Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haplotype-resolved genome sequencing: experimental methods and applications

Key Points

  • Haplotypes link together (that is, 'phase') groups of genetic variants that co-occur on single chromosomes. Although haplotypes have an important role in clinical genetics and association studies, they are not typically obtained by contemporary genotyping or sequencing technologies and must be determined separately.

  • Inferential methods for haplotype determination perform fairly poorly for the rare and private variants implicated in many genetic diseases. To phase this class of variants accurately and comprehensively, direct experimental methods are needed.

  • Dense haplotyping methods comprehensively phase variants into haplotype blocks at the scale of a single gene or a small number of genes and corresponding regulatory regions. Contiguity is defined within each block but not between adjacent or distant haplotype blocks.

  • Sparse haplotyping methods phase a more modest number of distant variants distributed along an entire chromosome or a chromosome arm. Resulting haplotypes are not comprehensive but have long-range contiguity that is currently unattainable using dense methods.

  • Reference panels of previously ascertained haplotypes can be used to correct errors in, or increase the density or contiguity of, directly obtained haplotypes. Such hybrid approaches yield improved haplotypes at low costs.

  • Although contiguity metrics are typically used to compare haplotype assemblies, comprehensive comparisons should also include measures of the accuracy, density and allele frequency spectrum of the phased variants.

Abstract

Human genomes are diploid and, for their complete description and interpretation, it is necessary not only to discover the variation they contain but also to arrange it onto chromosomal haplotypes. Although whole-genome sequencing is becoming increasingly routine, nearly all such individual genomes are mostly unresolved with respect to haplotype, particularly for rare alleles, which remain poorly resolved by inferential methods. Here, we review emerging technologies for experimentally resolving (that is, 'phasing') haplotypes across individual whole-genome sequences. We also discuss computational methods relevant to their implementation, metrics for assessing their accuracy and completeness, and the relevance of haplotype information to applications of genome sequencing in research and clinical medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of dense haplotyping methods.
Figure 2: Schematic of sparse haplotyping methods.
Figure 3: Combining direct and computational methods.
Figure 4: Haplotype contiguity and accuracy.

Similar content being viewed by others

References

  1. Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nature Genet. 44, 631–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genet. 45, 1150–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nature Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genet. 46, 989–993 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nature Genet. 46, 919–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Drysdale, C. M. et al. Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl Acad. Sci. USA 97, 10483–10488 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Deenen, M. J. et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 17, 3455–3468 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new developments. Nature Rev. Genet. 12, 703–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 490, 56–65 (2012).

  12. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  13. Reich, D. et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the duffy antigen receptor for chemokines gene. PLoS Genet. 5, e1000360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, e254 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venter, J. C. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Shendure, J. & Aiden, E. L. The expanding scope of DNA sequencing. Nature Biotech. 30, 1084–1094 (2012).

    Article  CAS  Google Scholar 

  18. McKernan, K. J. et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dear, P. H. & Cook, P. R. Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Res. 17, 6795–6807 (1989). This paper provides the conceptual framework for various subsequent phasing approaches that exploit the physical linkage between markers on HMW DNA and rely on limiting dilution to sub-haploid pools.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burgtorf, C. et al. Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res. 13, 2717–2724 (2003). This paper describes haplotype resolution using fosmid clone sequencing and laid the groundwork for massively parallel implementations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raymond, C. K. et al. Targeted, haplotype-resolved resequencing of long segments of the human genome. Genomics 86, 759–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kitzman, J. O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nature Biotech. 29, 59–63 (2011). This is the first report of a molecularly phased human genome that was sequenced on a massively parallel, short-read sequencing platform.

    Article  CAS  Google Scholar 

  23. Lo, C. et al. On the design of clone-based haplotyping. Genome Biol. 14, R100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suk, E. K. et al. A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res. 21, 1672–1685 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adey, A. et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature 500, 207–211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitzman, J. O. et al. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl Med. 4, 137ra76 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Duitama, J. et al. Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of single individual haplotyping techniques. Nucleic Acids Res. 40, 2041–2053 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Hoehe, M. R. et al. Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nature Commun. 5, 5569 (2014).

    Article  CAS  Google Scholar 

  30. Paul, P. & Apgar, J. Single-molecule dilution and multiple displacement amplification for molecular haplotyping. BioTechniques 38, 553–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Peters, B. A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012). This paper describes a fully in vitro approach for sequencing and phasing human genomes in a production setting with greatly reduced requirements for input DNA mass.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaper, F. et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc. Natl Acad. Sci. USA 110, 5552–5557 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Kuleshov, V. et al. Whole-genome haplotyping using long reads and statistical methods. Nature Biotech. 32, 261–266 (2014).

    Article  CAS  Google Scholar 

  34. Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nature Genet. 46, 1343–1349 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Krol, A. 10X Genomics at AGBT. Bio-ITWorld [online], (2015).

    Google Scholar 

  36. Hiatt, J. B., Patwardhan, R. P., Turner, E. H., Lee, C. & Shendure, J. Parallel, tag-directed assembly of locally derived short sequence reads. Nature Meth. 7, 119–122 (2010).

    Article  CAS  Google Scholar 

  37. Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2, e00569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Laszlo, A. H. et al. Decoding long nanopore sequencing reads of natural DNA. Nature Biotech. 32, 829–833 (2014).

    Article  CAS  Google Scholar 

  39. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, H. et al. Conversion of diploidy to haploidy. Nature 403, 723–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Douglas, J. A., Boehnke, M., Gillanders, E., Trent, J. M. & Gruber, S. B. Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nature Genet. 28, 361–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, K. et al. Long-range polony haplotyping of individual human chromosome molecules. Nature Genet. 38, 382–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ma, L. et al. Direct determination of molecular haplotypes by chromosome microdissection. Nature Meth. 7, 299–301 (2010).

    Article  CAS  Google Scholar 

  44. Yang, H., Chen, X. & Wong, W. H. Completely phased genome sequencing through chromosome sorting. Proc. Natl Acad. Sci. USA 108, 12–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Fan, H. C., Wang, J., Potanina, A. & Quake, S. R. Whole-genome molecular haplotyping of single cells. Nature Biotech. 29, 51–57 (2010).

    Article  CAS  Google Scholar 

  46. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kirkness, E. F. et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res. 23, 826–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hou, Y. et al. Genome analyses of single human oocytes. Cell 155, 1492–1506 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. de Bourcy, C. F. A. et al. A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 9, e105585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nature Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Selvaraj, S., R. Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nature Biotech. 31, 1111–1118 (2013). This paper reports the first use of chromatin interaction maps to capture long-range sparse haplotypes along with a hybrid strategy to increase haplotype density.

    Article  CAS  Google Scholar 

  56. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. arXiv [online], (2015).

    Google Scholar 

  57. Lancia, G., Bafna, V., Istrail, S., Lippert, R. & Schwartz, R. in Lecture Notes in Computer Science Vol. 2161 (eds Goos, G. et al.) 182–193 (Springer, 2001).

    Google Scholar 

  58. Bansal, V., Halpern, A. L., Axelrod, N. & Bafna, V. An MCMC algorithm for haplotype assembly from whole-genome sequence data. Genome Res. 18, 1336–1346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bansal, V. & Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24, i153–i159 (2008).

    Article  PubMed  Google Scholar 

  60. Aguiar, D. & Istrail, S. Haplotype assembly in polyploid genomes and identical by descent shared tracts. Bioinformatics 29, 352–360 (2013).

    Article  CAS  Google Scholar 

  61. Aguiar, D. & Istrail, S. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data. J. Comp. Bio. 19, 577–590 (2012).

    Article  CAS  Google Scholar 

  62. Lo, C., Bashir, A., Bansal, V. & Bafna, V. Strobe sequence design for haplotype assembly. BMC Bioinformatics 12, S24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Delaneau, O., Howie, B., Cox, A. J., Zagury, J.-F. & Marchini, J. Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93, 687–696 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, K. & Zhi, D. Joint haplotype phasing and genotype calling of multiple individuals using haplotype informative reads. Bioinformatics 29, 2427–2434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, W. Y. et al. Leveraging reads that span multiple single nucleotide polymorphisms for haplotype inference from sequencing data. Bioinformatics 29, 2245–2252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv [online], (2012).

    Google Scholar 

  67. Fan, H. C. et al. Non-invasive prenatal measurement of the fetal genome. Nature 487, 320–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuleshov, V. Probabilistic single-individual haplotyping. Bioinformatics 30, i379–i385 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matsumoto, H. & Kiryu, H. MixSIH: a mixture model for single individual haplotyping. BMC Genomics 14, S5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). This paper demonstrates the use of allelic imbalance across long blocks of phased markers as a signal for aneuploidy in tumour genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schaaf, C. P. et al. Truncating mutations of MAGEL2 cause Prader–Willi phenotypes and autism. Nature Genet. 45, 1405–1408 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 488, 91–100 (2012).

    Article  CAS  Google Scholar 

  76. Xie, W. et al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148, 816–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leung, D. et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 518, 350–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lo, Y. M. D. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl Med. 2, 61ra91 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Stoffregen, E. P., Donley, N., Stauffer, D., Smith, L. & Thayer, M. J. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression. Hum. Mol. Genet. 20, 2366–2378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiao, M. et al. Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding. Hum. Mutat. 28, 913–921 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Xiao, M. et al. Direct determination of haplotypes from single DNA molecules. Nature Meth. 6, 199–201 (2009).

    Article  CAS  Google Scholar 

  83. Mitra, R. D. et al. Digital genotyping and haplotyping with polymerase colonies. Proc. Natl Acad. Sci. USA 100, 5926–5931 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Wetmur, J. G. Molecular haplotyping by linking emulsion PCR: analysis of paraoxonase 1 haplotypes and phenotypes. Nucleic Acids Res. 33, 2615–2619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Turner, D. J. et al. Assaying chromosomal inversions by single-molecule haplotyping. Nature Meth. 3, 439–445 (2006).

    Article  CAS  Google Scholar 

  86. Regan, J. F. et al. A rapid molecular approach for chromosomal phasing. PLoS ONE 10, e0118270 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nedelkova, M. et al. Targeted isolation of cloned genomic regions by recombineering for haplotype phasing and isogenic targeting. Nucleic Acids Res. 39, e137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Vree, P. J. P. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nature Biotech. 32, 1019–1025 (2014).

    Article  CAS  Google Scholar 

  89. Adey, A. et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 24, 2041–2049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Steinberg, K. M. et al. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bauer, D. E. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank B. Browning, B. Vernot, A. Gordon and members of the Shendure Lab for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew W. Snyder or Jay Shendure.

Ethics declarations

Competing interests

The authors have patent or patent applications related to the subject matter reviewed here.

PowerPoint slides

Glossary

Low-frequency variants

Single-nucleotide variants, insertions and deletions (indels) or copy-number variants that have minor allele frequency in a population <1%; that is, variants found on <1 out of every 100 haplotypes.

Private variants

Variants that are found in a single individual or pedigree and are thus recalcitrant to phasing by population-based methods owing to their absence from reference panels.

Linkage disequilibrium

A measure of the probability that two polymorphic loci do not segregate independently within a population.

Padlock probes

Single-stranded DNA oligonucleotides that have a constant region flanked by two targeting 'arms' that are complementary to the sequence of a genomic target. After highly specific hybridization to the target, the probes can be circularized and analysed for genotyping.

Personal genome

A substantially complete genome sequence of a single individual, typically obtained to attempt to describe or predict medical or other traits of that individual.

Mate-paired

Pertaining to a type of sequencing library preparation in which portions of a haplotype separated by 3–5 kb are brought into proximity by fragmentation and in vitro circularization. By sequencing across the junction of these circles, variants that are separated in genomic space but that appear on the same fragments can be jointly phased.

High-molecular-weight (HMW) genomic DNA

Genomic DNA isolated in such a way as to preserve long intact DNA fragments, ideally exceeding 100 kb on average. The ideal length may differ depending on the application.

Fosmids

DNA cloning vectors containing up to 40 kb of insert, typically packaged in bulk into phage and transfected into Escherichia coli, in which a library can be propagated.

Multiple displacement amplification

(MDA). A method for high-gain whole-genome amplification in which a low input mass of high-molecular-weight DNA is exponentially copied by random priming with short oligonucleotides, followed by primer extension with a strand-displacing polymerase at a constant temperature. Resulting amplicons are typically several kilobases in length.

Complete Genomics sequencing platform

A form of high-throughput short-read sequencing technology and a suite of analysis tools offered as a commercial service.

Illumina sequencing platform

The most commonly used form of high-throughput short-read sequencing that offers a low cost per base.

Moleculo system

A commercial library preparation and in silico method for reconstructing the sequence of a 6–10-kb fragment of DNA using short-read sequencing instruments.

Long-read sequencing methods

Sequencing technologies in which either raw or computationally assembled reads exceed 1 kb, such that each read has a greater probability of capturing two or more variants on a single haplotype. They are typically associated with a higher cost per base and a lower throughput than short-read technologies.

Subassembly

An in silico method for reconstructing the sequence of a DNA fragment that exceeds the maximum read length of the sequencing instrument. Molecules of ~500 bp are uniquely tagged, amplified, concatemerized and randomly fragmented. Short reads capturing the tag and a random portion of the original fragment can be jointly assembled to recover the full-length sequence.

Single-molecule real-time (SMRT) sequencing

A form of sequencing technology that directly interrogates individual molecules of DNA and thus does not require library amplification before sequencing.

Nanopore sequencing

A method for DNA sequencing in which small changes in electrical current are detected as sequential bases of a DNA polymer pass through a 1 nm transmembrane protein or solid-state pore. As single molecules of DNA can be sequenced directly, no library amplification step is required.

Chromatin interaction maps

Sets of measurements of the pairwise 3D spatial proximity of many non-adjacent regions of genomic DNA in a nucleus, as ascertained experimentally by crosslinking chromatin, ligating together fragments of DNA that are associated with the crosslinked proteins, and sequencing.

Phred-scale quality scores

A scoring system, originally developed for assigning confidence to individual base calls from sequencing instruments, in which an estimated error probability (P) is converted to a quality score (Q) by the transformation Q = −10 log10(P).

Runs of homozygosity

Regions of the genome above a given distance threshold at which both haplotypes are identical.

Compound heterozygosity

The presence of two different recessive alleles, one on each haplotype, in a specific gene in a single individual. It is particularly relevant for autosomal recessive genetic diseases, which are frequently caused by compound heterozygosity in non-consanguineous pedigrees.

Variant imputation

A statistically grounded method for 'filling in' missing alleles in sparsely genotyped individuals to increase the power of association studies on the basis of similarity to reference panels of previously ascertained haplotypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, M., Adey, A., Kitzman, J. et al. Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16, 344–358 (2015). https://doi.org/10.1038/nrg3903

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing