Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Evolution of adaptive immunity from transposable elements combined with innate immune systems

Abstract

Adaptive immune systems in prokaryotes and animals give rise to long-term memory through modification of specific genomic loci, such as by insertion of foreign (viral or plasmid) DNA fragments into clustered regularly interspaced short palindromic repeat (CRISPR) loci in prokaryotes and by V(D)J recombination of immunoglobulin genes in vertebrates. Strikingly, recombinases derived from unrelated mobile genetic elements have essential roles in both prokaryotic and vertebrate adaptive immune systems. Mobile elements, which are ubiquitous in cellular life forms, provide the only known, naturally evolved tools for genome engineering that are successfully adopted by both innate immune systems and genome-editing technologies. In this Opinion article, we present a general scenario for the origin of adaptive immunity from mobile elements and innate immune systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptive immune systems of prokaryotes and eukaryotes.
Figure 2: A general scheme of the organization of CRISPR–Cas systems.
Figure 3: A scenario for the evolution of the CRISPR–Cas system from a casposon, a toxin–antitoxin module and a solo-Cascade innate immune system.
Figure 4: Comparison between TIR, CRISPR and RSS.
Figure 5: Comparison of the proposed evolutionary paths to the prokaryotic and eukaryotic versions of adaptive immunity.

Similar content being viewed by others

References

  1. Huda, A. & Jordan, I. K. Epigenetic regulation of mammalian genomes by transposable elements. Ann. NY Acad. Sci. 1178, 276–284 (2009).

    CAS  PubMed  Google Scholar 

  2. Lopez-Flores, I. & Garrido-Ramos, M. A. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 7, 1–28 (2012).

    CAS  PubMed  Google Scholar 

  3. Defraia, C. & Slotkin, R. K. Analysis of retrotransposon activity in plants. Methods Mol. Biol. 1112, 195–210 (2014).

    CAS  PubMed  Google Scholar 

  4. Cortez, D., Forterre, P. & Gribaldo, S. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol. 10, R65 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Makarova, K. S. et al. Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles 18, 877–893 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Casjens, S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300 (2003).

    CAS  PubMed  Google Scholar 

  7. Busby, B., Kristensen, D. M. & Koonin, E. V. Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens. Environ. Microbiol. 15, 307–312 (2013).

    CAS  PubMed  Google Scholar 

  8. Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nature Rev. Genet. 8, 973–982 (2007).

    CAS  PubMed  Google Scholar 

  9. Kapitonov, V. V. & Jurka, J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nature Rev. Genet. 9, 411–412 (2008).

    PubMed  Google Scholar 

  10. Jurka, J., Kapitonov, V. V., Kohany, O. & Jurka, M. V. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 8, 241–259 (2007).

    CAS  PubMed  Google Scholar 

  11. Curcio, M. J. & Derbyshire, K. M. The outs and ins of transposition: from mu to kangaroo. Nature Rev. Mol. Cell Biol. 4, 865–877 (2003).

    CAS  Google Scholar 

  12. Chandler, M. et al. Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nature Rev. Microbiol. 11, 525–538 (2013).

    CAS  Google Scholar 

  13. Ilyina, T. V. & Koonin, E. V. Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res. 20, 3279–3285 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krupovic, M. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr Opin Virol 3, 578–586 (2013).

    CAS  PubMed  Google Scholar 

  15. Goodwin, T. J. & Poulter, R. T. A new group of tyrosine recombinase-encoding retrotransposons. Mol. Biol. Evol. 21, 746–759 (2004).

    CAS  PubMed  Google Scholar 

  16. Boocock, M. R. & Rice, P. A. A proposed mechanism for IS607-family serine transposases. Mob. DNA 4, 24 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Weichenrieder, O., Repanas, K. & Perrakis, A. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12, 975–986 (2004).

    CAS  PubMed  Google Scholar 

  18. Aswad, A. & Katzourakis, A. Paleovirology and virally derived immunity. Trends Ecol. Evol. 27, 627–636 (2012).

    PubMed  Google Scholar 

  19. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nature Rev. Genet. 13, 283–296 (2012).

    CAS  PubMed  Google Scholar 

  20. Duggal, N. K. & Emerman, M. Evolutionary conflicts between viruses and restriction factors shape immunity. Nature Rev. Immunol. 12, 687–695 (2012).

    CAS  Google Scholar 

  21. Forterre, P. & Prangishvili, D. The major role of viruses in cellular evolution: facts and hypotheses. Curr Opin Virol 3, 558–565 (2013).

    CAS  PubMed  Google Scholar 

  22. Koonin, E. V. & Dolja, V. V. A virocentric perspective on the evolution of life. Curr Opin Virol 3, 546–557 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nature Rev. Microbiol. 8, 317–327 (2010).

    CAS  Google Scholar 

  24. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Boehm, T. Evolution of vertebrate immunity. Curr. Biol. 22, R722–732 (2012).

    CAS  PubMed  Google Scholar 

  26. Rimer, J., Cohen, I. R. & Friedman, N. Do all creatures possess an acquired immune system of some sort? Bioessays 36, 273–281 (2014).

    CAS  PubMed  Google Scholar 

  27. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  28. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360–4377 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hur, J. K., Olovnikov, I. & Aravin, A. A. Prokaryotic Argonautes defend genomes against invasive DNA. Trends Biochem. Sci. 39, 257–259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nature Struct. Mol. Biol. 21, 743–753 (2014).

    CAS  Google Scholar 

  32. Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev. Microbiol. 9, 467–477 (2011).

    CAS  Google Scholar 

  33. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    CAS  PubMed  Google Scholar 

  34. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Google Scholar 

  35. Sorek, R., Lawrence, C. M. & Wiedenheft, B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82, 237–266 (2013).

    CAS  PubMed  Google Scholar 

  36. Barrangou, R. & Marraffini, L. A. CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell 54, 234–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Manica, A. & Schleper, C. CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus Sulfolobus. RNA Biol 10, 671–678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Rev. Microbiol. 12, 479–492 (2014).

    CAS  Google Scholar 

  39. Weinberger, A. D. et al. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput. Biol. 8, e1002475 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Koonin, E. V. & Wolf, Y. I. Is evolution Darwinian or/and Lamarckian? Biol. Direct 4, 42 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shabalina, S. A. & Koonin, E. V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578–587 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, R. & Rana, T. M. RNA-based mechanisms regulating host–virus interactions. Immunol. Rev. 253, 97–111 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Medzhitov, R. Approaching the asymptote: 20 years later. Immunity 30, 766–775 (2009).

    CAS  PubMed  Google Scholar 

  46. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunol. 11, 373–384 (2010).

    CAS  Google Scholar 

  47. Malmgaard, L. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24, 439–454 (2004).

    CAS  PubMed  Google Scholar 

  48. Le Page, C., Genin, P., Baines, M. G. & Hiscott, J. Interferon activation and innate immunity. Rev Immunogenet 2, 374–386 (2000).

    CAS  PubMed  Google Scholar 

  49. Cooper, M. D. & Alder, M. N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    CAS  PubMed  Google Scholar 

  50. Boehm, T. Design principles of adaptive immune systems. Nature Rev. Immunol. 11, 307–317 (2011).

    CAS  Google Scholar 

  51. Davis, M. M. The evolutionary and structural 'logic' of antigen receptor diversity. Semin. Immunol. 16, 239–243 (2004).

    CAS  PubMed  Google Scholar 

  52. Cannon, J. P., Haire, R. N., Rast, J. P. & Litman, G. W. The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms. Immunol. Rev. 200, 12–22 (2004).

    CAS  PubMed  Google Scholar 

  53. Market, E. & Papavasiliou, F. N. V(D)J recombination and the evolution of the adaptive immune system. PLoS Biol. 1, e16 (2003).

    PubMed  PubMed Central  Google Scholar 

  54. Jung, D. & Alt, F. W. Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311 (2004).

    CAS  PubMed  Google Scholar 

  55. Fugmann, S. D. The origins of the Rag genes — from transposition to V(D)J recombination. Semin. Immunol. 22, 10–16 (2010).

    CAS  PubMed  Google Scholar 

  56. Kapitonov, V. V. & Jurka, J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol. 3, e181 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR–Cas immunity. BMC Biol. 12, 36 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Nunez, J. K. et al. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nature Struct. Mol. Biol. 21, 528–534 (2014).

    CAS  Google Scholar 

  59. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).

    CAS  PubMed  Google Scholar 

  60. Makarova, K. S., Aravind, L., Wolf, Y. I. & Koonin, E. V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR–Cas systems. Biol. Direct 6, 38 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. The basic building blocks and evolution of CRISPR–Cas systems. Biochem. Soc. Trans. 41, 1392–1400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rouillon, C. et al. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell 52, 124–134 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Anantharaman, V., Koonin, E. V. & Aravind, L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 30, 1427–1464 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Anantharaman, V., Aravind, L. & Koonin, E. V. Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. Curr Opin Chem Biol 7, 12–20 (2003).

    CAS  PubMed  Google Scholar 

  66. Clery, A., Blatter, M. & Allain, F. H. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18, 290–298 (2008).

    CAS  PubMed  Google Scholar 

  67. Koonin, E. V. & Makarova, K. S. CRISPR–Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol. 10, 679–686 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Makarova, K. S., Wolf, Y. I., van der Oost, J. & Koonin, E. V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D. K. & Aravin, A. A. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594–605 (2013).

    CAS  PubMed  Google Scholar 

  70. Swarts, D. C. et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Beloglazova, N. et al. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283, 20361–20371 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583, 771–776 (2009).

    CAS  PubMed  Google Scholar 

  73. Makarova, K. S., Anantharaman, V., Aravind, L. & Koonin, E. V. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biol. Direct 7, 40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kwon, A. R. et al. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res. 40, 4216–4228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Unterholzner, S. J., Poppenberger, B. & Rozhon, W. Toxin–antitoxin systems: biology, identification, and application. Mob. Genet. Elements 3, e26219 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Krupovic, M., Gonnet, M., Hania, W. B., Forterre, P. & Erauso, G. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. PLoS ONE 8, e49044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007).

    PubMed  PubMed Central  Google Scholar 

  78. Datsenko, K. A. et al. Molecular memory of prior infections activates the CRISPR–Cas adaptive bacterial immunity system. Nature Commun. 3, 945 (2012).

    Google Scholar 

  79. Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR–Cas immunity systems. RNA Biol. 10, 726–737 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res. 42, 6091–6105 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bao, W. & Jurka, J. Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements. Mob DNA 4, 12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nature Rev. Genet. 15, 321–334 (2014).

    CAS  PubMed  Google Scholar 

  84. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    CAS  PubMed  Google Scholar 

  85. Papavasiliou, F. N. & Schatz, D. G. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109, S35–S44 (2002).

    CAS  PubMed  Google Scholar 

  86. Oettinger, M. A., Schatz, D. G., Gorka, C. & Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517–1523 (1990).

    CAS  PubMed  Google Scholar 

  87. Swanson, P. C. The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev. 200, 90–114 (2004).

    CAS  PubMed  Google Scholar 

  88. Panchin, Y. & Moroz, L. L. Molluscan mobile elements similar to the vertebrate recombination-activating genes. Biochem. Biophys. Res. Commun. 369, 818–823 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sakano, H., Huppi, K., Heinrich, G. & Tonegawa, S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature 280, 288–294 (1979).

    CAS  PubMed  Google Scholar 

  90. Thompson, C. B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531–539 (1995).

    CAS  PubMed  Google Scholar 

  91. Roth, D. B. & Craig, N. L. VDJ recombination: a transposase goes to work. Cell 94, 411–414 (1998).

    CAS  PubMed  Google Scholar 

  92. Schatz, D. G. Antigen receptor genes and the evolution of a recombinase. Semin. Immunol. 16, 245–256 (2004).

    CAS  PubMed  Google Scholar 

  93. Du Pasquier, L. Speculations on the origin of the vertebrate immune system. Immunol. Lett. 92, 3–9 (2004).

    CAS  PubMed  Google Scholar 

  94. Du Pasquier, L. Innate immunity in early chordates and the appearance of adaptive immunity. C. R. Biol. 327, 591–601 (2004).

    CAS  PubMed  Google Scholar 

  95. Fugmann, S. D., Messier, C., Novack, L. A., Cameron, R. A. & Rast, J. P. An ancient evolutionary origin of the Rag1/2 gene locus. Proc. Natl Acad. Sci. USA 103, 3728–3733 (2006).

    CAS  PubMed  Google Scholar 

  96. Hemmrich, G., Miller, D. J. & Bosch, T. C. The evolution of immunity: a low-life perspective. Trends Immunol. 28, 449–454 (2007).

    CAS  PubMed  Google Scholar 

  97. Bowen, N. J. & Jordan, I. K. Transposable elements and the evolution of eukaryotic complexity. Curr. Issues Mol. Biol. 4, 65–76 (2002).

    CAS  PubMed  Google Scholar 

  98. Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    CAS  PubMed  Google Scholar 

  99. Jordan, I. K., Rogozin, I. B., Glazko, G. V. & Koonin, E. V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003).

    CAS  PubMed  Google Scholar 

  100. Conley, A. B., Piriyapongsa, J. & Jordan, I. K. Retroviral promoters in the human genome. Bioinformatics 24, 1563–1567 (2008).

    CAS  PubMed  Google Scholar 

  101. Jurka, J. Conserved eukaryotic transposable elements and the evolution of gene regulation. Cell. Mol. Life Sci. 65, 201–204 (2008).

    CAS  PubMed  Google Scholar 

  102. Nakamura, T. M. & Cech, T. R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    CAS  PubMed  Google Scholar 

  103. Gladyshev, E. A. & Arkhipova, I. R. A widespread class of reverse transcriptase-related cellular genes. Proc. Natl Acad. Sci. USA 108, 20311–20316 (2011).

    CAS  PubMed  Google Scholar 

  104. Pardue, M. L. & De Baryshe, P. G. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37, 485–511 (2003).

    CAS  PubMed  Google Scholar 

  105. Kapitonov, V. V. & Jurka, J. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol. 23, 311–324 (2004).

    CAS  PubMed  Google Scholar 

  106. Sinzelle, L. et al. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc. Natl Acad. Sci. USA 105, 4715–4720 (2008).

    CAS  PubMed  Google Scholar 

  107. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Makarova for critical reading of the manuscript and comments. E.V.K is supported by intramural funds of the US Department of Health and Human Services (to the National Library of Medicine).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eugene V. Koonin or Mart Krupovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koonin, E., Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16, 184–192 (2015). https://doi.org/10.1038/nrg3859

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3859

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing