Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation

Key Points

  • Analyses of clonal cell populations have revealed fixed autosomal random monoallelic expression (aRME), in which allele-specific expression is conserved in daughter cells after division.

  • More recently, single-cell analyses have revealed dynamic aRME, in which stochastic transcription renders shorter-term periods of expression frequently from only one allele.

  • Distinguishing features of the two forms of aRME (clonally fixed and dynamic) are discussed, and literature on their nature, pervasiveness and regulation is revisited.

  • Open outstanding questions in this emerging field of research are highlighted.

  • Clonally fixed and dynamic aRME can be studied simultaneously via single-cell analyses of allelic transcription in clonal cells, and such analyses of in vivo cell types will propel our understanding of transcriptional regulation.

  • aRME increases the heterogeneity among cells and probably contributes to the variance of phenotypes — including disease manifestations — among individuals of identical genotype.

Abstract

Random monoallelic expression (RME) of genes represents a striking example of how stochastic molecular processes can result in cellular heterogeneity. Recent transcriptome-wide studies have revealed both mitotically stable and cell-to-cell dynamic forms of autosomal RME, with the latter presumably resulting from burst-like stochastic transcription. Here, we discuss the distinguishing features of these two forms of RME and revisit literature on their nature, pervasiveness and regulation. Finally, we explore how RME may contribute to phenotypic variation, including the incomplete penetrance and variable expressivity often seen in genetic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of monoallelic gene expression.
Figure 2: Causes of fixed and dynamic aRME.
Figure 3: Models for phenotypic consequences of aRME.

Similar content being viewed by others

References

  1. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    CAS  PubMed  Google Scholar 

  2. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    CAS  PubMed  Google Scholar 

  3. Lyon, M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).

    CAS  PubMed  Google Scholar 

  4. Monk, M. & Harper, M. I. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311–313 (1979).

    CAS  PubMed  Google Scholar 

  5. Hadjantonakis, A. K., Cox, L. L., Tam, P. P. & Nagy, A. An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis 29, 133–140 (2001).

    CAS  PubMed  Google Scholar 

  6. Wu, H. et al. Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103–119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007). This paper describes the first genome-wide study on aRME, which identified widespread fixed aRME.

    CAS  PubMed  Google Scholar 

  8. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196 (2014). This study reveals and characterizes abundant dynamic aRME in early embryonic cells using single-cell RNA-seq analyses on outcrossed mouse embryos.

    CAS  PubMed  Google Scholar 

  9. Pernis, B., Chiappino, G., Kelus, A. S. & Gell, P. G. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J. Exp. Med. 122, 853–876 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976).

    CAS  PubMed  Google Scholar 

  11. Brady, B. L., Steinel, N. C. & Bassing, C. H. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 185, 3801–3808 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    CAS  PubMed  Google Scholar 

  13. Tasic, B. et al. Promoter choice determines splice site selection in protocadherin α and γ pre-mRNA splicing. Mol. Cell 10, 21–33 (2002).

    CAS  PubMed  Google Scholar 

  14. Wang, X., Su, H. & Bradley, A. Molecular mechanisms governing Pcdh-γ gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev. 16, 1890–1905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Esumi, S. et al. Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons. Nat. Genet. 37, 171–176 (2005).

    CAS  PubMed  Google Scholar 

  16. Kaneko, R. et al. Allelic gene regulation of Pcdh-α and Pcdh-α clusters involving both monoallelic and biallelic expression in single Purkinje cells. J. Biol. Chem. 281, 30551–30560 (2006).

    CAS  PubMed  Google Scholar 

  17. Held, W. & Raulet, D. H. Expression of the Ly49A gene in murine natural killer cell clones is predominantly but not exclusively mono-allelic. Eur. J. Immunol. 27, 2876–2884 (1997).

    CAS  PubMed  Google Scholar 

  18. Bix, M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science 281, 1352–1354 (1998).

    CAS  PubMed  Google Scholar 

  19. Rivière, I., Sunshine, M. J. & Littman, D. R. Regulation of IL-4 expression by activation of individual alleles. Immunity 9, 217–228 (1998).

    PubMed  Google Scholar 

  20. Holländer, G. A. et al. Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121 (1998).

    PubMed  Google Scholar 

  21. Nutt, S. L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nat. Genet. 21, 390–395 (1999).

    CAS  PubMed  Google Scholar 

  22. Rhoades, K. L. et al. Allele-specific expression patterns of interleukin-2 and Pax-5 revealed by a sensitive single-cell RT-PCR analysis. Curr. Biol. 10, 789–792 (2000).

    CAS  PubMed  Google Scholar 

  23. Kelly, B. L. & Locksley, R. M. Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns. J. Immunol. 165, 2982–2986 (2000).

    CAS  PubMed  Google Scholar 

  24. Guo, L., Hu-Li, J. & Paul, W. E. Probabilistic regulation in TH2 cells accounts for monoallelic expression of IL-4 and IL-13. Immunity 23, 89–99 (2005).

    CAS  PubMed  Google Scholar 

  25. Sano, Y. et al. Random monoallelic expression of three genes clustered within 60 kb of mouse t complex genomic DNA. Genome Res. 11, 1833–1841 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohlsson, R. et al. Random monoallelic expression of the imprinted IGF2 and H19 genes in the absence of discriminative parental marks. Dev. Genes Evol. 209, 113–119 (1999).

    CAS  PubMed  Google Scholar 

  27. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    CAS  PubMed  Google Scholar 

  28. Gimelbrant, A. A., Ensminger, A. W., Qi, P., Zucker, J. & Chess, A. Monoallelic expression and asynchronous replication of p120 catenin in mouse and human cells. J. Biol. Chem. 280, 1354–1359 (2005).

    CAS  PubMed  Google Scholar 

  29. Zwemer, L. M. et al. Autosomal monoallelic expression in the mouse. Genome Biol. 13, R10 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeffries, A. R. et al. Stochastic choice of allelic expression in human neural stem cells. Stem Cells 30, 1938–1947 (2012).

    PubMed  Google Scholar 

  31. Eckersley-Maslin, M. A. et al. Random monoallelic gene expression increases upon embryonic stem cell differentiation. Dev. Cell 28, 351–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gendrel, A.-V. et al. Developmental dynamics and disease potential of random monoallelic gene expression. Dev. Cell 28, 366–380 (2014). References 31 and 32 identify fixed aRME using RNA-seq on outcrossed mouse cell lines and perform the most-comprehensive analyses to date of putative regulatory correlates and mechanisms.

    CAS  PubMed  Google Scholar 

  33. Li, S. M. et al. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families. PLoS ONE 7, e31751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nag, A. et al. Chromatin signature of widespread monoallelic expression. eLife 2, e01256 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Borel, C. et al. Biased allelic expression in human primary fibroblast single cells. Am. J. Hum. Genet. 96, 70–80 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez, I. Singular expression of olfactory receptor genes. Cell 155, 274–277 (2013).

    CAS  PubMed  Google Scholar 

  38. Morey, C. & Avner, P. The demoiselle of X-inactivation: 50 years old and as trendy and mesmerising as ever. PLoS Genet. 7, e1002212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Augui, S., Nora, E. P. & Heard, E. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12, 429–442 (2011).

    CAS  PubMed  Google Scholar 

  40. Lessing, D., Anguera, M. C. & Lee, J. T. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu. Rev. Genomics Hum. Genet. 14, 85–110 (2013).

    CAS  PubMed  Google Scholar 

  41. Pollex, T. & Heard, E. Recent advances in X-chromosome inactivation research. Curr. Opin. Cell Biol. 24, 825–832 (2012).

    CAS  PubMed  Google Scholar 

  42. Nguyen, M. Q., Zhou, Z., Marks, C. A., Ryba, N. J. P. & Belluscio, L. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131, 1009–1017 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lewcock, J. W. & Reed, R. R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl Acad. Sci. USA 101, 1069–1074 (2004).

    CAS  PubMed  Google Scholar 

  44. Lyons, D. B. et al. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154, 325–336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartolomei, M. S. & Ferguson-Smith, A. C. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3, a002592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    CAS  PubMed  Google Scholar 

  47. Hübner, M. R., Eckersley-Maslin, M. A. & Spector, D. L. Chromatin organization and transcriptional regulation. Curr. Opin. Genet. Dev. 23, 89–95 (2013).

    PubMed  Google Scholar 

  48. Chow, J. C. & Heard, E. Nuclear organization and dosage compensation. Cold Spring Harb. Perspect. Biol. 2, a000604 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    CAS  PubMed  Google Scholar 

  50. Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol. 28, 3713–3728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    CAS  PubMed  Google Scholar 

  52. Kosak, S. T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  PubMed  Google Scholar 

  53. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    CAS  PubMed  Google Scholar 

  54. Clowney, E. J. et al. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724–737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, G.-W. & Xie, X. S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Larson, D. R., Singer, R. H. & Zenklusen, D. A single molecule view of gene expression. Trends Cell Biol. 19, 630–637 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  58. Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22–24 (2014).

    CAS  PubMed  Google Scholar 

  59. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Quantifying the transcriptional output of single alleles in single living mammalian cells. Nat. Protoc. 8, 393–408 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    PubMed  PubMed Central  Google Scholar 

  61. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).

    CAS  PubMed  Google Scholar 

  63. Yunger, S., Rosenfeld, L., Garini, Y. & Shav-Tal, Y. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7, 631–633 (2010).

    CAS  PubMed  Google Scholar 

  64. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotech. 29, 436–442 (2011).

    CAS  Google Scholar 

  65. Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Irizarry, R. A. et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2, 345–350 (2005).

    CAS  PubMed  Google Scholar 

  68. Zilliox, M. J. & Irizarry, R. A. A gene expression bar code for microarray data. Nat. Methods 4, 911–913 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 13, 2291–2305 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gaztelumendi, N. & Nogués, C. Chromosome instability in mouse embryonic stem cells. Sci. Rep. 4, 5324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Macosko, E. Z. & McCarroll, S. A. Our fallen genomes. Science 342, 564–565 (2013).

    CAS  PubMed  Google Scholar 

  73. Handsaker, R. E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Maitra, A. et al. Genomic alterations in cultured human embryonic stem cells. Nat. Genet. 37, 1099–1103 (2005).

    CAS  PubMed  Google Scholar 

  75. Baker, D. E. C. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007).

    CAS  PubMed  Google Scholar 

  76. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    CAS  PubMed  Google Scholar 

  77. Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    CAS  PubMed  Google Scholar 

  78. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    CAS  PubMed  Google Scholar 

  80. Cooper, D. N., Krawczak, M., Polychronakos, C., Tyler-Smith, C. & Kehrer-Sawatzki, H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132, 1077–1130 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. van Regemorter, N., Milaire, J., Ramet, J., Haumont, D. & Rodesch, F. Familial ectrodactyly and polydactyly: variable expressivity of one single gene — embryological considerations. Clin. Genet. 22, 206–210 (1982).

    CAS  PubMed  Google Scholar 

  82. Danforth, C. H. Heredity of polydactyly in the cat. J. Hered. 38, 107–112 (1947).

    CAS  PubMed  Google Scholar 

  83. Lehner, B. Genotype to phenotype: lessons from model organisms for human genetics. Nat. Rev. Genet. 14, 168–178 (2013).

    CAS  PubMed  Google Scholar 

  84. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    CAS  PubMed  Google Scholar 

  85. Roberts, N. J. et al. The predictive capacity of personal genome sequencing. Sci. Transl. Med. 4, 133ra58 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. Pereira, R., Halford, K., Sokolov, B. P., Khillan, J. S. & Prockop, D. J. Phenotypic variability and incomplete penetrance of spontaneous fractures in an inbred strain of transgenic mice expressing a mutated collagen gene (COL1A1). J. Clin. Invest. 93, 1765–1769 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010). This study demonstrates how the disruption of a gene could have phenotypic consequences through the destabilization of an otherwise well-buffered gene regulatory network.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Eckersley-Maslin, M. A. & Spector, D. L. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet. 30, 237–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chess, A. Mechanisms and consequences of widespread random monoallelic expression. Nat. Rev. Genet. 13, 421–428 (2012).

    CAS  PubMed  Google Scholar 

  90. Chess, A. Random and non-random monoallelic expression. Neuropsychopharmacology 38, 55–61 (2013).

    CAS  PubMed  Google Scholar 

  91. Southard-Smith, E. M., Kos, L. & Pavan, W. J. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18, 60–64 (1998).

    CAS  PubMed  Google Scholar 

  92. Paratore, C., Eichenberger, C., Suter, U. & Sommer, L. Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum. Mol. Genet. 11, 3075–3085 (2002).

    CAS  PubMed  Google Scholar 

  93. Cook, D. L., Gerber, A. N. & Tapscott, S. J. Modeling stochastic gene expression: implications for haploinsufficiency. Proc. Natl Acad. Sci. USA 95, 15641–15646 (1998). This paper proposes that loss of an allele could have phenotypic consequences owing to increased noise in gene expression.

    CAS  PubMed  Google Scholar 

  94. López- Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Google Scholar 

  95. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    CAS  PubMed  Google Scholar 

  96. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    CAS  PubMed  Google Scholar 

  97. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    PubMed  Google Scholar 

  98. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21 (2014).

    CAS  PubMed  Google Scholar 

  99. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, J., Ishii, T., Feinstein, P. & Mombaerts, P. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428, 393–399 (2004).

    CAS  PubMed  Google Scholar 

  101. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    CAS  PubMed  Google Scholar 

  102. Miyanari, Y. & Torres-Padilla, M.-E. Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483, 470–473 (2012).

    CAS  PubMed  Google Scholar 

  103. Faddah, D. A. et al. Single-cell analysis reveals that expression of Nanog is biallelic and equally variable as that of other pluripotency factors in mouse ESCs. Cell Stem Cell 13, 23–29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Filipczyk, A. et al. Biallelic expression of Nanog protein in mouse embryonic stem cells. Cell Stem Cell 13, 12–13 (2013).

    CAS  PubMed  Google Scholar 

  105. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    CAS  PubMed  Google Scholar 

  106. Garfield, A. S. et al. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469, 534–538 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to T. Perlmann and G. Winberg for their comments on the text, and to Q. Deng and D. Ramsköld for comments on the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Sandberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mosaic expression

When populations of cells within the organism express different alleles or genotypes, which can give rise to phenotypic patchiness.

Allelic exclusion

The process through which only one allele is expressed and the other is kept silent. Allelic exclusion most often, but not exclusively, refers to monoallelic expression of immunoglobulins in B cells or T cells and olfactory receptor expression in sensory neurons.

Fixed aRME

Clonally stable random monoallelic expression of an autosomal gene.

Dynamic aRME

Transient random monoallelic expression of an autosomal gene, resulting from stochastic allelic transcription.

Allele-biased expression

When the expression output of the two alleles is skewed towards higher expression of one of the parental copies, although both alleles are still expressed (in contrast to strict monoallelic expression).

Allelic dropout

The loss of allelic RNA species due to technical limitations in the sampling technique. This may result in a gene that is actually biallelically transcribed getting a false monoallelic call in the analysis of the data.

Allelic calls

The classification of allelic expression of genes by analysis of expression data. Gene expression can be classed as biallelic, maternal monoallelic, paternal monoallelic or not detected.

Lineage-tracing techniques

Methods that allow tracking of cell lineage from a given time-point, often by introducing or activating a fluorescent marker that is transmitted to each cell during mitotic division.

Split-cell experiments

Control experiments that estimate allelic dropout by dividing the cell lysate into two equal portions, which are independently processed, analysed and checked for coherence in the allelic calls (see Box 1).

RNA-dilution experiments

Control experiments that estimate allelic dropout by diluting bulk RNA in series and sampling for sequencing library preparation at amounts comparable to those of single cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinius, B., Sandberg, R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 16, 653–664 (2015). https://doi.org/10.1038/nrg3888

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing