Key Points
-
Computational models of molecular and gene networks are now commonplace. They are becoming larger and more complex, and are based on various approaches. Standard formats permit the sharing and reuse of models for different purposes.
-
Different types of representations of biological processes provide different levels of insight. The choice of representation affects the modelling and simulation methods, as well as the processing of data for model building and validation.
-
A model can be based on prior information gathered from the literature or pathway databases. Alternatively, models can be based on empirical data and the regulatory networks inferred from measurements.
-
Quantitative models can be developed at different levels of granularity, and such simulations provide quantitative temporal predictions.
-
Logic models are increasingly being used in cases in which a lack of quantitative information prevents the use of chemical kinetics approaches.
-
Modelling of entire cells requires the use of modular models based on different approaches and simulation procedures.
Abstract
Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Differential network analysis between sex of the genes related to comorbidities of type 2 mellitus diabetes
Applied Network Science Open Access 21 June 2023
-
Deduction of signaling mechanisms from cellular responses to multiple cues
npj Systems Biology and Applications Open Access 30 November 2022
-
Computational systems biology in disease modeling and control, review and perspectives
npj Systems Biology and Applications Open Access 03 October 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Bray, D., Bourret, R. & Simon, M. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 482–469 (1993).
Tindall, M. J., Gaffney, E. A., Maini, P. K. & Armitage, J. P. Theoretical insights into bacterial chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 247–259 (2012).
Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nature Biotech. 31, 419–425 (2013).
Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012). This study presents a modular model of an entire M. genitalium cell, including the expression of all genes, all metabolites and signalling pathways. The model is simulated using a hybrid approach that includes stochastic simulations, ODEs and flux balance analysis.
Schliess, F. et al. Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60, 2040–2051 (2014).
Chew, Y. H. et al. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc. Natl Acad. Sci. 111, E4127–E4136 (2014).
Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).
Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).
De Jong, H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002).
Chance, B., Greenstein, D. S., Higvongins, J. & Yang, C. C. The mechanism of catalase action. II. Electric analog computer studies. Arch. Biochem. Biophys. 37, 322–339 (1952).
Savageau, M. A. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26, 215–226 (1970).
Kacser, H. & Burns, J. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973).
Joshi, A. & Palsson, B. O. Metabolic dynamics in the human red cell: Part I — a comprehensive kinetic model. J. Theor. Biol. 141, 515–528 (1989).
Goldbeter, A. & Koshland, D. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).
Arkin, A., Ross, J. & Mcadams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).
Von Dassow, G., Meir, E., Munro, E. & Odell, G. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000). This paper presents a dynamic quantitative model of the segment polarity gene network in Drosophila melanogaster and a systematic study of the effects of parameter value changes. It concludes that the model is robust compared with any of the parameters, but only a tiny fraction of the entire parameter space leads to expected results.
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).
Gardner, T., Cantor, C. & Collins, J. Construction of a genetic toggle switch in Escherichia coli.> Nature 403, 339–342 (2000).
Kauffman, S. A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969).
Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973).
Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).
Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nature Rev. Genet. 15, 107–120 (2014).
Takahashi, K., Arjunan, S. N. V. & Tomita, M. Space in systems biology of signaling pathways — towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–1788 (2005).
Dobrzynski, M., Rodríguez, J. V., Kaandorp, J. A. & Blom, J. G. Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23, 1969–1977 (2007).
Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).
Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).
Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).
Muñoz Descalzo, S. et al. A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells. Mol. Syst. Biol. 9, 694 (2013).
Xu, H., Ang, Y.-S., Sevilla, A., Lemischka I. R. & Ma'ayan, A. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol. 10, e1003777 (2014).
Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).
Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).
Gohlke, J. M. et al. Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biol. 6, 15 (2008).
Deneris, E. S. & Wyler, S. C. Serotonergic transcriptional networks and potential importance to mental health. Nature Neurosci. 15, 519–527 (2012).
Dagley, S. & Nicholson, D. Introduction to Metabolic Pathways (Blackwell, 1970).
Michal, G. Biochemical Pathways (Wiley-Blackwell, 1999).
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).
Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–D477 (2014).
Kohn, K. Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 16, 1065–1075 (1998).
Le Novère, N. et al. The Systems Biology Graphical Notation. Nature Biotech. 27, 735–741 (2009). This paper presents SBGN, a set of standard graphical languages for describing biological pathways. Akin to electrical circuit standards, the use of SBGN allows the interpretation of maps without the need for a legend or external information.
Tozluoglu, M., Karaca, E., Haliloglu, T. & Nussinov, R. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucleic Acids Res. 36, 5033–5049 (2008).
Kohn, K. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell 10, 2703–2734 (1999).
Pommier, Y., Sordet, O., Antony, S., Hayward, R. L. & Kohn, K. W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–2949 (2004).
Hlavacek, W. S. et al. Rules for modeling signal-transduction systems. Sci. STKE 2006, re6 (2006).
Danos, V., Feret, J., Fontana, W., Harmer, R. & Krivine, J. in CONCUR 2007 — Concurrency Theory: Lecture Notes in Computer Science Vol. 4703 (eds Caires, L. & Vasconcelos, V. T.) 17–41 (Springer, 2007).
Lopez, C. F., Muhlich, J. L., Bachman, J. A. & Sorger, P. K. Programming biological models in Python using PySB. Mol. Syst. Biol. 9, 646 (2013).
Bidkhori, G., Moeini, A. & Masoudi-Nejad, A. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS ONE 7, e48004 (2012).
Kiyatkin, A. et al. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem. 281, 19925–19938 (2006).
Ung, C. Y. et al. Simulation of the regulation of EGFR endocytosis and EGFR–ERK signaling by endophilin-mediated RhoA–EGFR crosstalk. FEBS Lett. 582, 2283–2290 (2008).
Yamada, S., Shiono, S., Joo, A. & Yoshimura, A. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 534, 190–196 (2003).
Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003). This paper presents SBML, a game-changing tool that allows modellers to exchange and reuse models in different programs without rewriting them from scratch. Its explicit semantics allowed the development of new approaches to process, analyse and enrich models.
Fernández-Suárez, X. M., Rigden, D. J. & Galperin, M. Y. The 2014 Nucleic Acids Research Database Issue and an updated NAR online Molecular Biology Database Collection. Nucleic Acids Res. 42, D1–D6 (2014).
Orchard, S. et al. The MIntAct project — IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).
Franceschini, A. et al. STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459–D471 (2014).
Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).
Bader, G. D., Cary, M. P. & Sander, C. Pathguide: a pathway resource list. Nucleic Acids Res. 34, D504–D506 (2006).
Wittig, U. et al. SABIO-RK — database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796 (2012).
Scheer, M. et al. BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 39, D670–D676 (2011).
Büchel, F. et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 (2013).
Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007).
Hurley, D. et al. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 40, 2377–2398 (2012).
Chang, G. et al. High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Res. 24, 293–306 (2014).
Villaverde, A. F. & Banga, J. R. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J. R. Soc. Interface. 11, 20130505 (2013). This review summarizes the various aspects of reverse engineering used to build models, including network inference, model identifiability and parameter estimation, taken from different points of view.
De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nature Rev. Microbiol. 8, 717–729 (2010).
He, F., Balling, R. & Zeng, A.-P. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J. Biotechnol. 144, 190–203 (2009).
Haury, A., Mordelet, F., Vera-licona, P. & Vert, J. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6, 145 (2012).
Dunn, S.-J. Martello, G., Yordanov, B., Emmott, S. & Smith, T. G. Defining an essential transcription factor program for naive pluripotency. Science. 344, 1156–1160 (2014).
Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).
Margolin, A. a et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 (Suppl. 1), 7 (2006).
Gitter, A., Klein-Seetharaman, J., Gupta, A. & Bar-Joseph, Z. Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Res. 39, e22 (2011).
Friedman, N. Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).
Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).
Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).
Feizi, S., Marbach, D., Médard, M. & Kellis, M. Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotech. 31, 726–733 (2013).
Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008).
Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006).
Gardner, T. S., di Bernardo, D., Lorenz, D. & Collins, J. J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).
Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. 430, 2–5 (2004).
Cantone, I. et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172–181 (2009).
Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nature Methods 9, 796–804 (2012). The study presents the results of the network inference challenge of the DREAM5 competition. Although within each type of approach some tools perform better than others, the overall best result is obtained by using a combination of several approaches.
Hurley, D. G. et al. NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks. Bioinformatics 31, 277–278 (2015).
Allen, J. P. in Biophysical Chemistry 134–162 (Wiley-Blackwell, 2008).
Le Novère, N. & Endler, L. Using chemical kinetics to model biochemical pathways. Methods Mol. Biol. 1021, 147–67 (2013).
Keller, R. et al. The systems biology simulation core algorithm. BMC Syst. Biol. 7, 55 (2013).
Hoops, S. et al. COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).
Polynikis, A., Hogan, S. J. & Bernardo, M. Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol. 261, 511–530 (2009). This paper presents a systematic and quantitative comparison of different ODE methods used to model gene regulatory networks. The work presents the underlying hypothesis, as well as advantages and shortcomings.
Dalle Pezze, P. et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci. Signal. 5, ra25 (2012).
Nelson, D. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).
Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324, 242–246 (2009).
Bergethon, P. R. in The Physical Basis of Biochemistry 480–497 (Springer, 1998).
Huang, C. Y. & Ferrell, J. E. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 93, 10078–10083 (1996).
Chen, W. W., Niepel, M. & Sorger, P. K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 861–1875 (2010).
Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley-Blackwell, 1993).
Cornish-Bowden, A. Fundamentals of Enzyme Kinetics (Wiley VCH, 2012).
Voit, E. O. Biochemical systems theory: a review. ISRN Biomath. 2013, 1–53 (2013).
Parthimos, D., Haddock, R. E., Hill, C. E. & Griffith, T. M. Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys. J. 93, 1534–1556 (2007).
Yao, G., Tan, C., West, M., Nevins, J. R. & You, L. Origin of bistability underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011).
Novák, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).
Goldbeter, A. & Pourquié, O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J. Theor. Biol. 252, 574–585 (2008).
Ozbudak, E. M. & Lewis, J. Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet. 4, e15 (2008).
Glass, L. & Kauffman, S. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973).
Coutinho, R., Fernandez, B., Lima, R. & Meyroneinc, A. Discrete time piecewise affine models of genetic regulatory networks. J. Math. 52, 524–570 (2006).
De Jong, H. et al. Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004).
De Jong, H., Geiselmann, J., Hernandez, C. & Page, M. Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344 (2003).
Moles, C. G., Mendes, P. & Banga, J. R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003).
Morris, M. K., Saez-Rodriguez, J. & Sorger, P. K. & Lauffenburger, D. A. Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 3216–3224 (2010). This paper provides a good introduction to logic modelling, including the different variants and the available software tools.
Sánchez, L., Van Helden, J. & Thieffry, D. Establishment of the dorso-ventral pattern during embryonic development of Drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389 (1997).
Yuh, C.-H., Bolouri, H. & Davidson, E. H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).
Bonzanni, N. et al. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29, i80–i88 (2013).
Wittmann, D. M. et al. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 3, 98 (2009).
Calzone, L. et al. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol. 6, e1000702 (2010).
Grieco, L. et al. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9, e1003286 (2013).
Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. & De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24, 1917–1925 (2008).
Ahmad, J., Bernot, G., Comet, J.-P., Lime, D. & Roux, O. Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3, 231–251 (2006).
Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002).
Vahedi, G., Faryabi, B., Chamberland, J.-F., Datta, A. & Dougherty, E. R. Sampling-rate-dependent probabilistic Boolean networks. J. Theor. Biol. 261, 540–547 (2009).
Liang, J. & Han, J. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst. Biol. 6, 113 (2012).
Helikar, T., Kochi, N., Konvalina, J. & Rogers, J. A. Boolean modeling of biochemical networks. Open Bioinform. J. 5, 16–25 (2011).
Aldridge, B. B., Saez-Rodriguez, J., Muhlich, J. L. & Sorger, P. K. & Lauffenburger, D. A. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput. Biol. 5, e1000340 (2009).
Terfve, C. et al. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6, 133 (2012).
MacNamara, A. & Terfve, C. State–time spectrum of signal transduction logic models. Phys. Biol. 9, 045003 (2012).
Carrillo, M. Góngora, P. A. & Rosenblueth, D. A. An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. Front. Plant Sci. 3, 155 (2012).
Jusko, W. J. Moving from basic toward systems pharmacodynamic models. J. Pharm. Sci. 102, 2930–2940 (2013).
Takahashi, K., Kaizu, K., Hu, B. & Tomita, M. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20, 538–546 (2004).
McAdams, H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650–656 (1995).
Singhania, R. Sramkoski, R. M., Jacobberger, J. W. & Tyson, J. J. A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. 7, e1001077 (2011).
Ryll, A et al. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models. Biosystems 124, 26–38 (2014).
Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. Ø. Integrating high-throughput and computational data. Nature 429, 92–96 (2004).
Herrgård, M. J., Lee, B., Portnoy, V. & Palsson, B. Ø. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635 (2006).
Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).
Mattioni, M. & Le Novère, N. Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS ONE 8, e66811 (2013).
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).
Bhalla, U. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).
Stefan, M. I., Edelstein, S. J. & Le Novère, N. An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl Acad. Sci. USA 105, 10768–10773 (2008).
Le Novère, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotech. 23, 1509–1515 (2005).
Waltemath, D. et al. Minimum information about a simulation experiment (MIASE). PLoS Comput. Biol. 7, e1001122 (2011).
Waltemath, D. et al. Reproducible computational biology experiments with SED-ML — the Simulation Experiment Description Markup Language. BMC Syst. Biol. 5, 198 (2011).
François, P. & Hakim, V. Core genetic module: the mixed feedback loop. Phys. Rev. E 72, 031908 (2005).
Naldi, A. et al. Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97, 134–139 (2009).
Calzone, L., Fages, F. & Soliman, S. BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22, 1805–1897 (2006).
Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159–162 (2003).
Myers, C. J. et al. iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics 25, 2848–2849 (2009).
Ermentrout, B. in Computational Systems Neurobiology (ed. Le Novère, N.) 519–531 (Springer, 2012).
Müssel, C. Hopfensitz, M. & Kestler, H. A. BoolNet — an R package for generation, reconstruction, and analysis of Boolean networks. Bioinformatics 26, 1378–1380 (2010).
Acknowledgements
The author is grateful to L. Calzone and M. Froehlich for extensive reading and correction of the manuscript, to L. Stephens and S. Edelstein for their corrections and advice, and to C. Chaouiya, P. Mendes, J. Saez-Rodriguez and D. Thieffry for help with the bibliography.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
FURTHER INFORMATION
Glossary
- Mathematical models
-
Descriptions of a system using mathematical concepts and language. Models are composed of a set of variables and a set of equations that establish relationships between the variables.
- Numerical simulations
-
Reproductions of the behaviour of a system, obtained by iteratively computing the values of variables in a mathematical model over a certain number of time steps.
- Parameter values
-
The temporal evolution of model variables (for example, protein concentrations) is affected by the values of other variables and by parameters such as dissociation constants, kinetic rate constants and reaction orders. Parameter values affect the dynamic behaviour of model variables.
- Initial conditions
-
Values for the model variables at the start of numerical simulations. These initial conditions might affect the simulation results — for instance, in the case of systems with several stable states that can be reached from different trajectories.
- Quantitative models
-
Mathematical models in which the values of the variables are determined by numerical analysis of the variables and parameters in the system.
- Chemical kinetics
-
The study of rates of chemical processes and how they affect the evolution of chemical compounds in a system.
- Open standards
-
Standards that are publicly available and that can be implemented without restriction by licensing terms. In computational biology, open standards are additionally developed by the community, and implementations are not subjected to fees.
- Systems Biology Graphical Notation
-
(SBGN). A set of standardized symbols to represent the entities included in a biochemical network and their relationships. The notation is formed of three complementary languages to represent activity flows, entity relationships and process descriptions.
- Bipartite graphs
-
Graphs that contain two types of nodes, in which nodes of one type are only connected to nodes of the other type. For example, in a metabolic network, nodes representing biochemical species connect to nodes representing reactions.
- Systems Biology Markup Language
-
(SBML). A format to encode mathematical models that is used in systems biology. Although initially focused on non-spatial, reaction-based biochemical models, the language now features packages covering different modelling approaches. SBML is supported by software libraries in different programming languages and can be imported or exported by hundreds of modelling and simulation tools.
- Biological network interference
-
A procedure whereby an unknown set of biological interactions and processes is deduced from the molecular phenotypes it produces: for instance, a list of gene expression, of molecular concentrations or of phenotypes on perturbation.
- Information theoretic methods
-
Inference methods based on the information theory. Variables (nodes) are linked in a network if information about one variable (for instance, the distribution of its values) is affected by the knowledge of the values of the other.
- Bayesian inference
-
A method of inference using Bayes' theorem to evaluate the probability of a network given a data set, as a function of the probability that this network produces the data set, the chance probability of this network and the chance probability of the data set.
- Logic models
-
Mathematical models in which the discrete values of variables are determined by logical combinations of the values of other variables.
- Ordinary differential equations
-
(ODEs). Equations describing the change of a variable in a system over time as a function of the values of other variables and parameters in the system. In a model of a biochemical systems, the ODEs are derived from the combination of the different processes in which the entity represented by the variable is involved.
- Stochastic simulation
-
Simulation of a model in which each process has a certain probability to occur. Examples of stochastic simulations are solutions of stochastic differential equations in which noise factors are added to otherwise deterministic ordinary differential equations, and dynamic Monte Carlo simulations in which reaction rates are sampled from distributions.
- Reaction order
-
The order of a reaction for a given reactant is defined as the exponent to which its concentration is raised in the rate law that characterizes the reaction. In the case of reactions taking place in a well-stirred, diluted medium, the reaction order of a molecular species is equal to its stoichiometry for this reaction.
- Mass action law
-
A law stating that the velocity of a reaction is proportional to the concentration of the reactants it consumes raised to the power of their stoichiometry. For instance, the rate of a reaction consuming two molecules of A and one molecule of B will be proportional to [A]2 × [B].
- Henry–Michaelis–Menten kinetics
-
A kinetic scheme used in enzymatic reactions. If the formation of an enzyme–substrate complex is faster than the formation of the enzymatic product or if the concentration of enzyme–substrate complex is constant, one can explicitly avoid representing the enzyme–substrate complex. The rate of formation of the enzymatic product is then proportional to the fraction of enzyme bound to the substrate: that is, [E] × [S] / (Km + [S]), where Km is the concentration of substrate necessary to achieve half the maximal reaction velocity.
- S-systems
-
Modelling approaches for biochemical systems in which the creation and destruction of molecular species are expressed as products of the concentration of all of the molecular species in the systems raised to a phenomenological order (obtained by fitting the model to experimental data).
- Global optimization
-
A branch of numerical analysis that deals with the global optimization of a function or a set of functions according to some criteria. Examples of global optimization problems in biological network modelling are parameter estimation and flux balance analysis.
- Identifiable model
-
A model in which the values of its parameters can be unambiguously determined by the data sets available. A model is non-identifiable if alternative sets of parameter values can fit the data sets.
- Attractors
-
Stable behaviour of a system, as reflected by a fixed trajectory in the space of all possible states of the system. Examples of attractors are periodic behaviours (for example, oscillations) and steady states.
- Fuzzy logic
-
Approximate logic computation in which the variables can have partial truth values ranging from 0 (false) to 1 (true).
Rights and permissions
About this article
Cite this article
Le Novère, N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16, 146–158 (2015). https://doi.org/10.1038/nrg3885
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrg3885
This article is cited by
-
Differential network analysis between sex of the genes related to comorbidities of type 2 mellitus diabetes
Applied Network Science (2023)
-
Exploring attractor bifurcations in Boolean networks
BMC Bioinformatics (2022)
-
Computational systems biology in disease modeling and control, review and perspectives
npj Systems Biology and Applications (2022)
-
Artificial neural networks enable genome-scale simulations of intracellular signaling
Nature Communications (2022)
-
Building digital twins of the human immune system: toward a roadmap
npj Digital Medicine (2022)