Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular insights into transgenerational non-genetic inheritance of acquired behaviours

Key Points

  • Environmental factors can lead to heritable non-genetic changes in the mammalian germ line that affect behaviour in the offspring across several generations. These changes influence behaviours related to human neuropsychiatric disease and higher cognitive functions.

  • Experimental strategies in laboratory rodents can be used to test the germline dependence of heritable changes in behaviour.

  • Novel non-genetic mechanisms such as epigenetic marks and non-coding RNAs have emerged as likely vectors for germline transmission.

  • The routes and mechanisms by which environmental factors can affect non-genetic factors in germ cells are discussed.

  • Major questions remain to be addressed, including the identification of non-genetic modifications that are altered by the environment in germ cells, the mechanisms of their induction and maintenance during development and adulthood, and the way in which they affect behaviour.

Abstract

Behavioural traits in mammals are influenced by environmental factors, which can interact with the genome and modulate its activity by complex molecular interplay. Environmental experiences can modify social, emotional and cognitive behaviours during an individual's lifetime, and result in acquired behavioural traits that can be transmitted to subsequent generations. This Review discusses the concept of, and experimental support for, non-genetic transgenerational inheritance of acquired traits involving the germ line in mammals. Possible mechanisms of induction and maintenance during development and adulthood are considered along with an interpretation of recent findings showing the involvement of epigenetic modifications and non-coding RNAs in male germ cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental factors influence behaviour across generations.
Figure 2: Major non-genetic marks in mammalian germ cells.
Figure 3: Timeline and dynamics of germ cell development in rodents.

Similar content being viewed by others

References

  1. Nilsson, E. E. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res. 165, 12–16 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Bohacek, J. & Mansuy, I. M. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38, 220–236 (2013).

    CAS  PubMed  Google Scholar 

  3. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, R. P. Blood chromatin as a biosensor of the epigenetic milieu: a tool for studies in living psychiatric patients. Epigenomics 4, 551–559 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Casas, E. & Vavouri, T. Sperm epigenomics: challenges and opportunities. Front. Genet. 5, 330 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Maze, I., Noh, K.-M., Soshnev, A. A. & Allis, C. D. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jodar, M., Selvaraju, S., Sendler, E., Diamond, M. P. & Krawetz, S. A. The presence, role and clinical use of spermatozoal RNAs. Hum. Reprod. Update 19, 604–624 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qureshi, I. A. & Mehler, M. F. An evolving view of epigenetic complexity in the brain. Phil. Trans. R. Soc. B 369, 1–8 (2014).

    Google Scholar 

  9. Bennett-Baker, P. E., Wilkowski, J. & Burke, D. T. Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165, 2055–2062 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Campos, E. I., Stafford, J. M. & Reinberg, D. Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol. 24, 664–674 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., Gluckman, P. D. & Hanson, M. A. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr. Res. 61, 31–36 (2007).

    Google Scholar 

  12. Jablonka, E. & Lamb, M. J. The inheritance of acquired epigenetic variations. J. Theor. Biol. 1, 69–83 (1989).

    Google Scholar 

  13. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Holland, M. L. & Rakyan, V. K. Transgenerational inheritance of non-genetically determined phenotypes. Biochem. Soc. Trans. 41, 769–776 (2013).

    CAS  PubMed  Google Scholar 

  15. Franklin, T. B., Linder, N., Russig, H., Thöny, B. & Mansuy, I. M. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS ONE 6, e21842 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Saavedra-Rodríguez, L. & Feig, L. A. Chronic social instability induces anxiety and defective social interactions across generations. Biol. Psychiatry 73, 44–53 (2013).

    PubMed  Google Scholar 

  17. Wolstenholme, J. T., Goldsby, J. A. & Rissman, E. F. Transgenerational effects of prenatal bisphenol A on social recognition. Horm. Behav. 64, 833–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morgan, C. P. & Bale, T. L. Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J. Neurosci. 31, 11748–11755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Franklin, T. B. et al. Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415 (2010). The first study in mice to demonstrate transgenerational transmission of the effects of postnatal traumatic stress across two generations, and associated alterations in DNA methylation in the brain and sperm.

    PubMed  Google Scholar 

  20. Weiss, I. C., Franklin, T. B., Vizi, S. S. & Mansuy, I. M. Inheritable effect of unpredictable maternal separation on behavioral responses in mice. Front. Behav. Neurosci. 5, 3 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Gapp, K. et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669 (2014). The first experimental evidence that sperm RNAs are sufficient to recapitulate the transmission of behavioural and metabolic traits induced by postnatal traumatic stress across two generations in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dietz, D. M. et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70, 408–414 (2011). An elegant study involving breeding before and after exposure to chronic social defeat stress in adult male mice and IVF, showing transmission of some behavioural alterations to the offspring.

    PubMed  PubMed Central  Google Scholar 

  23. Govorko, D., Bekdash, R. A., Zhang, C. & Sarkar, D. K. Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol. Psychiatry 72, 378–388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Crews, D. et al. Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl Acad. Sci. USA 109, 9143–9148 (2012).

    CAS  PubMed  Google Scholar 

  25. Leshem, M. & Schulkin, J. Transgenerational effects of infantile adversity and enrichment in male and female rats. Dev. Psychobiol. 54, 169–186 (2012).

    PubMed  Google Scholar 

  26. Vassoler, F. M., White, S. L., Schmidt, H. D., Sadri-Vakili, G. & Pierce, R. C. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16, 42–47 (2013).

    CAS  PubMed  Google Scholar 

  27. Byrnes, J. J., Babb, J. A., Scanlan, V. F. & Byrnes, E. M. Adolescent opioid exposure in female rats: transgenerational effects on morphine analgesia and anxiety-like behavior in adult offspring. Behav. Brain Res. 218, 200–205 (2011).

    CAS  PubMed  Google Scholar 

  28. Finegersh, A. & Homanics, G. E. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS ONE 9, e99078 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Stewart, R. J., Sheppard, H., Preece, R. & Waterlow, J. C. The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br. J. Nutr. 43, 403–412 (1980).

    CAS  PubMed  Google Scholar 

  30. Galler, J. R. & Seelig, C. Home-orienting behavior in rat pups: the effect of 2 and 3 generations of rehabilitation following intergenerational malnutrition. Dev. Psychobiol. 14, 541–548 (1981).

    CAS  PubMed  Google Scholar 

  31. Arai, J. A., Li, S., Hartley, D. M. & Feig, L. A. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J. Neurosci. 29, 1496–1502 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bohacek, J. et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol. Psychiatry 20, 621–631 (2014).

    PubMed  Google Scholar 

  33. Gapp, K. et al. Early life stress in fathers improves behavioural flexibility in their offspring. Nat. Commun. 5, 5466 (2014).

    PubMed  Google Scholar 

  34. Dias, B. G. & Ressler, K. J. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96 (2014).

    CAS  PubMed  Google Scholar 

  35. Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).

    CAS  PubMed  Google Scholar 

  36. Guerrero-Bosagna, C., Weeks, S. & Skinner, M. K. Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS ONE 9, e100194 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Skinner, M. K., Manikkam, M., Haque, M. M., Zhang, B. & Savenkova, M. I. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol. 13, R91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hazra, R. et al. In vivo actions of the Sertoli cell glucocorticoid receptor. Endocrinology 155, 1120–1130 (2014).

    PubMed  Google Scholar 

  39. Häeussler, S. & Claus, R. Expression of the glucocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase 2 in pig testes cells along fetal development. Reprod. Fertil. Dev. 19, 664–669 (2007).

    PubMed  Google Scholar 

  40. Kaufmann, S. H. et al. Evidence that rodent epididymal sperm contain the Mr approximately 94,000 glucocorticoid receptor but lack the Mr approximately 90,000 heat shock protein. Endocrinology 130, 3074–3084 (1992).

    CAS  PubMed  Google Scholar 

  41. Petropoulos, S., Matthews, S. G. & Szyf, M. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol. Reprod. 90, 43 (2014).

    PubMed  Google Scholar 

  42. Jenkins, T. G. & Carrell, D. T. The sperm epigenome and potential implications for the developing embryo. Reproduction 143, 727–734 (2012).

    CAS  PubMed  Google Scholar 

  43. Martínez, D. et al. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation. Cell. Metab. 19, 941–951 (2014).

    PubMed  Google Scholar 

  44. Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 15, 6918 (2014).

    Google Scholar 

  45. Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469 (2005). The first experimental demonstration that exposure to environmental factors during embryogenesis (the endocrine disruptor vinclozolin) can have transgenerational consequences on offspring physiology in rats.

    CAS  PubMed  Google Scholar 

  46. Manikkam, M., Guerrero-Bosagna, C., Tracey, R., Haque, M. M. & Skinner, M. K. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE 7, e31901 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Arpanahi, A. et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 19, 1338–1349 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Daxinger, L. & Whitelaw, E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162 (2012).

    CAS  PubMed  Google Scholar 

  49. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeybel, M. et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat. Med. 18, 1369–1377 (2012). Original study on how a hepatic toxin in rats can have transgenerational consequences on wound healing, demonstrating a role for the H2A.Z subunit at specific promoters in sperm and implicating blood-borne factors via elegant blood-serum transfusion.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brunner, A. M., Nanni, P. & Mansuy, I. M. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7, 2 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    CAS  PubMed  Google Scholar 

  55. Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. & Bale, T. L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu, W.-M. et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc. Natl Acad. Sci. USA 109, 490–494 (2012).

    CAS  PubMed  Google Scholar 

  57. Rassoulzadegan, M. et al. RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474 (2006).

    CAS  PubMed  Google Scholar 

  58. Abd El Naby, W. S. et al. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote 21, 31–51 (2013).

    CAS  PubMed  Google Scholar 

  59. Gapp, K., von Ziegler, L., Tweedie-Cullen, R. Y. & Mansuy, I. M. Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 36, 491–502 (2014).

    PubMed  Google Scholar 

  60. Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Beaujean, N. Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol. Reprod. Dev. 81, 100–112 (2014).

    CAS  PubMed  Google Scholar 

  62. Meikar, O., Da Ros, M., Korhonen, H. & Kotaja, N. Chromatoid body and small RNAs in male germ cells. Reproduction 142, 195–209 (2011).

    CAS  PubMed  Google Scholar 

  63. Guerrero-Bosagna, C., Settles, M., Lucker, B. & Skinner, M. K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 5, e13100 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Uzumcu, M., Suzuki, H. & Skinner, M. K. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod. Toxicol. 18, 765–774 (2004).

    CAS  PubMed  Google Scholar 

  65. Kaati, G., Bygren, L. O., Pembrey, M. & Sjostrom, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    CAS  PubMed  Google Scholar 

  66. Wei, Y. et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl Acad. Sci. USA 111, 1873–1878 (2014). A thorough analysis of DNA methylation across three generations in sperm and peripheral tissues, including a demonstration in blastocysts that changes in DNA methylation persist during embryogenesis in mice.

    CAS  PubMed  Google Scholar 

  67. Zhou, Q. et al. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J. Androl. 23, 870–881 (2002).

    CAS  PubMed  Google Scholar 

  68. Naz, R. K. & Sellamuthu, R. Receptors in spermatozoa: are they real? J. Androl. 27, 627–636 (2006).

    CAS  PubMed  Google Scholar 

  69. Adeoya-Osiguwa, S. A., Gibbons, R. & Fraser, L. R. Identification of functional α2- and β-adrenergic receptors in mammalian spermatozoa. Hum. Reprod. 21, 1555–1563 (2006).

    CAS  PubMed  Google Scholar 

  70. Guerrero-Bosagna, C., Savenkova, M., Haque, M. M., Nilsson, E. & Skinner, M. K. Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS ONE 8, e59922 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mital, P., Hinton, B. T. & Dufour, J. M. The blood−testis and blood−epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Palmer, N. O., Fullston, T., Mitchell, M., Setchell, B. P. & Lane, M. SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod. Fertil. Dev. 23, 929–939 (2011).

    CAS  PubMed  Google Scholar 

  73. Carr, M. S., Yevtodiyenko, A., Schmidt, C. L. & Schmidt, J. V. Allele-specific histone modifications regulate expression of the Dlk1 − Gtl2 imprinted domain. Genomics 89, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  74. Girardot, M., Feil, R. & Llères, D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 5, 715–728 (2013).

    CAS  PubMed  Google Scholar 

  75. Pathak, S., D'Souza, R., Ankolkar, M., Gaonkar, R. & Balasinor, N. H. Potential role of estrogen in regulation of the Insulin-like growth factor2-H19 locus in the rat testis. Mol. Cell. Endocrinol. 314, 110–117 (2010).

    CAS  PubMed  Google Scholar 

  76. Cacciola, G. et al. Low 17beta-estradiol levels in Cnr1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization. Biol. Reprod. 88, 152 (2013).

    PubMed  Google Scholar 

  77. Cossetti, C. et al. Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS ONE 9, e101629 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    CAS  PubMed  Google Scholar 

  80. Pegtel, D. M. et al. Functional delivery of viral miRNAs via exosomes. Proc. Natl Acad. Sci. USA 107, 6328–6333 (2010).

    CAS  PubMed  Google Scholar 

  81. Pigati, L. et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS ONE 5, e13515 (2010).

    PubMed  PubMed Central  Google Scholar 

  82. Vojtech, L. et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 42, 7290–7304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012).

    CAS  PubMed  Google Scholar 

  84. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    CAS  PubMed  Google Scholar 

  85. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007).

    CAS  PubMed  Google Scholar 

  86. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).

    CAS  PubMed  Google Scholar 

  87. Guil, S. & Esteller, M. RNA–RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem. Sci. 40, 248–256 (2015).

    CAS  PubMed  Google Scholar 

  88. Fu, Q. & Wang, P. J. Mammalian piRNAs. Spermatogenesis 4, e27889 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307 (2013).

    CAS  PubMed  Google Scholar 

  90. Nätt, D. et al. Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13, 59 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Crews, D. et al. Transgenerational epigenetic imprints on mate preference. Proc. Natl Acad. Sci. USA 104, 5942–5946 (2007).

    CAS  PubMed  Google Scholar 

  92. Skinner, M. K. Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-Lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol. Evol. 7, 1296–1302 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bromfield, J. J. et al. Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl Acad. Sci. USA 111, 2200–2205 (2014).

    CAS  PubMed  Google Scholar 

  94. Ong, Z. Y. & Muhlhausler, B. S. Maternal 'junk-food' feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J. 25, 2167–2179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Todrank, J., Heth, G. & Restrepo, D. Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. Proc. Biol. Sci. 278, 1949–1955 (2011).

    PubMed  Google Scholar 

  96. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Google Scholar 

  97. Liu, B. et al. Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory. Nat. Neurosci. 17, 97–105 (2014).

    CAS  PubMed  Google Scholar 

  98. Stilling, R. M., Dinan, T. G. & Cryan, J. F. Microbial genes, brain and behaviour — epigenetic regulation of the gut-brain axis. Genes Brain Behav. 13, 69–86 (2014).

    CAS  PubMed  Google Scholar 

  99. Debiec, J. & Sullivan, R. M. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc. Natl Acad. Sci. USA 111, 12222–12227 (2014).

    CAS  PubMed  Google Scholar 

  100. Mashoodh, R., Franks, B., Curley, J. P. & Champagne, F. A. Paternal social enrichment effects on maternal behavior and offspring growth. Proc. Natl Acad. Sci. USA 109, S17232–S17238 (2012).

    Google Scholar 

  101. Denomme, M. M. & Mann, M. R. W. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144, 393–409 (2012).

    CAS  PubMed  Google Scholar 

  102. Lumey, L. H., Stein, A. D. & Susser, E. Prenatal famine and adult health. Annu. Rev. Publ. Health 32, 237–262 (2011).

    CAS  Google Scholar 

  103. Veenendaal, M. V. E. et al. Transgenerational effects of prenatal exposure to the 1944–1945 Dutch famine. BJOG 120, 548–553 (2013).

    CAS  PubMed  Google Scholar 

  104. Painter, R. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    CAS  PubMed  Google Scholar 

  105. Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    CAS  PubMed  Google Scholar 

  106. Schulz, L. C. The Dutch Hunger Winter and the developmental origins of health and disease. Proc. Natl Acad. Sci. USA 107, 16757–16758 (2010).

    CAS  PubMed  Google Scholar 

  107. Pembrey, M. E. Male-line transgenerational responses in humans. Hum. Fertil. 13, 268–271 (2010).

    Google Scholar 

  108. Van Den Berg, G. J. & Pinger, P. R. A validation study of transgenerational effects of childhood conditions on the third generation offspring's economic and health outcomes potentially driven by epigenetic imprinting. IZA [online], (2014).

  109. Stein, A. D. & Lumey, L. H. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum. Biol. 72, 641–654 (2000).

    CAS  PubMed  Google Scholar 

  110. Waterland, R. A. et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vaage, A. B. et al. Paternal predictors of the mental health of children of Vietnamese refugees. Child Adolesc. Psychiatry Ment. Health 5, 2 (2011).

    PubMed  PubMed Central  Google Scholar 

  112. Chen, T. H.-H., Chiu, Y.-H. & Boucher, B. J. Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am. J. Clin. Nutr. 83, 688–692 (2006).

    CAS  PubMed  Google Scholar 

  113. Behrman, J. R. et al. Nutritional supplementation in girls influences the growth of their children: prospective study in Guatemala. Am. J. Clin. Nutr. 90, 1372–1379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rossi, P. & Dolci, S. Paracrine mechanisms involved in the control of early stages of mammalian spermatogenesis. Front. Endocrinol. 4, 181 (2013).

    Google Scholar 

  115. Hess, R. A. & Renato de Franca, L. Spermatogenesis and cycle of the seminiferous epithelium. Adv. Exp. Med. Biol. 636, 1–15 (2008).

    PubMed  Google Scholar 

  116. Hermo, L., Pelletier, R.-M., Cyr, D. G. & Smith, C. E. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc. Res. Tech. 73, 241–278 (2010).

    PubMed  Google Scholar 

  117. Marques, C. J. et al. DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 6, 1354–1361 (2011).

    CAS  PubMed  Google Scholar 

  118. Nebel, B. R., Amarose, A. P. & Hacket, E. M. Calendar of gametogenic development in the prepubertal male mouse. Science 134, 832–833 (1961).

    CAS  PubMed  Google Scholar 

  119. Vitale, R., Fawcett, D. W. & Dym, M. The normal development of the blood−testis barrier and the effects of clomiphene and estrogen treatment. Anat. Rec. 176, 331–344 (1973).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Mansuy laboratory is supported primarily by the University of Zürich, ETH Zürich and the Swiss National Science Foundation. The authors thank S. Steinbacher for help with drafting illustrations, K. Gapp for critically reading the manuscript and the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle M. Mansuy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

DNA methylation

Involves the transfer of a methyl residue to cytosine (5-methylcytosine) in CpG dinucleotides.

DNA hydroxymethylation

Results from oxidation of 5-methylcytosine into 5-hydroxymethylcytosine by ten-eleven translocation dioxygenases (TETs).

Post-translational modifications

(PTMs). Covalent modifications such as methylation (mono, bi or tri), acetylation and phosphorylation on specific histone residues (primarily lysine, arginine and serine).

Non-coding RNAs

(ncRNAs). Functional RNA molecules that are not translated into proteins. ncRNAs can regulate gene transcription by DNA binding and prevent translation by mRNA silencing or degradation. Major ncRNAs include the small ncRNAs (microRNAs, small interfering RNAs, PIWI-interacting RNAs and small nucleolar RNAs) and long ncRNAs.

Nucleosome positioning

The location of nucleosomes on the chromatin. It is non-random and dynamic, and affects gene regulation.

Behavioural despair

When an animal stops struggling to escape adverse conditions, such as being suspended by the tail (tail suspension test) or placed in a small container of cold water (forced swim test). Struggling or immobility can, however, sometimes reflect the survival response or adaptive learning depending on the task conditions.

Environmental enrichment

The supplementation of an individual's living conditions by social, sensory and physical stimuli.

Perseveration

The repetition of the same response in the absence of any adjustment to changing requirements of a task.

Operant conditioning tasks

Tasks that involve behavioural learning through repeated reinforcement or punishment.

Paramutation

The transfer of epigenetic information from one allele of a gene to the other allele to establish a heritable state of gene expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohacek, J., Mansuy, I. Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 16, 641–652 (2015). https://doi.org/10.1038/nrg3964

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing