analyses of a trait that is related to wheat domestication.

    Google Scholar 

  57. 57

    Dvorák, J., Luo, M.-C. & Yang, Z. L. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B., Valkoun, J., Willcox, G. & Qualset, C.) 235–251 (ICARDA, Aleppo, Syria, 1999).

    Google Scholar 

  58. 58

    Dvorák, J. & Luo, M.-C. in Wheat Taxonomy: the Legacy of John Percival (eds Caligari, P. D. S. & Brandham, P. E.) 127–136 (The Linnean Society, London, 2001).

    Google Scholar 

  59. 59

    Tsunewaki, K. in 3rd Int. Wheat Genet. Symp. (eds Finley, K. W. & Sheperd, K. W.) 71–85 (Australian Academy of Science, Canberra, Australia, 1968).

    Google Scholar 

  60. 60

    Jaaska, V. NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their relatives. On the origin and phylogeny of polyploid wheats. Theor. Appl. Genet. 53, 209–217 (1978).

    CAS  PubMed  Google Scholar 

  61. 61

    Talbert, L. E., Smith, L. Y. & Blake, N. K. More than one origin of hexaploid wheat is indicated by sequence comparison of low-copy DNA. Genome 41, 402–407 (1998).

    CAS  Google Scholar 

  62. 62

    Nesbitt, M. in Wheat Taxonomy: the Legacy of John Percival (eds Caligari, P. D. S. & Brandham, P. E.) 37–59 (The Linnean Society, London, 2001).

    Google Scholar 

  63. 63

    Miller, N. F. in Progress in Old World Palaeobotany (eds Van Zeist, W., Wasylikowa, K. & Behre, K. E.) 133–160 (Balkema, Rotterdam, The Netherlands, 1991).

    Google Scholar 

  64. 64

    Maier, U. Morphological studies of free-threshing wheat ears from a Neolithic site in southwest Germany, and the history of naked wheats. Vegetat. Hist. Archaeobot. 5, 39–55 (1996).Provides a thorough and detailed summary of the occurrence of naked wheats in numerous archaeobotanical sites in the Near East and Europe, and of their radiocarbon ages.

    Google Scholar 

  65. 65

    Hillman, G. C. On the origins of domestic rye – Secale cereale: the finds from Aceramic Can Hasan III in Turkey. Anatolian Stud. 28, 157–174 (1978).

    Google Scholar 

  66. 66

    Araus, J. L., Slafer, G. A., Romagosa, I. & Molist, M. FOCUS: estimated wheat yields during the emergence of agriculture based on the carbon isotope discrimination of grains: evidence from a 10th millennium BP site on the Euphrates. J. Archaeol. Sci. 28, 341–350 (2001).

    Google Scholar 

  67. 67

    Feldman, M. in The World Wheat Book. A History of Wheat Breeding (eds Bonjean, A. P. & Angus, W. J.) 3–56 (Tec. & Doc. Editions, London, 2001).

    Google Scholar 

  68. 68

    Kobylyanskyi, V. D. in Flora of Cultivated Plants of the USSR Vol. II, Part 1 (Agropromizdat, Leningrad, Russia, 1989).

    Google Scholar 

  69. 69

    Jaaska, V. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B., Valkoun, J., Willcox, G. & Qualset, C. O.) 210–217 (ICARDA, Aleppo, Syria, 1998).

    Google Scholar 

  70. 70

    Sencer, H. A. & Hawkes, J. G. On the origin of cultivated rye. Biol. J. Linn. Soc. Lond. 13, 299–313 (1980).

    Google Scholar 

  71. 71

    Stutz, H. C. On the origin of cultivated rye. Am. J. Bot. 59, 59–70 (1972).

    Google Scholar 

  72. 72

    Kranz, A. R. Die anatomischen, ökologischen und genetischen Grundlagen der Ährenbrüchigkeit des Roggens. Beitr. Biol. Pflanzen 38, 445–471 (1963).

    Google Scholar 

  73. 73

    Van Zeist, W. & Casparie, W. A. Wild einkorn wheat in northern Syria. Acta Bot. Neerl. 17, 44–53 (1968).

    Google Scholar 

  74. 74

    von Bothmer, R. & Jacobsen, N. in Barley (ed. Rasmusson, D. C.) 19–56 (American Society of Agronomy, Madison, Wisconsin, 1985).

    Google Scholar 

  75. 75

    Zohary, D. in The Domestication and Exploitation of Plants and Animals (eds Ucko, P. J. & Dimbleby, G. W.) 47–66 (Duckworth, London, 1969).

    Google Scholar 

  76. 76

    Kislev, M. E. in Man and Culture in Change Vol. 508 (ed. Hershkovitz, I.) 147–151 (British Archaeological Reports International Series, London, 1989).

    Google Scholar 

  77. 77

    Kislev, M. E. in Préhistoire de L'Agriculture: Nouvelles Approches Expérimentales et Ethnographiques. Monographie du CRA no. 6 (ed. Anderson, P. C.) 87–93 (CNRS, Paris, 1992).

  78. 78

    Sogaard, B. & von Wettstein-Knowles, P. Barley: genes and chromosomes. Carlsberg Res. Commun. 52, 123–196 (1987).

    Google Scholar 

  79. 79

    Nilan, R. A. The Cytology and Genetics of Barley 1951–1962. Monographic Suppl. 3 Vol. 32/1 (Washington State Univ. Press, Washington, 1964).

  80. 80

    Takahashi, R. The origin and evolution of cultivated barley. Adv. Genet. 7, 227–276 (1955).

    Google Scholar 

  81. 81

    Li, B. & Folley, M. E. Genetic and molecular control of seed dormancy. Trends Plant Sci. 2, 384–389 (1997).

    Google Scholar 

  82. 82

    Ullrich, S. E., Hayes, P. M., Dyer, W. E., Blake, T. K. & Clancy, J. A. in Pre-harvest Sprouting in Cereals (eds Walker-Simmonds, M. K. & Reid, J. L.) 136–145 (American Association of Cereal Chemists, Inc., Saint Paul, Minnesota, 1993).

    Google Scholar 

  83. 83

    Åberg, E. Hordeum agriocrithon nova sp., a wild six-rowed barley. Annu. Rev. Agric. Col. Swed. 6, 159–216 (1938).

    Google Scholar 

  84. 84

    Bekele, E. A differential rate of regional distribution of barley flavonoid patterns in Ethiopia and a view on the center of origin of barley. Hereditas 98, 269–280 (1983).

    CAS  PubMed  Google Scholar 

  85. 85

    Molina-Cano, J. L. et al. Morocco as a possible domestication center for barley: biochemical and agromorphological evidence. Theor. Appl. Genet. 73, 531–536 (1987).

    CAS  PubMed  Google Scholar 

  86. 86

    Zohary, D. Is Hordeum agriocrithon the ancestor of six-rowed cultivated barley? Evolution 13, 279–280 (1959).

    Google Scholar 

  87. 87

    Staudt, G. The origin of cultivated barleys: a discussion. Econ. Bot. 15, 205–212 (1961).

    Google Scholar 

  88. 88

    Clegg, M. T., Brown, A. H. D. & Whitfeld, P. R. Chloroplast DNA diversity in wild and cultivated barley: implication for genetic conservation. Genet. Res. 43, 339–343 (1984).

    CAS  Google Scholar 

  89. 89

    Neale, D. B., Shagai-Maroof, M. A., Allard, R. W., Zhang, Q. & Jorgensen, R. A. Chloroplast DNA diversity in populations of wild and cultivated barley. Genetics 120, 1105–1110 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Kislev, M. E., Nadel, D. & Carmi, I. Epipaleolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev. Paleobot. Palinol. 73, 161–166 (1992).Shows that wild cereals were harvested and used well before the origin of agriculture.

    Google Scholar 

  91. 91

    Kislev, M. E. in An Early Neolothic Village in the Jordan Valley. I. The Archeology of Netiv Hagdud (eds Bar-Yosef, O. & Gopher, A.) 209–236 (Peabody Museum of Archaeology and Ethnology, Harvard Univ., Cambridge, Massachusetts, 1997).

    Google Scholar 

  92. 92

    Jarrige, J. F. & Meadow, R. H. The antecedents of civilization in the Indus Valley. Sci. Am. 243, 102–110 (1980).

    Google Scholar 

  93. 93

    Sage, R. F. Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Global Change Biol. 1, 93–106 (1995).

    Google Scholar 

  94. 94

    Blumler, M. A. & Byrne, R. The ecological genetics of domestication and the origins of agriculture. Curr. Anthropol. 32, 23–54 (1991).

    Google Scholar 

  95. 95

    Blumler, M. K. Independent inventionism and recent genetic evidence on plant domestication. Econ. Bot. 46, 98–111 (1992).

    Google Scholar 

  96. 96

    Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehist. 42, 157–219 (1990).

    Google Scholar 

  97. 97

    Dennel, R. W. The phylogenesis of Triticum dicoccum: a consideration. Econ. Bot. 27, 329–331 (1973).

    Google Scholar 

  98. 98

    Bar-Yosef, O. & Meadow, R. H. in Last Hunters – First Farmers (eds Price, T. D. & Gebauer, G.) 39–94 (School of American Research Press, Santa Fé, California, 1995).

    Google Scholar 

  99. 99

    Zohary, D. Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet. Resources Crop Evol. 46, 133–142 (1999).It is now widely accepted that various crops each had a single origin. This author was one of the first and most outspoken proponents of that view.

    Google Scholar 

  100. 100

    Diamond, J. Location, location, location: the first farmers. Science 278, 1243–1244 (1997).

    CAS  Google Scholar 

  101. 101

    Willcox, G. Wild and domesticated cereal cultivation: new evidence from early Neolithic sites in the northern Levant and south-eastern Anatolia. ARX World J. Prehist. Ancient Stud. 1, 9–16 (1995).Although the sudden origin of agriculture is now favoured, this author also discusses the reasons for its gradual origin.

    Google Scholar 

  102. 102

    Willcox, G. in The Origin of Agriculture and Crop Domestication (eds Damania, A. B., Valkoun, J., Willcox, G. & Qualset, C. O.) 25–38 (ICARDA, Aleppo, Syria, 1998).

    Google Scholar 

  103. 103

    Syvänen, A. C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Rev. Genet. 2, 930–942 (2001).A modern analysis of how molecular markers provide a link between DNA variation and phenotype.

    PubMed  Google Scholar 

  104. 104

    Vos, P. et al. AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).The original description of the now widely used AFLP marker technology.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Felsenstein, J. PHYLIP (Phylogeny Inference Package) Manual Version 3.5c (Department of Genetics, Washington Univ., Seattle, 1993). Distributed by the author. Available at http://evolution.genetics.washington.edu/phylip.html

  106. 106

    Graur, D. & Li, W.-H. Fundamentals of Molecular Evolution (Sinauer, Sunderland, Massachusetts, 2000).

    Google Scholar 

  107. 107

    Nishikawa, K. A guide to the wheat aneuploids. Wheat Info. Service 74, 1–3 (1992).

    Google Scholar 

  108. 108

    Börner, A. & Worland, A. J. (eds) Selected papers from the EWAC-Conference: cereal aneuploids for genetic analysis and molecular techniques. Euphytica 89, 1–157 (1996).

    Google Scholar 

  109. 109

    Lewis, W. H. (ed.) Polyploidy (Plenum, New York, 1980).

  110. 110

    Sears, E. R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10, 31–51 (1976).

    CAS  PubMed  Google Scholar 

  111. 111

    Wendel, J. F. Genome evolution in polyploids. Plant Mol. Biol. 42, 225–249 (2000).A recent introduction to the biology and genomics of polyploid plant species.

    CAS  Google Scholar 

  112. 112

    Sears, E. R. An induced mutant with homoeologous pairing in common wheat. Can. J. Cytol. 19, 585–593 (1977).

    Google Scholar 

  113. 113

    Roberts, M. A. et al. Induction and characterization of Ph1 wheat mutants. Genetics 153, 1909–1918 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Sears, E. R. A synthetic hexaploid wheat with fragile rachis. Wheat Info. Serv. 41/42, 31–32 (1976).

    Google Scholar 

  115. 115

    Schiemann, E. & Staudt, G. T. x dimococcum, an amphidiploid with genomes AAAABB. Züchter. 28, 166–184 (1958).

    Google Scholar 

  116. 116

    Muramatsu, M. The vulgare super gene Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can. J. Genet. Cytol. 28, 30–41 (1986).

    Google Scholar 

  117. 117

    Chen, Q.-F., Yen, C. & Yang, J.-L. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet. Resources Crop Evol. 45, 407–410 (1998).

    Google Scholar 

  118. 118

    MacKey, J. Species relationship in Triticum. Proc. 2nd Int. Wheat Gen. Symp. Lund, 1963. Hereditas 2, 237–276 (1963).

    Google Scholar 

  119. 119

    Iqbal, N., Reader, S. M., Caligari, P. D. S. & Miller, T. E. The production and characterization of recombination between chromosome 3N of Aegilops uniaristata and chromosome 3A of wheat. Heredity 84, 487–492 (2000).

    CAS  PubMed  Google Scholar 

  120. 120

    Takahashi, R. Non-brittle rachis 1 and non-brittle rachis 2. Barley Genet. Newslett. 2, 181–182 (1972).

    CAS  Google Scholar 

  121. 121

    Özkan, H., Brandolini, A., Schäfer-Pregl, R. & Salamini, F. AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol. Biol. Evol. (in the press).

Download references

Acknowledgements

This article is dedicated to A. Bianchi, plant geneticist and teacher. We thank M. Pasemann, S. Effgen, J. Schütze and an anonymous referee for their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Salamini.

Related links

Related links

FURTHER INFORMATION

GrainGenes

Glossary

STAND

A population of a species that thrives in natural habitats. In the simplest example, the single species that dominates a field of grass.

RACHIS

The backbone of the ear (inflorescence), which bears lateral spikelets.

GLUME

The leaf-like structure that protects the seed in cereals. They can be tenacious (hard and not releasing the seeds, indehiscent) or soft (freely release seeds; naked seeds).

PHYTOGEOGRAPHY

The study of the geographical distribution of plant species.

AMPLIFIED FRAGMENT LENGTH POLYMORPHISM

A mapping method in which genomic DNA from different strains is amplified by PCR using arbitrary primers. DNA fragments that are amplified in one strain are used as polymorphic markers.

HOMOEOLOGUE

Chromosomes that share a common ancestor; although these might differ to some extent, they have a collinear molecular organization. Homoeologues can occur in different species, but can also coexist in the nucleus of polyploid species.

BRONZE AGE

An archaeological period starting 5,500 cal BP in the Fertile Crescent. This corresponds to a later period in Europe.

HULLED, NON-FREE-THRESHING

(NFT). Forms of cereal that have tenacious glumes.

SECONDARY HABITAT

A primary habitat is an ecological or geographical zone in which a given species is naturally endemic. The same species might subsequently colonize other areas (secondary habitats) as a consequence of human activities.

FERAL FORM

A population living in wild habitats that is derived from crosses between wild and domesticated genotypes.

SPIKELET

The part of the ear in grasses that contains 1–4 seeds and their surrounding glumes (leaf-like structures).

DISARTICULATE OR BRITTLE RACHIS

A rachis in which the ear disrupts at maturity into individual spikelets, each bearing a fragment of rachis.

TOUGH, NON-BRITTLE RACHIS

One that does not release spikelets at maturity. The ear can therefore be threshed to release seeds.

ANEUPLOIDY

The presence of extra copies, or no copies, of some chromosomes.

SUBSTITUTION LINE

In polyploids, a new chromosome pair from a related species can be introduced, while eliminating the resident homoeologous pair. This generates a substitution line. When repeated for all chromosomes, the process generates a set of substitution lines.

SYNTENY

Collinearity in the order of genes (or of other DNA sequences) in a chromosomal region of two species. Homoeologous chromosomes are largely syntenic.

GYMNOSPERM

A non-flowering seed plant (for example, pine).

MULTIVALENT

The presence of more than two chromosomes synapsed in a unit during prophase I of meiosis; this is characteristic of many autopolyploids.

SPELT

A hexaploid wheat that is still sporadically cultivated in Europe, the grains of which are enclosed (hulled) in glumes.

AWN

A bristle-like appendage that is seen on the glumes of many grasses.

SEED DORMANCY

A physiological condition of a viable seed that prevents germination, even in the presence of otherwise favourable germination conditions (for example, heat or moisture).

LANDRACE

A locally adapted strain of a species that is selected and adapted by farmers.

ACCESSION

A sample of plant material that is collected at a specific location and maintained in a seed bank.

HAPLOTYPE

An experimentally determined profile of genetic markers that is present on a single chromosome of any given individual.

GERMPLASM

The term used by breeders to refer to the collection of varieties and breeding lines.

INTROGRESSION

A process of recurrent backcrossing that leads to the incorporation of genes from one species into the gene pool of another.

FIXATION

Increase in allele frequency to the point at which all individuals in a population are homozygous.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salamini, F., Özkan, H., Brandolini, A. et al. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3, 429–441 (2002). https://doi.org/10.1038/nrg817

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing