Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The complex structure and dynamic evolution of human subtelomeres

Key Points

  • Subtelomeres are dynamic and variable regions near the ends of chromosomes that form the transition between chromosome-specific DNA and the telomere. They are defined by their unusual structure: patchworks of blocks that are duplicated near the ends of multiple chromosomes.

  • The maps of human subtelomeres are still sketchy, owing to the complex and variable structure of these regions and their under-representation in the clone libraries used for sequencing.

  • Recurrent exchange of DNA among subtelomeric regions has effectively blurred the evolutionary history of these regions.

  • Relatively recent subtelomeric duplications have resulted in striking variation between individuals in subtelomeric content, including the number, location and sequence of subtelomerically located genes.

  • Subtelomeric plasticity might allow some organisms to rapidly adapt to new environmental conditions or, in the case of the malaria-causing parasite Plasmodium falciparum, to evade the host immune system.

  • Given their extensive homology, subtelomeres might also promote the recombinational processes that allow some tumour cells to maintain telomeres and replicate indefinitely in the absence of telomerase.

  • Anomalous pairing of subtelomeres might also lead to disease-causing rearrangements. Mental retardation and facioscapulohumeral muscular dystrophy are two disorders known to be associated with rearrangements that involve the tips of human chromosomes.

  • Further studies of the dynamic interactions among subtelomeres require techniques to clone large portions of these regions from many individuals, to reliably track sequence that is transferred from one chromosome to another and to select these newly rearranged cells for more detailed genomic analysis.

  • A better understanding of these exceptional genomic regions will continue to provide examples of exceptional biology and might help to further our understanding of other duplicated regions of the genome.

Abstract

Subtelomeres are extraordinarily dynamic and variable regions near the ends of chromosomes. They are defined by their unusual structure: patchworks of blocks that are duplicated near the ends of multiple chromosomes. Duplications among subtelomeres have spawned small gene families, making inter-individual variation in subtelomeres a potential source of phenotypic diversity. The ectopic recombination that occurs between subtelomeres might also have a role in reconstituting telomeres in the absence of telomerase. However, the propensity for subtelomeres to interchange is a double-edged sword, as extensive subtelomeric homology can mediate deleterious rearrangements of the ends of chromosomes to cause human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subtelomeric structure.
Figure 2: Fluorescence in situ hybridization analysis of the chromosomal locations of a cloned subtelomeric segment.
Figure 3: Variability in copy number, chromosomal location and sequence of the subtelomeric block f7501.
Figure 4: Models of subtelomere evolution.
Figure 5: Telomere maintenance by recombination.
Figure 6: Subtelomeres and deleterious chromosomal rearrangements.

Similar content being viewed by others

References

  1. Trask, B. J. et al. Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum. Mol. Genet. 7, 13–26 (1998).A demonstration of the striking human variation in number and chromosomal location of olfactory receptor genes that are contained in a subtelomeric block.

    CAS  PubMed  Google Scholar 

  2. Freitas-Junior, L. H. et al. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407, 1018–1022 (2000).This paper shows that the subtelomerically located var genes in P. falciparum undergo elevated levels of ectopic recombination, which promotes the diversity of antigenic and adhesive phenotypes.

    CAS  PubMed  Google Scholar 

  3. Taylor, H. M., Kyes, S. A. & Newbold, C. I. Var gene diversity in Plasmodium falciparum is generated by frequent recombination events. Mol. Biochem. Parasitol. 110, 391–397 (2000).

    CAS  PubMed  Google Scholar 

  4. Van Overveld, P. G. et al. Interchromosomal repeat array interactions between chromosomes 4 and 10: a model for subtelomeric plasticity. Hum. Mol. Genet. 9, 2879–2884 (2000).

    CAS  PubMed  Google Scholar 

  5. Mefford, H. C., Linardopoulou, E., Coil, D., van den Engh, G. & Trask, B. J. Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non-homologous chromosomes. Hum. Mol. Genet. 10, 2363–2372 (2001).This study compared sequences of a subtelomeric block on different chromosomes from different individuals to infer that ectopic exchanges regularly occur among human subtelomeres.

    CAS  PubMed  Google Scholar 

  6. Denayrolles, M., De Villechenon, E. P., Lonvaud-Funel, A. & Aigle, M. Incidence of SUC–RTM telomeric repeated genes in brewing and wild wine strains of Saccharomyces. Curr. Genet. 31, 457–461 (1997).

    CAS  PubMed  Google Scholar 

  7. Linardopoulou, E. et al. Transcriptional activity of multiple copies of a subtelomerically located olfactory receptor gene that is polymorphic in number and location. Hum. Mol. Genet. 10, 2373–2383 (2001).

    CAS  PubMed  Google Scholar 

  8. Teng, S. C. & Zakian, V. A. Telomere–telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 (1999).A detailed description of the process of recombination among yeast subtelomeric regions that can maintain telomeric DNA in the absence of telomerase.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunham, M. A., Neumann, A. A., Fasching, C. L. & Reddel, R. R. Telomere maintenance by recombination in human cells. Nature Genet. 26, 447–450 (2000).Elegant experiments showing that DNA sequences are copied from telomere to telomere in an immortalized human ALT cell line.

    CAS  PubMed  Google Scholar 

  10. Knight, S. J. & Flint, J. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J. Med. Genet. 37, 401–409 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, J. et al. Subtelomeric chromosome rearrangements are detected using an innovative 12-color FISH assay (M-TEL). Nature Med. 7, 497–501 (2001).

    CAS  PubMed  Google Scholar 

  12. Pryde, F. E. & Louis, E. J. Saccharomyces cerevisiae telomeres. A review. Biochemistry (Mosc.) 62, 1232–1241 (1997).

    CAS  Google Scholar 

  13. Pryde, F. E., Gorham, H. C. & Louis, E. J. Chromosome ends: all the same under their caps. Curr. Opin. Genet. Dev. 7, 822–828 (1997).

    CAS  PubMed  Google Scholar 

  14. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasitePlasmodium falciparum. Science 282, 1126–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Scherf, A., Figueiredo, L. M. Freitas-Junior, L. H. Plasmodium telomeres: a pathogen's perspective. Curr. Opin. Microbiol. 4, 409–414 (2001).

    CAS  PubMed  Google Scholar 

  16. Mason, J. M. Biessmann, H. The unusual telomeres of Drosophila. Trends Genet. 11, 58–62 (1995).

    CAS  PubMed  Google Scholar 

  17. Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A. Sheen, F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 1083–1093 (1993).

    CAS  PubMed  Google Scholar 

  18. Kotani, H., Hosouchi, T. Tsuruoka, H. Structural analysis and complete physical map of Arabidopsis thaliana chromosome 5 including centromeric and telomeric regions. DNA Res. 6, 381–386 (1999).

    CAS  PubMed  Google Scholar 

  19. The Arabidopsis Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  20. Wicky, C. et al. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 8983–8988 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown, W. R. et al. Structure and polymorphism of human telomere-associated DNA. Cell 63, 119–132 (1990).

    CAS  PubMed  Google Scholar 

  22. De Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilkie, A. O. et al. Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64, 595–606 (1991).The first and most impressive demonstration of extensive subtelomeric variation among human chromosomes.

    CAS  PubMed  Google Scholar 

  24. Cross, S. et al. The structure of a subterminal repeated sequence present on many human chromosomes. Nucleic Acids Res. 18, 6649–6657 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ijdo, J. W., Lindsay, E. A., Wells, R. A. Baldini, A. Multiple variants in subtelomeric regions of normal karyotypes. Genomics 14, 1019–1025 (1992).

    CAS  PubMed  Google Scholar 

  26. Hoglund, M., Mitelman, F. Mandahl, N. A human 12p-derived cosmid hybridizing to subsets of human and chimpanzee telomeres. Cytogenet. Cell Genet. 70, 88–91 (1995).

    CAS  PubMed  Google Scholar 

  27. Martin-Gallardo, A. et al. Molecular analysis of a novel subtelomeric repeat with polymorphic chromosomal distribution. Cytogenet. Cell Genet. 71, 289–295 (1995).

    CAS  PubMed  Google Scholar 

  28. Monfouilloux, S. et al. Recent human-specific spreading of a subtelomeric domain. Genomics 51, 165–176 (1998).

    CAS  PubMed  Google Scholar 

  29. Riethman, H. C., Spais, C., Buckingham, J., Grady, D. Moyzis, R. K. Physical analysis of the terminal 240 kb of DNA from human chromosome 7q. Genomics 17, 25–32 (1993).

    CAS  PubMed  Google Scholar 

  30. Ijdo, J., Baldini, A., Ward, D. C., Reeders, S. T. Wells, R. A. Origin of human chromosome 2: an ancestral telomere–telomere fusion. Proc. Natl Acad. Sci. USA 88, 9051–9055 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999).

    CAS  PubMed  Google Scholar 

  33. Flint, J. et al. The relationship between chromosome structure and function at a human telomeric region. Nature Genet. 15, 252–257 (1997).

    CAS  PubMed  Google Scholar 

  34. Flint, J. et al. Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum. Mol. Genet. 6, 1305–1313 (1997).This paper reports the sequence of the subtelomeres of several human chromosomes and their structural similarity to the subtelomeres of S. cerevisiae.

    CAS  PubMed  Google Scholar 

  35. Daniels, R. J. et al. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Hum. Mol. Genet. 10, 339–352 (2001).

    CAS  PubMed  Google Scholar 

  36. Chute, I., Le, Y., Ashley, T. Dobson, M. J. The telomere-associated DNA from human chromosome 20p contains a pseudotelomere structure and shares sequences with the subtelomeric regions of 4q and 18p. Genomics 46, 51–60 (1997).

    CAS  PubMed  Google Scholar 

  37. Louis, E. J., Naumova, E. S., Lee, A., Naumov, G. Haber, J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136, 789–802 (1994).One of several classic papers by Louis, Haber and colleagues in which they measure recombination frequencies among subtelomeric regions in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Walmsley, R. W., Chan, C. S., Tye, B. K. Petes, T. D. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157–160 (1984).

    CAS  PubMed  Google Scholar 

  39. Louis, E. J. Haber, J. E. The structure and evolution of subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 131, 559–574 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Szostak, J. W. Blackburn, E. H. Cloning yeast telomeres on linear plasmid vectors. Cell 29, 245–255 (1982).

    CAS  PubMed  Google Scholar 

  41. Chan, C. S. Tye, B. K. Organization of DNA sequences and replication origins at yeast telomeres. Cell 33, 563–573 (1983).

    CAS  PubMed  Google Scholar 

  42. Louis, E. J. Haber, J. E. Evolutionarily recent transfer of a group I mitochondrial intron to telomere regions in Saccharomyces cerevisiae. Curr. Genet. 20, 411–415 (1991).

    CAS  PubMed  Google Scholar 

  43. Carlson, M. Botstein, D. Organization of the SUC gene family in Saccharomyces. Mol. Cell. Biol. 3, 351–359 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carlson, M., Celenza, J. L. Eng, F. J. Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol. Cell. Biol. 5, 2894–2902 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Charron, M. J. Michels, C. A. The naturally occurring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120, 83–93 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Charron, M. J., Read, E., Haut, S. R. Michels, C. A. Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122, 307–316 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Naumov, G., Turakainen, H., Naumova, E., Aho, S. Korhola, M. A new family of polymorphic genes in Saccharomyces cerevisiae: α-galactosidase genes MEL1–MEL7. Mol. Gen. Genet. 224, 119–128 (1990).

    CAS  PubMed  Google Scholar 

  48. Turakainen, H., Naumov, G., Naumova, E. Korhola, M. Physical mapping of the MEL gene family in Saccharomyces cerevisiae. Curr. Genet. 24, 461–464 (1993).

    CAS  PubMed  Google Scholar 

  49. Viswanathan, M., Muthukumar, G., Cong, Y. S. Lenard, J. Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. Gene 148, 149–153 (1994).

    CAS  PubMed  Google Scholar 

  50. Ness, F. Aigle, M. RTM1: a member of a new family of telomeric repeated genes in yeast. Genetics 140, 945–956 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Coissac, E., Maillier, E., Robineau, S. Netter, P. Sequence of a 39,411 bp DNA fragment covering the left end of chromosome VII of Saccharomyces cerevisiae. Yeast 12, 1555–1562 (1996).

    CAS  PubMed  Google Scholar 

  52. Riethman, H. C. et al. Integration of telomere sequences with the draft human genome sequence. Nature 409, 948–951 (2001).

    CAS  PubMed  Google Scholar 

  53. Riethman, H. C., Moyzis, R. K., Meyne, J., Burke, D. T. Olson, M. V. Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Proc. Natl Acad. Sci. USA 86, 6240–6244 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cross, S. H., Allshire, R. C., McKay, S. J., McGill, N. I. Cooke, H. J. Cloning of human telomeres by complementation in yeast. Nature 338, 771–774 (1989).

    CAS  PubMed  Google Scholar 

  55. Negorev, D. G. et al. Physical analysis of the terminal 270 kb of DNA from human chromosome 1q. Genomics 22, 569–578 (1994).

    CAS  PubMed  Google Scholar 

  56. Macina, R. A. et al. Sequence organization of the human chromosome 2q telomere. Hum. Mol. Genet. 3, 1847–1853 (1994).

    CAS  PubMed  Google Scholar 

  57. Reston, J. T., Hu, X. L., Macina, R. A., Spais, C. Riethman, H. C. Structure of the terminal 300 kb of DNA from human chromosome 21q. Genomics 26, 31–38 (1995).

    CAS  PubMed  Google Scholar 

  58. Macina, R. A. et al. Molecular cloning and RARE cleavage mapping of human 2p, 6q, 8q, 12q, and 18q telomeres. Genome Res. 5, 225–232 (1995).

    CAS  PubMed  Google Scholar 

  59. Xiang, Z., Hu, X. L., Flint, J. Riethman, H. C. A sequence-ready map of the human chromosome 17p telomere. Genomics 58, 207–210 (1999).

    CAS  PubMed  Google Scholar 

  60. Xiang, Z. et al. A sequence-ready map of the human chromosome 1q telomere. Genomics 72, 105–107 (2001).

    CAS  PubMed  Google Scholar 

  61. Corcoran, L. M., Thompson, J. K., Walliker, D. Kemp, D. J. Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53, 807–813 (1988).

    CAS  PubMed  Google Scholar 

  62. Coleman, J., Baird, D. M. Royle, N. J. The plasticity of human telomeres demonstrated by a hypervariable telomere repeat array that is located on some copies of 16p and 16q. Hum. Mol. Genet. 8, 1637–1646 (1999).

    CAS  PubMed  Google Scholar 

  63. Baird, D. M., Coleman, J., Rosser, Z. H. Royle, N. J. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: implications for telomere biology and human evolution. Am. J. Hum. Genet. 66, 235–250 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wallace, B. M. Hulten, M. A. Meiotic chromosome pairing in the normal human female. Ann. Hum. Genet. 49, 215–226 (1985).

    CAS  PubMed  Google Scholar 

  65. Speed, R. M. The possible role of meiotic pairing anomalies in the atresia of human fetal oocytes. Hum. Genet. 78, 260–266 (1988).

    CAS  PubMed  Google Scholar 

  66. Chandley, A. C. Asymmetry in chromosome pairing: a major factor in de novo mutation and the production of genetic disease in man. J. Med. Genet. 26, 546–552 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Louis, E. J. Haber, J. E. Mitotic recombination among subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 124, 547–559 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Van der Maarel, S. M. et al. De novo facioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

    CAS  PubMed  Google Scholar 

  69. Van Deutekom, J. C. et al. Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counselling and etiology of FSHD1. Hum. Mol. Genet. 5, 1997–2003 (1996).One of several papers on the intriguing structure and frequent exchange of sequences between the subtelomeres of human chromosomes 4q and 10q, and the role of the tandem repeat on 4q in the aetiology of facioscapulohumeral muscular dystrophy.

    CAS  PubMed  Google Scholar 

  70. Stout, K. et al. Somatic pairing between subtelomeric chromosome regions: implications for human genetic disease? Chromosome Res. 7, 323–329 (1999).

    CAS  PubMed  Google Scholar 

  71. Przeworski, M., Hudson, R. R. Di Rienzo, A. Adjusting the focus on human variation. Trends Genet. 16, 296–302 (2000).

    CAS  PubMed  Google Scholar 

  72. Li, W. H. Sadler, L. A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kruglyak, L. Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    CAS  PubMed  Google Scholar 

  74. Vergnaud, G. Structure and evolution of human sub-telomeric regions. J. Soc. Biol. 193, 35–40 (1999). (In French.)

    CAS  PubMed  Google Scholar 

  75. Zakian, V. A. Structure and function of telomeres. Annu. Rev. Genet. 23, 579–604 (1989).

    CAS  PubMed  Google Scholar 

  76. Murray, A. W. Szostak, J. W. Construction and behavior of circularly permuted and telocentric chromosomes in Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 3166–3172 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thompson, J. K. et al. The chromosomal organization of the Plasmodium falciparum var gene family is conserved. Mol. Biochem. Parasitol. 87, 49–60 (1997).

    CAS  PubMed  Google Scholar 

  78. Pologe, L. G. Ravetch, J. V. Large deletions result from breakage and healing of P. falciparum chromosomes. Cell 55, 869–874 (1988).

    CAS  PubMed  Google Scholar 

  79. Flint, J. et al. Healing of broken human chromosomes by the addition of telomeric repeats. Am. J. Hum. Genet. 55, 505–512 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilkie, A. O., Lamb, J., Harris, P. C., Finney, R. D. Higgs, D. R. A truncated human chromosome 16 associated with α-thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n . Nature 346, 868–871 (1990).

    CAS  PubMed  Google Scholar 

  81. Yamada, M., Hayatsu, N., Matsuura, A. Ishikawa, F. Y′-Help1, a DNA helicase encoded by the yeast subtelomeric Y′ element, is induced in survivors defective for telomerase. J. Biol. Chem. 273, 33360–33366 (1998).

    CAS  PubMed  Google Scholar 

  82. Rachidi, N., Martinez, M. J., Barre, P. Blondin, B. Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol. Microbiol. 35, 1421–1430 (2000).

    CAS  PubMed  Google Scholar 

  83. Leech, J. H., Aley, S. B., Miller, L. H. Howard, R. J. Plasmodium falciparum malaria: cytoadherence of infected erythrocytes to endothelial cells and associated changes in the erythrocyte membrane. Prog. Clin. Biol. Res. 155, 63–77 (1984).

    CAS  PubMed  Google Scholar 

  84. Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89–100 (1995).

    CAS  PubMed  Google Scholar 

  85. Fischer, K. et al. Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. Mol. Cell. Biol. 17, 3679–3686 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rubio, J. P., Thompson, J. K. Cowman, A. F. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J. 15, 4069–4077 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. De Bruin, D., Lanzer, M. Ravetch, J. V. The polymorphic subtelomeric regions of Plasmodium falciparum chromosomes contain arrays of repetitive sequence elements. Proc. Natl Acad. Sci. USA 91, 619–623 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vermeesch, J. R. et al. The IL-9 receptor gene, located in the Xq/Yq pseudoautosomal region, has an autosomal origin, escapes X inactivation and is expressed from the Y. Hum. Mol. Genet. 6, 1–8 (1997).

    CAS  PubMed  Google Scholar 

  89. Kermouni, A. et al. The IL-9 receptor gene (IL9R): genomic structure, chromosomal localization in the pseudoautosomal region of the long arm of the sex chromosomes, and identification of IL9R pseudogenes at 9qter, 10pter, 16pter, and 18pter. Genomics 29, 371–382 (1995).

    CAS  PubMed  Google Scholar 

  90. Wong, A. C. et al. Two novel human RAB genes with near identical sequence each map to a telomere-associated region: the subtelomeric region of 22q13.3 and the ancestral telomere band 2q13. Genomics 59, 326–334 (1999).

    CAS  PubMed  Google Scholar 

  91. Louis, E. J. The chromosome ends of Saccharomyces cerevisiae. Yeast 11, 1553–1573 (1995).

    CAS  PubMed  Google Scholar 

  92. Del Portillo, H. A. et al. A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax. Nature 410, 839–842 (2001).

    CAS  PubMed  Google Scholar 

  93. Gibson, A. W. et al. Constitutive mutations of the Saccharomyces cerevisiae MAL-activator genes MAL23, MAL43, MAL63, and MAL64. Genetics 146, 1287–1298 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, J. Needleman, R. Removal of Mig1p binding site converts a MAL63 constitutive mutant derived by interchromosomal gene conversion to glucose insensitivity. Genetics 142, 51–63 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Buck, L. Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    CAS  PubMed  Google Scholar 

  96. Glusman, G., Yanai, I., Rubin, I. Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).

    CAS  PubMed  Google Scholar 

  97. Nadeau, J. H. Sankoff, D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147, 1259–1266 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    CAS  PubMed  Google Scholar 

  99. Nimmo, E. R., Cranston, G. Allshire, R. C. Telomere-associated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801–3811 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Levis, R., Hazelrigg, T. Rubin, G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558–561 (1985).

    CAS  PubMed  Google Scholar 

  101. Gottschling, D. E., Aparicio, O. M., Billington, B. L. Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990).

    CAS  PubMed  Google Scholar 

  102. Golubovsky, M. D., Konev, A. Y., Walter, M. F., Biessmann, H. Mason, J. M. Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics 158, 1111–1123 (2001).A recent paper showing that the lengthening of the terminal array of HeT-A and TART retrotransposons in Drosophila has an activating influence on a repressed subterminal reporter gene, even from one homologue to the other.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7, 1133–1145 (1993).

    CAS  PubMed  Google Scholar 

  104. Fourel, G., Revardel, E., Koering, C. E. Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522–2537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pryde, F. E. Louis, E. J. Limitations of silencing at native yeast telomeres. EMBO J. 18, 2538–2550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Baur, J. A., Zou, Y., Shay, J. W. Wright, W. E. Telomere position effect in human cells. Science 292, 2075–2077 (2001).The first demonstration of telomere position effect in human cells.

    CAS  PubMed  Google Scholar 

  107. Greider, C. W. Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    CAS  PubMed  Google Scholar 

  108. Colgin, L. M. Reddel, R. R. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dev. 9, 97–103 (1999).

    CAS  PubMed  Google Scholar 

  109. Stewart, S. A. Weinberg, R. A. Telomerase and human tumorigenesis. Semin. Cancer Biol. 10, 399–406 (2000).

    CAS  PubMed  Google Scholar 

  110. Lundblad, V. Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    CAS  PubMed  Google Scholar 

  111. Singer, M. S. Gottschling, D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    CAS  PubMed  Google Scholar 

  112. Lundblad, V. Blackburn, E. H. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73, 347–360 (1993).

    CAS  PubMed  Google Scholar 

  113. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S. Reddel, R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    CAS  PubMed  Google Scholar 

  115. Bryan, T. M. Reddel, R. R. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur. J. Cancer 33, 767–773 (1997).

    CAS  PubMed  Google Scholar 

  116. Shay, J. W. Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    CAS  PubMed  Google Scholar 

  117. Wilkie, A. O. Detection of cryptic chromosomal abnormalities in unexplained mental retardation: a general strategy using hypervariable subtelomeric DNA polymorphisms. Am. J. Hum. Genet. 53, 688–701 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Flint, J. et al. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet. 9, 132–140 (1995).The first paper to show that at least 6% of unexplained mental retardation is accounted for by relatively small chromosomal abnormalities that involve the tips of human chromosomes.

    CAS  PubMed  Google Scholar 

  119. Reddy, K. S. Fugate, J. K. A half cryptic derivative der(18)t(5;18)pat identified by M-FISH and subtelomere probes: clinical findings and review of subtelomeric rearrangements. Clin. Genet. 56, 328–332 (1999).

    CAS  PubMed  Google Scholar 

  120. Knight, S. J. et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–1681 (1999).

    CAS  PubMed  Google Scholar 

  121. Warburton, P., Mohammed, S. Ogilvie, C. M. Detection of submicroscopic subtelomeric chromosome translocations: a new case study. Am. J. Med. Genet. 91, 51–55 (2000).

    CAS  PubMed  Google Scholar 

  122. Holinski-Feder, E. et al. Familial mental retardation syndrome ATR-16 due to an inherited cryptic subtelomeric translocation, t(3;16)(q29;p13. 3). Am. J. Hum. Genet. 66, 16–25 (2000).

    CAS  PubMed  Google Scholar 

  123. Ballif, B. C., Kashork, C. D. Shaffer, L. G. FISHing for mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur. J. Hum. Genet. 8, 764–770 (2000).

    CAS  PubMed  Google Scholar 

  124. Knight, S. J. et al. An optimized set of human telomere clones for studying telomere integrity and architecture. Am. J. Hum. Genet. 67, 320–332 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Henegariu, O. et al. Cryptic translocation identification in human and mouse using several telomeric multiplex fish (TM-FISH) strategies. Lab. Invest. 81, 483–491 (2001).

    CAS  PubMed  Google Scholar 

  126. Knight, S. J. Flint, J. Screening chromosome ends for learning disability. Br. Med. J. 321, 1240 (2000).

  127. Shaffer, L. G., Kashork, C. D., Bacino, C. A. Benke, P. J. Caution: telomere crossing. Am. J. Med. Genet. 87, 278–280 (1999).

    CAS  PubMed  Google Scholar 

  128. Van Deutekom, J. C. et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum. Mol. Genet. 2, 2037–2042 (1993).

    CAS  PubMed  Google Scholar 

  129. Wijmenga, C. et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nature Genet. 2, 26–30 (1992).

    CAS  PubMed  Google Scholar 

  130. Eichler, E. E. Segmental duplications: what's missing, misassigned, and misassembled — and should we care? Genome Res. 11, 653–656 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Linardopoulou, Y. Fan, C. Friedman, other present and past members of the Trask laboratory, and G. van den Engh for stimulating discussions about subtelomeric structure and evolution. This work was supported in part by the National Institutes of Health. H.C.M. was also supported by a Poncin fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Trask.

Related links

Related links

DATABASES

LocusLink

HBA1

HBA2

HeT-A element

IL9R

RABL2A

RABL2B

TART element

OMIM

α-thalassaemia

facioscapulohumeral muscular dystrophy

Saccharomyces Genome Database

MEL

RAD52

SUC

SUP11

URA3

FURTHER INFORMATION

Encyclopedia of Life Sciences

Telomeres

P. falciparum life cycle

Glossary

OLFACTORY RECEPTOR

A member of a large family of membrane-spanning receptors in the sensory neuroepithelium of the nose that bind volatile odorants. On being bound, the receptor initiates a signalling cascade that results in transmission of an electrical signal to the brain.

TELOMERASE

A ribonucleoprotein enzyme that maintains the ends of chromosomes by adding a characteristic series of nucleotides to telomeres.

RETROTRANSPOSITION

A class of transposition event, in which a mRNA intermediate is reverse transcribed and inserted at a new location in the genome.

MONOCHROMOSOMAL SOMATIC-CELL HYBRID LINE

A cell line that contains a single human chromosome in the genomic background of another species. A panel of these hybrids is used to assign DNA sequence to one of the 24 human chromosomes by PCR, Southern blot or functional assays.

FLUORESCENCE-ACTIVATED CELL/CHROMOSOME SORTING

(FACS). The separation of cells or chromosomes by their fluorescence and light-scattering properties, which are measured as the particles flow in a liquid stream past laser beams. The stream is then broken into droplets, and selected droplets are electrically charged and deflected into collection vessels as they pass through an electric field.

INTERSTITIAL

Situated in the body of a chromosome, not close to either end.

GENE CONVERSION

A specific type of recombination, which results in non-reciprocal genetic exchange, in which the sequence of one DNA strand is used to alter the sequence of the other. In ectopic gene conversion, the donor and recipient DNA strands are not allelic copies of the same locus.

ALU INSERTION

A dispersed, intermediately repetitive 300-bp DNA sequence, found in the human genome in 300,000 copies, that is named after the restriction endonuclease (AluI) that cleaves it.

PSEUDOGENE

A DNA sequence originally derived from a functional protein-coding gene that has lost its function through the presence of one or more inactivating mutations.

TELOMERE-POSITION EFFECT

The transcriptional silencing of genes by virtue of their close proximity to telomeres.

IDIOPATHIC

Arising spontaneously, or from an obscure or unknown cause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mefford, H., Trask, B. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3, 91–102 (2002). https://doi.org/10.1038/nrg727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg727

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing