Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial genome-enabled insights into plant–microorganism interactions

This article has been updated

Key Points

  • Next-generation genomic technology has enabled comparative genomics of pathogen species and populations to be examined at high resolution. These studies have been particularly useful for identifying genes associated with important disease or immunity phenotypes, such as type III secreted effectors (T3SEs) in Gram-negative bacteria, and distinct effector families in oomycetes and fungi.

  • Comparative genomics of bacterial phytopathogens has revealed that although related pathogens may use similar mechanisms to subvert host immunity, they often achieve similar results through distinct evolutionary paths. For example, independent lineages of Pseudomonas syringae seem to use distinct sets of T3SEs to overcome the immune response of a common host.

  • Microbial genomes are incredibly dynamic. Any single isolate may share <50% of its genome with other isolates of the same species, and the pan genome of the species may be as much as 10 times larger than the size of an individual genome.

  • Genome compartmentalization of pathogenicity-related genes in eukaryotic filamentous phytopathogens seems to allow higher rates of evolution for functions that are relevant to host adaptation while leaving the core genome with basal cellular functions 'protected' against excessive mutation rates.

  • Comparative genomics revealed genome adaptations that are associated with distinctive pathogen lifestyles, including diversification and proliferation of gene families that encode enzymes needed for host cell wall degradation and secondary metabolite biosynthesis to produce an arsenal of small molecules, some of which have host cytotoxic activity. Such an adaptation is a common feature of necrotrophic bacteria and fungi. By contrast, a hallmark of obligate biotrophic pathogens, which derive nutrients only from living host cells, is convergent gene losses in metabolic pathways, which is likely to explain why these parasites became obligate.

  • Culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, are beginning to unveil the principles underlying the establishment of plant-associated microbial communities with distinct taxonomic structures. Discovery of the key microbial functionalities in these assemblies, which comprise mutualistic and commensal members, will require the design of statistically informative experiments with large numbers of replicates, the integrated interpretation of multiple omics data types and the establishment of synthetic model communities that can be manipulated in a targeted manner.

Abstract

Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole-genome phylogenetic relationships of three P. syringae pv. avellanae strains responsible for hazelnut decline in Greece and Italy.
Figure 2: Evolutionary and recombination mechanisms driving diversity in effector gene repertoires.

Similar content being viewed by others

Change history

  • 03 November 2014

    In the original version of this article, the middle initial of David S. Guttman was omitted. This has been corrected.

References

  1. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Thomma, B. P., Nurnberger, T. & Joosten, M. H. Of pamps and effectors: the blurred PTI–ETI dichotomy. Plant Cell 23, 4–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boller, T. & Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Brunner, F. et al. Pep-13, a plant defense-inducing pathogen-associated pattern from phytophthora transglutaminases. EMBO J. 21, 6681–6688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Jonge, R. et al. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc. Natl Acad. Sci. USA 109, 5110–5115 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liebrand, T. W. H. et al. Receptor-like kinase SOBIR/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl Acad. Sci. USA 110, 10010–10015 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stergiopoulos, I. et al. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc. Natl Acad. Sci. USA 107, 7610–7615 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nature Immunol. 12, 818–826 (2011).

    Article  CAS  Google Scholar 

  10. Panstruga, R. & Dodds, P. N. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324, 748–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kale, S. D. et al. External lipid Pi3p mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142, 284–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Petre, B. & Kamoun, S. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol. 12, e1001801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewis, J. D., Guttman, D. S. & Desveaux, D. The targeting of plant cellular systems by injected type III effector proteins. Semin. Cell Dev. Biol. 20, 1055–1063 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Vetter, M. M. et al. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol. Biol. Evol. 29, 1655–1667 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Vorholt, J. A. Microbial life in the phyllosphere. Nature Rev. Microbiol. 10, 828–840 (2012).

    Article  CAS  Google Scholar 

  17. Flor, H. H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296 (1971).

    Article  Google Scholar 

  18. Keen, N. T. Specific elicitors of plant phytoalexin production — determinants of race specificity in pathogens. Science 187, 74–75 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Staskawicz, B. J., Sahlbeck, D. & Keen, N. T. Cloned avirulence gene of Pseudomonas syringae pathovar glycinea determines race-specific incompatiblity of Glycine max. Proc. Natl Acad. Sci. USA 81, 6024–6028 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Napoli, C. & Staskawicz, B. Molecular characterization and nucleic-acid sequence of an avirulence gene from race 6 of Pseudomonas syringae pv glycinea. J. Bacteriol. 169, 572–578 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindgren, P. B., Peet, R. C. & Panopoulos, N. J. Gene cluster of Pseudomonas syringae pv.phaseolicola controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168, 512–522 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenselau, S., Balbo, I. & Bonas, U. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant Microbe Interact. 5, 390–396 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Gough, C. L., Genin, S., Zischek, C. & Boucher, C. A. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol. Plant Microbe Interact. 5, 384–389 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Guttman, D. S., Vinatzer, B. A., Sarkar, S. F., Ranall, M. & Greenberg, J. T. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295, 1722–1726 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Chang, J. H. et al. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl Acad. Sci. USA 102, 2549–2554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roden, J. A. et al. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc. Natl Acad. Sci. USA 101, 16624–16629 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fouts, D. E. et al. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the hrpl alternative sigma factor. Proc. Natl Acad. Sci. USA 99, 2275–2280 (2002). This study used a range of bioinformatic and experimental approaches to define the type III regulon in P. syringae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schechter, L. M., Roberts, K. A., Jamir, Y., Alfano, J. R. & Collmer, A. Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a cya translocation reporter. J. Bacteriol. 186, 543–555 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferreira, A. O. et al. Whole-genome expression profiling defines the hrpl regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis clement, and identifies novel coregulated genes. Mol. Plant–Microbe Interact. 19, 1167–1179 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Petnicki-Ocwieja, T. et al. Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc. Natl Acad. Sci. USA 99, 7652–7657 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vencato, M. et al. Bioinformatics-enabled inventory of the hrp regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448a. Mol. Plant–Microbe Interact. 19, 1193–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Arnold, R. et al. Sequence-based prediction of type III secreted proteins. PLoS Pathog. 5, e1000376 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y., Zhao, J., Morgan, R. L., Ma, W. & Jiang, T. Computational prediction of type III secreted proteins from Gram-negative bacteria. BMC Bioinformatics 11 (Suppl. 1), S47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lower, M. & Schneider, G. Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS ONE 4, e5917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buell, C. R. et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl Acad. Sci. USA 100, 10181–10186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feil, H. et al. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae b728a and pv. tomato DC3000. Proc. Natl Acad. Sci. USA 102, 11064–11069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joardar, V. et al. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448a reveals divergence among pathovars in genes involved in virulence and transposition. J. Bacteriol. 187, 6488–6498 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindeberg, M. et al. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol. Plant–Microbe Interact. 19, 1151–1158 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Baltrus, D. A. et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Path. 7, 22 (2011). This is an excellent example of the power of next-generation genomics for the analysis of bacterial genomes.

    Article  CAS  Google Scholar 

  40. Bart, R. et al. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proc. Natl Acad. Sci. USA 109, E1972–E1979 (2012). This paper nicely links fundamental research on plant pathogen genomics with translational outputs.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boch, J. & Bonas, U. Xanthomonas avrbs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. O'Brien, H. E. et al. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiol. 12, 141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, P. W., Morgan, R. L., Scortichini, M. & Guttman, D. S. Convergent evolution of phytopathogenic pseudomonads onto hazelnut. Microbiology 153, 2067–2073 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Hogenhout, S. A. et al. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9, 403–423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai, X. D. et al. AY–WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant–Microbe Interact. 22, 18–30 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Oshima, K. et al. Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS ONE 6, e23242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugio, A., Kingdom, H. N., MacLean, A. M., Grieve, V. M. & Hogenhout, S. A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl Acad. Sci. USA 108, E1254–E1263 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sawada, H., Kuykendall, L. D. & Young, J. M. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Appl. Microbiol. 49, 155–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Amadou, C. et al. Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18, 1472–1483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Masson-Boivin, C., Giraud, E., Perret, X. & Batut, J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 17, 458–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Giraud, E. et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316, 1307–1312 (2007).

    Article  PubMed  Google Scholar 

  52. Fauvart, M. & Michiels, J. Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol. Lett. 285, 1–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Okazaki, S. et al. Identification and functional analysis of type III effector proteins in Mesorhizobium loti. Mol. Plant–Microbe Interact. 23, 223–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Okazaki, S., Kaneko, T., Sato, S. & Saeki, K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl Acad. Sci. USA 110, 17131–17136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bozkurt, T. O., Schornack, S., Banfield, M. J. & Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15, 483–492 (2012).

    Article  PubMed  Google Scholar 

  56. de Jonge, R. et al. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 23, 1271–1282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duplessis, S. et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl Acad. Sci. USA 108, 9166–9171 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hacquard, S. et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl Acad. Sci. USA 110, E2219–E2228 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kemen, E. et al. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol. 9, e1001094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nemri, A. et al. The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Front. Plant Sci. 5, 98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. O'Connell, R. J. et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genet. 44, 1060–1065 (2012). In this study, whole-genome sequencing and genome-wide expression profiling reveal that pathogenicity-related genes are transcribed in successive waves that are linked to pathogenic transitions.

    Article  CAS  PubMed  Google Scholar 

  62. Raffaele, S. et al. Genome evolution following host jumps in the irish potato famine pathogen lineage. Science 330, 1540–1543 (2010). In this study, resequencing of six genomes of four sister species of the Irish potato famine pathogen reveals higher rates of structural polymorphisms and positive selection in genes induced in planta , including effectors, which is likely to reflect adaptive pathogen specialization following host jumps on plants of different families.

    Article  CAS  PubMed  Google Scholar 

  63. Schirawski, J. et al. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330, 1546–1548 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Spanu, P. D. et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330, 1543–1546 (2010). This paper uses comparative genomics to identify pathogen lifestyle-associated genome adaptations, as well as trade-offs between advantages of increased genetic variation independently of sexual recombination and irreversible deletion of genes that are dispensable for biotrophy.

    Article  CAS  PubMed  Google Scholar 

  65. Wicker, T. et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nature Genet. 45, 1092–1096 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Pedersen, C. et al. Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13, 694 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coleman, J. J. et al. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet. 5, e1000618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Croll, D. & McDonald, B. A. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8, e1002608 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, L. J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373 (2010). This paper shows the transfer of intact supernumerary chromosomes from pathogenic to non-pathogenic fungal strains, thereby generating a novel pathogenic lineage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rouxel, T. et al. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nature Commun. 2, 202 (2011).

    Article  CAS  Google Scholar 

  71. Van de Wouw, A. P. et al. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog. 6, e1001180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raffaele, S. & Kamoun, S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Rev. Microbiol. 10, 417–430 (2012).

    Article  CAS  Google Scholar 

  73. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Win, J. et al. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349–2369 (2007). This is the first genome-wide detection of signatures of positive selection in effector genes of filamentous phytopathogens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stukenbrock, E. H. et al. The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species. Genome Res. 21, 2157–2166 (2011). This comparative population genomic study indicates that recurrent sexual recombination acted as driver of speciation and host adaptation of three closely related fungal pathogen species that exist in sympatry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Giraldo, M. C. et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Commun. 4, 1996 (2013).

    Article  CAS  Google Scholar 

  78. Martin, F. et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452, 88–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Martin, F. et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464, 1033–1038 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 111, 20117–20122 (2013).

    Article  CAS  Google Scholar 

  81. Zuccaro, A. et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 7, e1002290 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kloppholz, S., Kuhn, H. & Requena, N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21, 1204–1209 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Richards, T. A. et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl Acad. Sci. USA 108, 15258–15263 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Friesen, T. L. et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genet. 38, 953–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Loper, J. E. et al. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 8, e1002784 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yoshida, K. et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573–1591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wittenberg, A. H. J. et al. Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS ONE 4, e5863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tzeng, T. H., Lyngholm, L. K., Ford, C. F. & Bronson, C. R. A restriction-fragment-length-polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130, 81–96 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Leclair, S., AnsanMelayah, D., Rouxel, T. & Balesdent, M. H. Meiotic behaviour of the minichromosome in the phytopathogenic ascomycete Leptosphaeria maculans. Curr. Genet. 30, 541–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Hatta, R. et al. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161, 59–70 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chuma, I., Tosa, Y., Taga, M., Nakayashiki, H. & Mayama, S. Meiotic behavior of a supernumerary chromosome in Magnaporthe oryzae. Curr. Genet. 43, 191–198 (2003).

    CAS  PubMed  Google Scholar 

  92. Gale, L. R., Katan, T. & Kistler, H. C. The probable center of origin of Fusarium oxysporum f. sp lycopersici vcg 0033. Plant Dis. 87, 1433–1438 (2003).

    Article  PubMed  Google Scholar 

  93. Heitman, J., Kronstad, J. W., Taylor, J. W. & Casselton, L. A. (ed.) Sex in Fungi: Molecular Determination and Evolutionary Implications (ASM Press, 2007).

  94. Chen, R. S. & McDonald, B. A. Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. Genetics 142, 1119–1127 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Stukenbrock, E. H., Christiansen, F. B., Hansen, T. T., Dutheil, J. Y. & Schierup, M. H. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc. Natl Acad. Sci. USA 109, 10954–10959 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Knief, C., Delmotte, N. & Vorholt, J. A. Bacterial adaptation to life in association with plants — a proteomic perspective from culture to in situ conditions. Proteomics 11, 3086–3105 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Hugenholtz, P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3, REVIEWS0003 (2002). This is an insightful review motivating metagenomics for studying microbial diversity, owing to the narrow taxonomic range of cultured bacterial and archaeal isolates that are available for genome sequencing compared with the overwhelming taxonomic diversity of natural microbial communities.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, L., Ravnskov, S., Larsen, J. & Nicolaisen, M. Linking fungal communities in roots, rhizosphere, and soil to the health status of Pisum sativum. FEMS Microbiol. Ecol. 82, 736–745 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Turner, T. R. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Hirsch, P. R. & Mauchline, T. H. Who's who in the plant root microbiome? Nature Biotech. 30, 961–962 (2012).

    Article  CAS  Google Scholar 

  103. Dennis, P. G., Miller, A. J. & Hirsch, P. R. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72, 313–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Uroz, S., Buee, M., Murat, C., Frey-Klett, P. & Martin, F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Badri, D. V. et al. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151, 2006–2017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K. & Vivanco, J. M. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198, 264–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant-beneficial, plant-pathogenic and human-pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011). This study of bacteria isolated from disease-suppressive soils discovers a functionality implicated in the suppression of a fungal root pathogen.

    Article  CAS  PubMed  Google Scholar 

  110. Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013). This is a systematic analysis of the effect of the field, sample type, plant genotype and primer choice on the recovered microbial diversity from the rhizosphere of maize.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012). This paper delineates the bacterial taxa and progressive differentiation of A. thaliana bacterial communities in the rhizosphere and root endosphere.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012). This study delineates the taxonomic structure of the A. thaliana root-associated bacterial microbiota and compares it with bacterial assemblies found on metabolically inactive lignocellulosic matrices implanted in soil.

    Article  CAS  PubMed  Google Scholar 

  113. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl Acad. Sci. USA 108, 14288–14293 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang, H. B. et al. Characterization of metaproteomics in crop rhizospheric soil. J. Proteome Res. 10, 932–940 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Wu, L., Wang, H., Zhang, Z., Lin, R. & Lin, W. Comparative metaproteomic analysis on consecutively Rehmannia glutinosa-monocultured rhizosphere soil. PLoS ONE 6, e20611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934–5944 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schlaeppi, K., Dombrowski, N., Oter, R. G., Ver Loren van Themaat, E. & Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl Acad. Sci. USA 111, 585–592 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Lopez-Velasco, G., Welbaum, G. E., Boyer, R. R., Mane, S. P. & Ponder, M. A. Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16s rRNA amplicons. J. Appl. Microbiol. 110, 1203–1214 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Balint, M. et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 8, e53987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Finkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F. & Belkin, S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl. Environ. Microbiol. 77, 7647–7655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jumpponen, A. & Jones, K. L. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate quercus Macrocarpa phyllosphere. New Phytol. 184, 438–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, M. et al. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674–681 (2012).

    Article  PubMed  Google Scholar 

  124. Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Koopman, M. M. & Carstens, B. C. The microbial phyllogeography of the carnivorous plant Sarracenia alata. Microb. Ecol. 61, 750–758 (2011).

    Article  PubMed  Google Scholar 

  126. Koopman, M. M., Fuselier, D. M., Hird, S. & Carstens, B. C. The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl. Environ. Microbiol. 76, 1851–1860 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ottesen, A. R., White, J. R., Skaltsas, D. N., Newell, M. J. & Walsh, C. S. Impact of organic and conventional management on the phyllosphere microbial ecology of an apple crop. J. Food Prot. 72, 2321–2325 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Redford, A. J. & Fierer, N. Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb. Ecol. 58, 189–198 (2009).

    Article  PubMed  Google Scholar 

  130. Rastogi, G. et al. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 6, 1812–1822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Whipps, J. M., Hand, P., Pink, D. & Bending, G. D. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105, 1744–1755 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009). This study uses proteomics in combination with metagenome sequencing (that is, proteogenomics) to characterize the functional and taxonomic content of soybean, clover and A. thaliana phyllosphere communities.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Yoshida, K. et al. The rise and fall of the Phytophthora infestans lineage that triggered the irish potato famine. eLife 2, e00731 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Eaton, C. J., Cox, M. P. & Scott, B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci. 180, 190–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, 12 (2014).

    Article  CAS  Google Scholar 

  138. Lebeis, S. L., Rott, M., Dangl, J. L. & Schulze-Lefert, P. Culturing a plant microbiome community at the cross-rhodes. New Phytol. 196, 341–344 (2012).

    Article  PubMed  Google Scholar 

  139. Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genom. Hum. Genet. 9, 387–402 (2008).

    Article  CAS  Google Scholar 

  140. Schmidt, S. M. & Panstruga, R. Pathogenomics of fungal plant parasites: What have we learnt about pathogenesis? Curr. Opin. Plant Biol. 14, 392–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Proctor, L. M. The human microbiome project in 2011 and beyond. Cell Host Microbe 10, 287–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10, 563–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Baxter, L. et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330, 1549–1551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nocker, A., Burr, M. & Camper, A. K. Genotypic microbial community profiling: a critical technical review. Microb. Ecol. 54, 276–289 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Namiki, T., Hachiya, T., Tanaka, H. & Sakakibara, Y. Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Stark, M., Berger, S. A., Stamatakis, A. & von Mering, C. MLTreeMap — accurate maximum likelihood placement of environmental DNA sequences into taxonomic and functional reference phylogenies. BMC Genomics 11, 461 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28, 1033–1034 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Wu, M. & Eisen, J. A. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods 10, 1196–1199 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods 9, 811–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Patil, K. R. et al. Taxonomic metagenome sequence assignment with structured output models. Nature Methods 8, 191–192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Brady, A. & Salzberg, S. L. PHYMM and PHYMMBL: metagenomic phylogenetic classification with interpolated Markov models. Nature Methods 6, 673–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Huson, D. H., Mitra, S., Ruscheweyh, H. J., Weber, N. & Schuster, S. C. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552–1560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D. & Meyer, F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb. Protoc. 2010, pdb prot5368 (2010).

    Article  Google Scholar 

  160. Markowitz, V. M. et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 40, D123–D129 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Sun, S. et al. Community cyberinfrastructure for advanced microbial ecology research and analysis: the CAMERA resource. Nucleic Acids Res. 39, D546–D551 (2011).

    Article  CAS  Google Scholar 

  162. Leung, H. C., Yiu, S. M., Parkinson, J. & Chin, F. Y. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology. J. Computat. Biol. 20, 540–550 (2013).

    Article  CAS  Google Scholar 

  163. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Schlotterer, C. Hitchhiking mapping — functional genomics from the population genetics perspective. Trends Genet. 19, 32–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Pavlidis, P., Hutter, S. & Stephan, W. A population genomic approach to map recent positive selection in model species. Mol. Ecol. 17, 3585–3598 (2008).

    CAS  PubMed  Google Scholar 

  167. McCann, H. C., Nahal, H., Thakur, S. & Guttman, D. S. Identification of innate immunity elicitors using molecular signatures of natural selection. Proc. Natl Acad. Sci. USA 109, 4215–4220 (2012). This study develops a rapid and effective computational approach for identifying new immune elicitors.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Tibayrenc, M. Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annu. Rev. Genet. 33, 449–477 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Chapman, N. H. & Thompson, E. A. Linkage disequilibrium mapping: The role of population history, size, and structure. Adv. Genet. 42, 413–437 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Koonin, E. V. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39, 309–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Shade, A., McManus, P. S. & Handelsman, J. Unexpected diversity during community succession in the apple flower microbiome. MBio 4, e00602–e00612 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Hacquard in P.S-L's laboratory for the genome comparison underlying the heat map representation embedded in Box 2 and J. Vorholt for comments. We apologize to colleagues whose work could not be cited owing to length considerations. This work was supported by funds to P.S.-L. from the Max Planck Society and a European Research Council advanced grant (ROOTMICROBIOTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Schulze-Lefert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Mascot

MycoCosm

PowerPoint slides

Glossary

Pathogen effector

Any microbial secreted molecule providing a fitness benefit to the pathogen during host colonization, such as by suppressing the host immune system, by extracting nutrients from the host or even by suppressing the growth of microbial competitors in the host environment. Effectors are proteins or secondary metabolites and act in the plant apoplast or inside host cells.

Nucleotide-binding domain and LLR-containing protein

(NLR). 'Resistance proteins' that monitor or guard host proteins that are targeted by pathogen effector proteins. NLRs induce an effector-triggered immunity defence response upon perceiving an effector-mediated modification to the host target protein.

Type III secreted effectors

(T3SEs). Bacterial proteins secreted and translocated directly into the host cell by the bacterial type III secretion system. T3SEs are highly variable (with respect to both presence/absence polymorphisms and nucleotide polymorphisms) among strains of bacteria. Although the specific molecular function of most T3SEs is still unknown, most act to suppress various aspects of plant immunity.

Oomycetes

A distinct phylogenetic lineage of fungus-like (filamentous) eukaryotic microorganisms that can reproduce both sexually and asexually. They are closely related to photosynthetic organisms such as brown algae and diatoms.

Virulence

A pathogen–host interaction in which the pathogen causes disease in the host.

Avirulence

A pathogen–host interaction in which the pathogen inadvertently elicits the host immune system through the action of one or more of its effectors.

Effector-triggered immunity

(ETI). An immune response induced by the recognition of pathogen effector activity by a host nucleotide-binding domain and leucine-rich repeat-containing protein (NLR). The ETI response includes the fortification of the plant cell wall, the generation of reactive oxygen species, the induction of pathogenesis-related proteins and a hypersensitive response.

Co-evolutionary arms race

Iterative, antagonistic cycles of evolution between pathogen, parasite or predator and host or prey, in which one continually drives the evolution of the other to better their chances of surviving or benefitting from the interaction. In the context of phytopathogens, the arms race often manifests in the evolution of new pathogen effectors and host nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), which recognize and/or respond to the effectors.

Mutualistic

Pertaining to a mutually beneficial relationship between two organisms.

Commensal

Pertaining to a relationship between two organisms in which one organism benefits without affecting the other.

Microbiota

All microorganisms of a particular habitat.

Avirulence genes

(AVRs). Genes that encode a pathogen effector that is recognized by a host resistance nucleotide-binding domain and leucine-rich repeat-containing protein (NLR). AVR proteins are present in an isolate-specific manner and, together with the cognate NLRs, are the main drivers of the host–pathogen arms race.

Gene-for-gene model

A model of pathogen–host or parasite–host interactions, in which each specific pathogen avirulence factor (that is, effector) interacts with a specific cognate host resistance factor (that is, nucleotide-binding domain and leucine-rich repeat-containing protein (NLR)). The specific combination of avirulence and resistance factors carried by the pathogen and the host, respectively, will determine whether the interaction is compatible (virulent) or incompatible (avirulent). The model was originally developed by Flor in the 1940s to describe rust–flax interactions and was the guiding framework for plant–microorganism interactions for many years.

Hypersensitive response

A programmed cell death response of the host tissue surrounding the site of pathogen infection. It is a component of the overall effector-triggered immunity defence response and is usually induced by pathogen effector activity perceived by nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs).

Core genome

The set of genes shared by all members of a group of strains being examined. It is an operational definition that changes depending on the set of strains being examined, so the core genome of an entire bacterial species will be smaller than the core genome of a specific lineage of strains. Mathematically, the core genome is the intersection set of the genomes from the strains under study.

Positive selection

Selection that increases the frequency of a beneficial mutation. Positive selection is typically identified by looking for polymorphisms that cause an amino acid substitution with a frequency that is higher than expected.

Paralogues

Homologous genes related through a gene duplication event. They are commonly assumed to diverge in function through neofunctionalization or subfunctionalization.

Homologous

Pertaining to genes related through a common ancestry.

Horizontal gene transfer

(HGT). The movement of genetic material between strains or species through various non-sexual means, as opposed to mother-to-daughter transfer of genetic material. HGT is an important source of genetic novelty in microorganisms.

Parasexual

Pertaining to recombination of DNA that does not involve meiosis. Examples include the fusion of nuclei within a fungal heterokaryon or bacterial conjugation.

Rhizosphere

The region of soil surrounding plant roots in which the chemistry and microbiology are influenced by the roots' growth, respiration and nutrient exchange.

Pan genome

The entire set of genes carried by a group of strains being examined (that is, essentially the total gene pool). Mathematically, the pan genome is the union set of the genomes from the strains under study.

Linkage

Non-independent evolution between two or more loci in a genome due to restricted recombination.

Sympatry

The phenomenon whereby two species or populations exist in the same geographical area and regularly encounter one another.

Endosphere

The microbial habitat inside plant organs.

Phyllosphere

The microbial habitat defined by the surface of aboveground plant organs (mainly leaves).

Microbiome

The collection of the genomes of the microorganisms in a particular habitat.

Operational taxonomic units

(OTUs). A proxy for a microbial taxon defined on the basis of sequence divergence of 'universal' marker genes, such as ribosomal RNA genes.

Methanotrophy

A lifestyle of methane utilization in methylotroph species.

Facultative methylotrophs

Microorganisms that are able to use multicarbon sources in addition to reduced one-carbon substrates, such as methanol or methane.

Neofunctionalization

The acquisition of a new function by one member of a duplicated gene family.

Subfunctionalization

The partitioning of an ancestral function among multiple members of a duplicated gene family. For example, assume the product of an ancestral gene functioned in all plant tissues. If this gene duplicated, one member of the new gene family may now subfunctionalize to only function in root tissues, while another member of the family may subfunctionalize to only function in leaf tissues.

Xenologues

Homologous genes transferred between strains through horizontal gene transfer.

Incomplete lineage sorting

The phenomenon whereby an ancestral species undergoes several speciation events in a short period of time. It is the expected consequence of natural genetic diversity from an ancestral population that sorted itself incompletely into different descendant species.

Genome-wide association studies

(GWASs). Statistical genetic approaches to identify genetic variants that influence traits of interest. This method identifies statistical associations between genetic variants that are segregating in a population under study with phenotypes of interest.

Orthologous genes

Homologous genes related through a speciation event. They are commonly assumed to share a similar function.

Gnotobiotic

Pertaining to a germ-free plant or animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guttman, D., McHardy, A. & Schulze-Lefert, P. Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15, 797–813 (2014). https://doi.org/10.1038/nrg3748

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3748

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology