Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional outcome of telomere signalling

Key Points

  • Telomeres protect chromosome ends from unwanted activation of DNA damage response and hazardous replication by a complex and specific network of interactions among DNA, RNA (telomere repeat-containing RNAs), enzymes (telomerase) and specialized proteins (the shelterin complex), as well as general chromatin and repair factors.

  • Specialized telomeric factors such as shelterin components and telomerase can be found outside telomeres, where they have different roles in transcriptional regulation.

  • In budding yeast, delocalization of the telomeric protein Rap1 from critically short telomeres contributes to the transcriptomic changes seen in senescent cells.

  • In mammals, the shelterin subunit RAP1 regulates the expression of gene networks that are related to metabolism and immunity. The shelterin subunit TRF2 regulates neuronal gene expression networks, and telomerase is involved in the transcription of a subset of Wnt/β-catenin and NF-κB target genes.

  • Three non-exclusive mechanisms can be envisaged to explain how telomeres signal their changes through the regulation of the transcriptional properties of their constituents: post-translational modifications, looping and subnuclear compartmentalization.

  • As each telomeric protein may control specific gene networks, the consequences of telomere dysfunction might be more tissue specific than previously expected. Blocking the extratelomeric functions of telomeric proteins should be considered a viable option for drugs against cancer and age-related pathologies without secondary effects due to telomere uncapping.

Abstract

Telomeres protect chromosome ends from degradation and inappropriate DNA damage response activation through their association with specific factors. Interestingly, these telomeric factors are able to localize outside telomeric regions, where they can regulate the transcription of genes involved in metabolism, immunity and differentiation. These findings delineate a signalling pathway by which telomeric changes control the ability of their associated factors to regulate transcription. This mechanism is expected to enable a greater diversity of cellular responses that are adapted to specific cell types and telomeric changes, and may therefore represent a pivotal aspect of development, ageing and telomere-mediated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere organization and signalling.
Figure 2: Subnuclear distribution of telomeric factors has a role in the transcriptional patterns of senescent yeast.
Figure 3: Extratelomeric binding of mammalian RAP1 and TRF2.
Figure 4: Extratelomeric roles of shelterin components in transcriptional control.
Figure 5: Coordination of telomeric state with transcriptional regulation.
Figure 6: Model of telomere signalling that links DDR activation and transcriptional regulation by telomeric proteins.

Similar content being viewed by others

References

  1. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Giraud-Panis, M. J. et al. One identity or more for telomeres? Front. Oncol. 3, 48 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lustig, A. J., Kurtz, S. & Shore, D. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250, 549–553 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Conrad, M. N., Wright, J. H., Wolf, A. J. & Zakian, V. A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Gilson, E., Roberge, M., Giraldo, R., Rhodes, D. & Gasser, S. M. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231, 293–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in S. cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Kueng, S., Oppikofer, M. & Gasser, S. M. SIR proteins and the assembly of silent chromatin in budding yeast. Annu. Rev. Genet. 47, 275–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Schoeftner, S. & Blasco, M. A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biol. 10, 228–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible represssion of Pol II transcription. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Gilson, E. & Geli, V. How telomeres are replicated. Nature Rev. Mol. Cell Biol. 8, 825–838 (2007).

    Article  CAS  Google Scholar 

  13. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nature Med. 12, 1133–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Armanios, M. & Blackburn, E. H. The telomere syndromes. Nature Rev. Genet. 13, 693–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nature Struct. Mol. Biol. 19, 387–394 (2012).

    Article  CAS  Google Scholar 

  16. von Zglinicki, T., Saretzki, G., Docke, W. & Lotze, C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res. 220, 186–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nature Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Romano, G. H. et al. Environmental stresses disrupt telomere length homeostasis. PLoS Genet. 9, e1003721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi, J., Fauce, S. R. & Effros, R. B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heidinger, B. J. et al. Telomere length in early life predicts lifespan. Proc. Natl Acad. Sci. USA 109, 1743–1748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. d'Adda di Fagagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Nautiyal, S., DeRisi, J. L. & Blackburn, E. H. The genome-wide expression response to telomerase deletion in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 9316–9321 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lou, Z. et al. Telomere length regulates ISG15 expression in human cells. Aging (Albany NY) 1, 608–621 (2009).

    Article  CAS  Google Scholar 

  26. Low, K. C. & Tergaonkar, V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem. Sci. 38, 426–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Hirashima, K. et al. Telomere length influences cancer cell differentiation in vivo. Mol. Cell. Biol. 33, 2988–2995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biroccio, A. et al. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nature Cell Biol. 15, 818–828 (2013). This paper shows that TRF2 binds to and regulates the transcription of HS3ST4 , which is involved in the elimination of cancer cells by natural killer cells. It also reveals an unexpected role of IL-6 in telomere protection.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez, P. et al. RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell Rep. 3, 2059–2074 (2013). This study shows that mouse RAP1 binds to and regulates the expression of key genes that are involved in energy metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeung, F. et al. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep. 3, 1847–1856 (2013). This paper reveals that Rap1 -null mice show important metabolic disorders in the absence of overt telomere damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Platt, J. M. et al. Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence. Genes Dev. 27, 1406–1420 (2013). This is the first study to show that telomere shortening triggers a redistribution of telomeric factors that contributes to the transcriptomic changes of senescent yeast cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasser, S. M., Hediger, F., Taddei, A., Neumann, F. R. & Gartenberg, M. R. The function of telomere clustering in yeast: the circe effect. Cold Spring Harb. Symp. Quant. Biol. 69, 327–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir-protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev. 10, 1297–1309 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild type S. cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Campisi, J. The biology of replicative senescence. Eur. J. Cancer 33, 703–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Martin, S. G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Mills, K. D., Sinclair, D. A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. McAinsh, A. D., Scott-Drew, S., Murray, J. A. & Jackson, S. P. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr. Biol. 9, 963–966 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Straatman, K. R. & Louis, E. J. Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae. Chromosome Res. 15, 1033–1050 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennedy, B. K. et al. Redistribution of silencing protein from telomeres to the nucleolus is associated with extension in life span in S. cerevisiae. Cell 89, 381–391 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Taddei, A. et al. The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res. 19, 611–625 (2009). This study shows that Sir proteins released from their nuclear membrane anchors redistribute throughout the genome and change the transcriptome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi, T. et al. Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 153, 1340–1353 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. O'Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nature Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  CAS  Google Scholar 

  45. Ray, A. et al. Sir3p phosphorylation by the Slt2p pathway effects redistribution of silencing function and shortened lifespan. Nature Genet. 33, 522–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Radman-Livaja, M. et al. Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization. EMBO J. 30, 1012–1026 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kueng, S. et al. Regulating repression: roles for the Sir4 N-terminus in linker DNA protection and stabilization of epigenetic states. PLoS Genet. 8, e1002727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mattarocci, S. et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 7, 62–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Teytelman, L., Thurtle, D. M., Rine, J. & van Oudenaarden, A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl Acad. Sci. USA 110, 18602–18607 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bilaud, T. et al. Telomeric localization of TRF2, a novel human telobox protein. Nature Genet. 17, 236–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17, 231–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Martinez, P. et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nature Cell Biol. 12, 768–780 (2010). This is the first paper to show that a mammalian shelterin component can be located outside telomeres by acting as a transcription factor.

    Article  CAS  PubMed  Google Scholar 

  54. Yang, D. et al. Human telomeric proteins occupy selective interstitial sites. Cell Res. 21, 1013–1027 (2011). This study compares the genomic binding sites of RAP1 and TRF2 in human cancer cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Teo, H. et al. Telomere-independent Rap1 is an IKK adaptor and regulates NF-κB-dependent gene expression. Nature Cell Biol. 12, 758–767 (2010). This paper unveils a role of mammalian RAP1 in NF-κB signalling. It was the first study to show that RAP1 localizes outside telomere by working as an adaptor in the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  56. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Lian, S. et al. PRL-3 activates NF-κB signaling pathway by interacting with RAP1. Biochem. Biophys. Res. Commun. 430, 196–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krutilina, R. I. et al. Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1. Oncogene 22, 6690–6698 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Ye, J. et al. TRF2 and apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 142, 230–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Simonet, T. et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res. 21, 1028–1038 (2011). This study shows that TRF1 and TRF2 can colocalize at ITSs and pericentromeric satellite sequences in human cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Azzalin, C. M., Nergadze, S. G. & Giulotto, E. Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110, 75–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Lieb, J. D., Liu, X., Botstein, D. & Brown, P. O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nature Genet. 28, 327–334 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Poulet, A. et al. TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO J. 28, 641–651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Poulet, A. et al. The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA. Nucleic Acids Res. 40, 2566–2576 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Arat, N. O. & Griffith, J. D. Human Rap1 interacts directly with telomeric DNA and regulates TRF2 localization at the telomere. J. Biol. Chem. 287, 41583–41594 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Diala, I. et al. Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep. 14, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattern, K. A. et al. Dynamics of protein binding to telomeres in living cells: implications for telomere structure and function. Mol. Cell. Biol. 24, 5587–5594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, P. et al. Nontelomeric TRF2–REST interaction modulates neuronal gene silencing and fate of tumor and stem cells. Curr. Biol. 18, 1489–1494 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Xu, L. & Blackburn, E. H. Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J. Cell Biol. 167, 819–830 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cornacchia, D. et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 31, 3678–3690 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dan, J. et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev. Cell 29, 7–19 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benetti, R., Schoeftner, S., Munoz, P. & Blasco, M. A. Role of TRF2 in the assembly of telomeric chromatin. Cell Cycle 7, 3461–3468 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Galati, A. et al. TRF2 controls telomeric nucleosome organization in a cell cycle phase-dependent manner. PLoS ONE 7, e34386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, H. et al. TRF2 functions as a protein hub and regulates telomere maintenance by recognizing specific peptide motifs. Nature Struct. Mol. Biol. 16, 372–379 (2009).

    Article  CAS  Google Scholar 

  77. Giannone, R. J. et al. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1. PLoS ONE 5, e12407 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lee, O. H. et al. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol. Cell Proteomics 10, M110.001628 (2011).

    Article  PubMed  CAS  Google Scholar 

  79. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P. M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buck, M. J. & Lieb, J. D. A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nature Genet. 38, 1446–1451 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Spiegelman, B. M. in Mitochondrial Biology: New Perspectives, Number 287 60–69 (Wiley, 2007).

    Google Scholar 

  82. Lin, J. et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119, 121–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Leone, T. C. et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Salminen, A. et al. Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 7, 83–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Sfeir, A., Kabir, S., van Overbeek, M., Celli, G. B. & de Lange, T. Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327, 1657–1661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jung, Y. et al. TRF2 is in neuroglial cytoplasm and induces neurite-like processes. FEBS Lett. 557, 129–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Cheng, A. et al. Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J. Neurosci. 27, 3722–3733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ovando-Roche, P., Yu, J. S., Testori, S., Ho, C. & Cui, W. TRF2-mediated stabilization of hREST4 is critical for the differentiation and maintenance of neural progenitors. Stem Cells http://dx.doi.org/10.1002/stem.1725 (2014). This paper shows that TRF2 is required for neurogenesis by stabilizing REST4.

  90. Kishi, S. et al. The identification of zebrafish mutants showing alterations in senescence-associated biomarkers. PLoS Genet. 4, e1000152 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhang, P. et al. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons. J. Neurochem. 97, 567–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, P. et al. Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor. Proc. Natl Acad. Sci. USA 108, 16434–16439 (2011). This paper proposes a mechanism by which a cytoplasmic form of TRF2 prevents the import of REST and consequently the repression of genes that are involved in neural differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Renault, V. M. et al. FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5, 527–539 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Webb, A. E. et al. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep. 4, 477–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Choi, J. et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4, e10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shkreli, M. et al. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nature Med. 18, 111–119 (2012).

    Article  CAS  Google Scholar 

  99. Okamoto, N. et al. Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc. Natl Acad. Sci. USA 108, 20388–20393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hrdlickova, R., Nehyba, J. & Bose, H. R. Jr. Alternatively spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol. Cell. Biol. 32, 4283–4296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vidal-Cardenas, S. L. & Greider, C. W. Comparing effects of mTR and mTERT deletion on gene expression and DNA damage response: a critical examination of telomere length maintenance-independent roles of telomerase. Nucleic Acids Res. 38, 60–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Strong, M. A. et al. Phenotypes in mTERT+/− and mTERT−/− mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol. 31, 2369–2379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gardano, L., Pucci, F., Christian, L., Le Bihan, T. & Harrington, L. Telomeres, a busy platform for cell signaling. Front. Oncol. 3, 146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Listerman, I., Gazzaniga, F. S. & Blackburn, E. H. An investigation of the effects of the telomerase core protein TERT on Wnt signaling in human breast cancer cells. Mol. Cell. Biol. 34, 280–289 (2013).

    Article  PubMed  CAS  Google Scholar 

  105. Ghosh, A. et al. Telomerase directly regulates NF-κB-dependent transcription. Nature Cell Biol. 14, 1270–1281 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Hoffmeyer, K. et al. Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549–1554 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Yin, L., Hubbard, A. K. & Giardina, C. NF-κB regulates transcription of the mouse telomerase catalytic subunit. J. Biol. Chem. 275, 36671–36675 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Ding, D., Xi, P., Zhou, J., Wang, M. & Cong, Y. S. Human telomerase reverse transcriptase regulates MMP expression independently of telomerase activity via NF-κB-dependent transcription. FASEB J. 27, 4375–4383 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Walker, J. R. & Zhu, X. D. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech. Ageing Dev. 133, 421–434 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Seimiya, H., Muramatsu, Y., Smith, S. & Tsuruo, T. Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation. Mol. Cell. Biol. 24, 1944–1955 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chang, W., Dynek, J. N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dantzer, F. et al. Functional interaction between poly(ADP-ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol. Cell. Biol. 24, 1595–1607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gomez, M. et al. PARP1 is a TRF2-associated poly(ADP-ribose) polymerase and protects eroded telomeres. Mol. Biol. Cell 17, 1686–1696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fujita, K. et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nature Cell Biol. 12, 1205–1212 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Her, Y. R. & Chung, I. K. p300-mediated acetylation of TRF2 is required for maintaining functional telomeres. Nucleic Acids Res. 41, 2267–2283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. de Bruin, D., Zaman, Z., Liberatore, R. A. & Ptashne, M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Lebrun, E., Fourel, G., Defossez, P. A. & Gilson, E. A methyltransferase targeting assay reveals silencer–telomere interactions in budding yeast. Mol. Cell. Biol. 23, 1498–1508 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bystricky, K., Laroche, T., van Houwe, G., Blaszczyk, M. & Gasser, S. M. Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol. 168, 375–387 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, R. C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Vannier, J. B., Depeiges, A., White, C. & Gallego, M. E. ERCC1/XPF protects short telomeres from homologous recombination in Arabidopsis thaliana. PLoS Genet. 5, e1000380 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fourel, G., Revardel, E., Koering, C. E. & Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 18, 2522–2537 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. de Lange, T. Human telomeres are attached to the nuclear matrix. EMBO J. 11, 717–724 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Voronin, A. P., Lobov, I. B., Gilson, E. & Podgornaya, O. I. A telomere-binding protein (TRF2/MTBP) from mouse nuclear matrix with motives of an intermediate filament-type rod domain. J. Anti Aging Med. 6, 205–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Ottaviani, A. et al. Identification of a perinuclear positioning element in human subtelomeres that requires A-type lamins and CTCF. EMBO J. 28, 2428–2436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crabbe, L., Cesare, A. J., Kasuboski, J. M., Fitzpatrick, J. A. & Karlseder, J. Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. Cell Rep. 2, 1521–1529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kyrion, G., Liu, K. & Lustig, A. J. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 7, 1146–1159 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol. 20, 7991–8000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mercier, G. et al. A haploid-specific transcriptional response to irradiation in Saccharomyces cerevisiae. Nucleic Acids Res. 33, 6635–6643 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ruault, M., de Meyer, A., Loiodice, I. & Taddei, A. Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast. J. Cell Biol. 192, 417–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Maillet, L. et al. Ku-deficient yeast strains exhibit alternative states of silencing competence. EMBO Rep. 2, 203–210 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baur, J. A., Zou, Y., Shay, J. W. & Wright, W. E. Telomere position effect in human cells. Science 292, 2075–2077 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Benetti, R., Garcia-Cao, M. & Blasco, M. A. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nature Genet. 39, 243–250 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Arnoult, N., Van Beneden, A. & Decottignies, A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1α. Nature Struct. Mol. Biol. 19, 948–956 (2012). This study shows that the expression of non-coding TERRA is regulated by TPE in human cells.

    Article  CAS  Google Scholar 

  138. Stadler, G. et al. Telomere position effect regulates DUX4 in human facioscapulohumeral muscular dystrophy. Nature Struct. Mol. Biol. 20, 671–678 (2013).

    Article  CAS  Google Scholar 

  139. Schoeftner, S. et al. Telomere shortening relaxes X chromosome inactivation and forces global transcriptome alterations. Proc. Natl Acad. Sci. USA 106, 19393–19398 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tennen, R. I., Bua, D. J., Wright, W. E. & Chua, K. F. SIRT6 is required for maintenance of telomere position effect in human cells. Nature Commun. 2, 433 (2011).

    Article  CAS  Google Scholar 

  141. Koering, C. E. et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 3, 1055–1061 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Mitchell, T. R. & Zhu, X. D. Methylated TRF2 associates with the nuclear matrix and serves as a potential biomarker for cellular senescence. Aging (Albany NY) 6, 248–263 (2014).

    Article  CAS  Google Scholar 

  144. Bradshaw, P. S., Stavropoulos, D. J. & Meyn, M. S. Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nature Genet. 37, 193–197 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Guo, N. et al. Short telomeres compromise β-cell signaling and survival. PLoS ONE 6, e17858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Celli, G. B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nature Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Sahin, E. & Depinho, R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464, 520–528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Murillo-Ortiz, B. et al. Telomere length and type 2 diabetes in males, a premature aging syndrome. Aging Male 15, 54–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Martinez, P. & Blasco, M. A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nature Rev. Cancer 11, 161–176 (2011).

    Article  CAS  Google Scholar 

  150. Tazumi, A. et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 26, 2050–2062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dave, A., Cooley, C., Garg, M. & Bianchi, A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 7, 53–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hiraga, S. et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 28, 372–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, L. Y. et al. Mitochondrial localization of telomeric protein TIN2 links telomere regulation to metabolic control. Mol. Cell 47, 839–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Listerman, I., Sun, J., Gazzaniga, F. S., Lukas, J. L. & Blackburn, E. H. The major reverse transcriptase-incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res. 73, 2817–2828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, L. F. et al. Telomeric RNAs mark sex chromosomes in stem cells. Genetics 182, 685–698 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the discussions and suggestions of all the members of the E.G. team, as well as M. Shkreli, V. Géli, P. Lopez and E. van Obberghen. They are also grateful to the anonymous reviewers for helpful suggestions. The E.G. team is supported by La Ligue Nationale contre le Cancer ('Equipe labellisée'), the French Institut National du Cancer (programmes TELOFUN and TELOCHROM), the French National Research Agency (ANR) (programmes TELOREP and INNATELO) and the Investments for the Future LABEX SIGNALIFE (programme reference # ANR-11-LABX-0028-01). They apologize for all the important works that have not been cited owing to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

DNA damage response

(DDR). A pathway triggered by DNA lesions, in which phosphatidylinositol-3 kinases (ATM, ATR or DNA-PK) activate appropriate repair pathways and/or cell cycle arrest.

Senescence

A permanent arrest in the cell cycle.

Apoptosis

A form of programmed cell death.

Extracellular stress response pathways

Pathways that are triggered by extracellular stimuli and that involve mitogen-activated protein kinases such as JNK and p38 to activate an adaptive response programme, which maximizes cell cycle progression and survival.

NF-κB signalling

A pathway mediated by nuclear factor-κB (NF-κB) that regulates many physiological processes, including innate and adaptive immune responses, cell death and inflammation.

Mass action law

A mathematical model based on the principle that the rate of a chemical reaction is proportional to the molecular concentrations of the reacting substances.

Wnt/β-catenin signalling

A fundamental and complex pathway that is required for metazoan development and tissue homeostasis; it is often dysregulated in cancer.

Luciferase reporter assays

Assays commonly used to assess the transcriptional activity in cells that are transfected with a genetic construct containing the luciferase gene under the control of a promoter of interest.

Glucose intolerance

A metabolic disorder associated with insulin resistance, which is considered to be a pre-diabetic state.

Hepatic steatosis

The accumulation of stored lipids — most notably, triglycerides — to abnormally high levels in the liver.

Oxidative phosphorylation

A metabolic pathway in which the mitochondria use energy released by the oxidation of nutrients to generate ATP.

White fat

Adipose tissue used as energy storage.

Poly(ADP-ribose) polymerases

A family of proteins involved in various cellular processes, including DNA repair, regulation of chromatin structure and regulation of cell cycle checkpoints.

E3 ubiquitin ligase

An enzyme that couples the small (7 kDa) protein ubiquitin to lysine residues on proteins targeted for degradation by the proteasome.

Natural killer cells

Cytotoxic cells that are crucial for eliminating infected, damaged or cancerous cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Renault, V., Jamet, K. et al. Transcriptional outcome of telomere signalling. Nat Rev Genet 15, 491–503 (2014). https://doi.org/10.1038/nrg3743

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing