Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epigenetic reprogramming in plant sexual reproduction

Key Points

  • Recent evidence has accumulated to support the partial reprogramming of epigenetic marks in plants.

  • Both male and female gametogenesis is marked by a loss of DNA methylation.

  • Companion cells that are associated with gametes undergo marked reprogramming events, which lead to DNA demethylation and activation of transposable elements, as well as activation of flanking genes in the pollen vegetative cell and possibly in the female central cell.

  • DNA methylation is acquired de novo during embryogenesis, which restores methylation to the levels of somatic adult tissues.

  • Histone variant replacement is likely to reprogramme chromatin modification in the zygote in plants and animals.

  • Reprogramming accompanies zygotic genome activation immediately after fertilization in plants.

Abstract

Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sexual reproduction in Arabidopsis thaliana.
Figure 2: Epigenetic reprogramming during male gametogenesis.
Figure 3: Epigenetic reprogramming during embryogenesis.

Similar content being viewed by others

References

  1. Hathaway, N. A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Law, J. A. & Jacobsen, S. E. Dynamic DNA methylation. Science 323, 1568–1569 (2009).

    CAS  PubMed  Google Scholar 

  3. Sharif, J. & Koseki, H. Recruitment of Dnmt1 roles of the SRA protein Np95 (Uhrf1) and other factors. Prog. Mol. Biol. Transl. Sci. 101, 289–310 (2011).

    CAS  PubMed  Google Scholar 

  4. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Rev. Genet. 13, 343–357 (2012).

    CAS  PubMed  Google Scholar 

  5. Martin, C. & Zhang, Y. Mechanisms of epigenetic inheritance. Curr. Opin. Cell Biol. 19, 266–272 (2007).

    CAS  PubMed  Google Scholar 

  6. Hajkova, P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Phil. Trans. R. Soc. B. 366, 2266–2273 (2011).

    CAS  PubMed  Google Scholar 

  7. Kota, S. K. & Feil, R. Epigenetic transitions in germ cell development and meiosis. Dev. Cell 19, 675–686 (2010).

    CAS  PubMed  Google Scholar 

  8. Berger, F. & Twell, D. Germline specification and function in plants. Annu. Rev. Plant Biol. 62, 461–484 (2011).

    CAS  PubMed  Google Scholar 

  9. Chen, C. et al. Meiosis-specific gene discovery in plants: RNA-seq applied to isolated Arabidopsis male meiocytes. BMC Plant Biol. 10, 280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Crismani, W., Girard, C. & Mercier, R. Tinkering with meiosis. J. Exp. Bot. 64, 55–65 (2013).

    CAS  PubMed  Google Scholar 

  11. Brownfield, L. & Kohler, C. Unreduced gamete formation in plants: mechanisms and prospects. J. Exp. Bot. 62, 1659–1668 (2011).

    CAS  PubMed  Google Scholar 

  12. Twell, D. Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 24, 149–160 (2011).

    PubMed  Google Scholar 

  13. Palovaara, J., Saiga, S. & Weijers, D. Transcriptomics approaches in the early Arabidopsis embryo. Trends Plant Sci. 18, 514–521 (2013).

    CAS  PubMed  Google Scholar 

  14. Li, J. & Berger, F. Endosperm: food for humankind and fodder for scientific discoveries. New Phytol. 195, 290–305 (2012).

    PubMed  Google Scholar 

  15. Drews, G. N. & Koltunow, A. M. The female gametophyte. Arabidopsis Book 9, e0155 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Leitch, H. G., Tang, W. W. & Surani, M. A. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr. Top. Dev. Biol. 104, 149–187 (2013).

    CAS  PubMed  Google Scholar 

  17. Seisenberger, S. et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil. Trans. R. Soc. B 368, 20110330 (2013).

    PubMed  Google Scholar 

  18. Cantone, I. & Fisher, A. G. Epigenetic programming and reprogramming during development. Nature Struct. Mol. Biol. 20, 282–289 (2013).

    CAS  Google Scholar 

  19. Chedin, F. The DNMT3 family of mammalian de novo DNA methyltransferases. Prog. Mol. Biol. Transl. Sci. 101, 255–285 (2011).

    CAS  PubMed  Google Scholar 

  20. Smallwood, S. A. & Kelsey, G. De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42 (2012).

    CAS  PubMed  Google Scholar 

  21. Cubas, P., Vincent, C. & Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161 (1999).

    CAS  PubMed  Google Scholar 

  22. Hauser, M. T., Aufsatz, W., Jonak, C. & Luschnig, C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. 1809, 459–468 (2011).

    CAS  Google Scholar 

  23. Saze, H., Mittelsten Scheid, O. & Paszkowski, J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genet. 34, 65–69 (2003).

    CAS  PubMed  Google Scholar 

  24. Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA Polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495–506 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).

    CAS  PubMed  Google Scholar 

  26. Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  Google Scholar 

  27. Haag, J. R. & Pikaard, C. S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Rev. Mol. Cell. Biol. 12, 483–492 (2011).

    CAS  Google Scholar 

  28. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    CAS  PubMed  Google Scholar 

  29. Stroud, H. et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nature Struct. Mol. Biol. 21, 64–72 (2014). This paper provides a comprehensive account of all DNA methyltransferase activities that are responsible for non-CG methylation in A. thaliana.

    CAS  Google Scholar 

  30. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    CAS  PubMed  Google Scholar 

  32. Finnegan, E. J., Peacock, W. J. & Dennis, E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl Acad. Sci. USA 93, 8449–8454 (1996).

    CAS  PubMed  Google Scholar 

  33. Johnson, L. M. et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 17, 379–384 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Coleman-Derr, D. & Zilberman, D. DNA methylation, H2A.Z, and the regulation of constitutive expression. Cold Spring Harb. Symp. Quant. Biol. 77, 147–154 (2012).

    CAS  PubMed  Google Scholar 

  35. Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    CAS  PubMed  Google Scholar 

  37. Du, J. et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151, 167–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Rev. Genet. 15, 394–408 (2014).

    CAS  PubMed  Google Scholar 

  39. Law, J. A., Vashisht, A. A., Wohlschlegel, J. A. & Jacobsen, S. E. SHH1, a homeodomain protein required for DNA methylation, as well as RDR2, RDM4, and chromatin remodeling factors, associate with RNA polymerase IV. PLoS Genet. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong, X. et al. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brzeski, J. & Jerzmanowski, A. Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J. Biol. Chem. 278, 823–828 (2003).

    CAS  PubMed  Google Scholar 

  42. Kawashima, T. & Berger, F. Green love talks; cell–cell communication during double fertilization in flowering plants. AoB Plants 2011, plr015 (2011).

    PubMed  PubMed Central  Google Scholar 

  43. Yang, H., Lu, P., Wang, Y. & Ma, H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. Plant J. 65, 503–516 (2011).

    CAS  PubMed  Google Scholar 

  44. Ito, H. et al. An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472, 115–119 (2011).

    CAS  PubMed  Google Scholar 

  45. Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012). This study provides evidence for dynamic changes of DNA methylation during male gametogenesis in A. thaliana.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ibarra, C. A. et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337, 1360–1364 (2012). This paper shows demethylation in plant gamete companion cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jullien, P. E., Kinoshita, T., Ohad, N. & Berger, F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18, 1360–1372 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jullien, P. E. et al. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol. 6, e194 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Jullien, P. E., Susaki, D., Yelagandula, R., Higashiyama, T. & Berger, F. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr. Biol. 22, 1825–1830 (2012). This study reports the first evidence for a cycle of DNA methylation reprogramming at specific loci in A. thaliana.

    CAS  PubMed  Google Scholar 

  50. Schoft, V. K. et al. Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep. 10, 1015–1021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schoft, V. K. et al. Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc. Natl Acad. Sci. USA 108, 8042–8047 (2011).

    CAS  PubMed  Google Scholar 

  52. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Martinez, G. & Slotkin, R. K. Developmental relaxation of transposable element silencing in plants: functional or byproduct? Curr. Opin. Plant Biol. 15, 496–502 (2012).

    CAS  PubMed  Google Scholar 

  54. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    CAS  PubMed  Google Scholar 

  55. Nuthikattu, S. et al. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21–22 nucleotide small interfering RNAs. Plant Physiol. 162, 116–131 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stroud, H., Greenberg, M. V., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013). This is a global analysis of all pathways that control DNA methylation and their interaction with other silencing mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grant-Downton, R., Hafidh, S., Twell, D. & Dickinson, H. G. Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol. Plant 2, 500–512 (2009).

    CAS  PubMed  Google Scholar 

  58. Grant-Downton, R. et al. Artificial microRNAs reveal cell-specific differences in small RNA activity in pollen. Curr. Biol. 23, R599–R601 (2013). This report provides a new insight into the controversy related to the movement of non-coding RNAs in pollen.

    CAS  PubMed  Google Scholar 

  59. Russell, S. D. Ultrastructure of the sperm of plumbago-zeylanica: II. Quantitative cytology and 3-dimensional organization. Planta 162, 385–391 (1984).

    CAS  PubMed  Google Scholar 

  60. McCue, A. D., Cresti, M., Feijo, J. A. & Slotkin, R. K. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited. J. Exp. Bot. 62, 1621–1631 (2011).

    CAS  PubMed  Google Scholar 

  61. Kragler, F. Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell Tissue Res. 352, 49–58 (2013).

    CAS  PubMed  Google Scholar 

  62. Kubo, T. et al. Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant Cell Physiol. 54, 750–765 (2013).

    CAS  PubMed  Google Scholar 

  63. Schmidt, A. et al. Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development. PLoS Biol. 9, e1001155 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. She, W. et al. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140, 4008–4019 (2013).

    CAS  PubMed  Google Scholar 

  65. Olmedo-Monfil, V. et al. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464, 628–632 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Singh, M. et al. Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23, 443–458 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tucker, M. R. et al. Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139, 1399–1404 (2012).

    CAS  PubMed  Google Scholar 

  68. Borges, F., Pereira, P. A., Slotkin, R. K., Martienssen, R. A. & Becker, J. D. MicroRNA activity in the Arabidopsis male germline. J. Exp. Bot. 62, 1611–1620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M. & Watanabe, Y. The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol. 49, 493–500 (2008).

    CAS  PubMed  Google Scholar 

  71. Dunoyer, P. et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science 328, 912–916 (2010).

    CAS  PubMed  Google Scholar 

  72. Melnyk, C. W., Molnar, A., Bassett, A. & Baulcombe, D. C. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21, 1678–1683 (2011).

    CAS  PubMed  Google Scholar 

  73. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    CAS  PubMed  Google Scholar 

  74. Bajon, C., Horlow, C., Motamayor, J. C., Sauvanet, A. & Robert, D. Megasporogenesis in Arabidopsis thaliana L.: an ultrastructural study. Sex. Plant Reprod. 12, 99–109 (1999).

    Google Scholar 

  75. Gehring, M. Genomic imprinting: insights from plants. Annu. Rev. Genet. 47, 187–208 (2013).

    CAS  PubMed  Google Scholar 

  76. Gehring, M., Bubb, K. L. & Henikoff, S. Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324, 1447–1451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kinoshita, T. et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303, 521–523 (2004).

    CAS  PubMed  Google Scholar 

  78. Hsieh, T. F. et al. Genome-wide demethylation of Arabidopsis endosperm. Science 324, 1451–1454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ikeda, Y. et al. HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis. Dev. Cell 21, 589–596 (2011).

    CAS  PubMed  Google Scholar 

  80. Choi, Y. et al. DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110, 33–42 (2002).

    CAS  PubMed  Google Scholar 

  81. Ingouff, M., Haseloff, J. & Berger, F. Polycomb group genes control developmental timing of endosperm. Plant J. 42, 663–674 (2005).

    CAS  PubMed  Google Scholar 

  82. Wolff, P. et al. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. PLoS Genet. 7, e1002126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Berger, F., Vu, T. M., Li, J. & Chen, B. Hypothesis: selection of imprinted genes is driven by silencing deleterious gene activity in somatic tissues. Cold Spring Harb. Symp. Quant. Biol. 77, 23–29 (2012).

    CAS  PubMed  Google Scholar 

  84. Wuest, S. E. et al. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr. Biol. 20, 506–512 (2010).

    CAS  PubMed  Google Scholar 

  85. Ishizu, H., Siomi, H. & Siomi, M. C. Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev. 26, 2361–2373 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    CAS  PubMed  Google Scholar 

  87. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  88. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Belmonte, M. F. et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc. Natl Acad. Sci. USA 110, E435–E444 (2013). This paper presents an 'atlas' of gene expression profiles in the major components of A. thaliana developing seeds, which provides new insights into the gene activity that regulates DNA methylation.

    CAS  PubMed  Google Scholar 

  90. Costa, L. M. et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344, 168–172 (2014).

    CAS  PubMed  Google Scholar 

  91. Xing, Q. et al. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140, 770–779 (2013).

    CAS  PubMed  Google Scholar 

  92. Rodrigues, J. A. et al. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc. Natl Acad. Sci. USA 110, 7934–7939 (2013).

    CAS  PubMed  Google Scholar 

  93. Mari-Ordonez, A. et al. Reconstructing de novo silencing of an active plant retrotransposon. Nature Genet. 45, 1029–1039 (2013). This elegant work shows that TEs can mobilize to new loci and create de novo epialleles in A. thaliana , which causes genome diversification and provides a potential source of adaptive traits.

    CAS  PubMed  Google Scholar 

  94. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Teixeira, F. K. et al. A role for RNAi in the selective correction of DNA methylation defects. Science 323, 1600–1604 (2009).

    CAS  PubMed  Google Scholar 

  96. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nature Rev. Mol. Cell. Biol. 10, 192–206 (2009).

    CAS  Google Scholar 

  97. Okano, Y. et al. A Polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc. Natl Acad. Sci. USA 106, 16321–16326 (2009).

    CAS  PubMed  Google Scholar 

  98. Mosquna, A. et al. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136, 2433–2444 (2009).

    CAS  PubMed  Google Scholar 

  99. Filipescu, D., Szenker, E. & Almouzni, G. Developmental roles of histone H3 variants and their chaperones. Trends Genet. 29, 630–640 (2013).

    CAS  PubMed  Google Scholar 

  100. Ingouff, M. & Berger, F. Histone3 variants in plants. Chromosoma 119, 27–33 (2010).

    CAS  PubMed  Google Scholar 

  101. Akiyama, T., Suzuki, O., Matsuda, J. & Aoki, F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet. 7, e1002279 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Banaszynski, L. A., Allis, C. D. & Lewis, P. W. Histone variants in metazoan development. Dev. Cell 19, 662–674 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Orsi, G. A. et al. Drosophila Yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet. 9, e1003285 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Santenard, A. et al. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nature Cell Biol. 12, 853–862 (2010).

    CAS  PubMed  Google Scholar 

  105. Ingouff, M. et al. Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr. Biol. 20, 2137–2143 (2010). This paper provides evidence that H3 inherited from chromatin in gametes are removed from the zygotic chromatin by de novo synthesized H3, which suggests reprogramming of chromatin marks after fertilization.

    CAS  PubMed  Google Scholar 

  106. Dalal, Y., Furuyama, T., Vermaak, D. & Henikoff, S. Structure, dynamics, and evolution of centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 15974–15981 (2007).

    CAS  PubMed  Google Scholar 

  107. Aw, S. J., Hamamura, Y., Chen, Z., Schnittger, A. & Berger, F. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 137, 2683–2690 (2010).

    CAS  PubMed  Google Scholar 

  108. Stellfox, M. E., Bailey, A. O. & Foltz, D. R. Putting CENP-A in its place. Cell. Mol. Life Sci. 70, 387–406 (2013).

    CAS  PubMed  Google Scholar 

  109. Olszak, A. M. et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nature Cell Biol. 13, 799–808 (2011).

    CAS  PubMed  Google Scholar 

  110. Zaratiegui, M. et al. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 479, 135–138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zaratiegui, M. et al. CENP-B preserves genome integrity at replication forks paused by retrotransposon LTR. Nature 469, 112–115 (2011).

    CAS  PubMed  Google Scholar 

  112. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    CAS  PubMed  Google Scholar 

  113. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and implications. Nature Rev. Genet. 13, 97–109 (2011).

    Google Scholar 

  115. Becker, C. & Weigel, D. Epigenetic variation: origin and transgenerational inheritance. Curr. Opin. Plant Biol. 15, 562–567 (2012).

    CAS  PubMed  Google Scholar 

  116. Woo, H. R., Dittmer, T. A. & Richards, E. J. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. PLoS Genet. 4, e1000156 (2008).

    PubMed  PubMed Central  Google Scholar 

  117. Woo, H. R., Pontes, O., Pikaard, C. S. & Richards, E. J. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 21, 267–277 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    CAS  PubMed  Google Scholar 

  119. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Law, J. A. et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498, 385–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tadros, W. & Lipshitz, H. D. The maternal-to-zygotic transition: a play in two acts. Development 136, 3033–3042 (2009).

    CAS  PubMed  Google Scholar 

  122. Kawashima, T. & Goldberg, R. B. The suspensor: not just suspending the embryo. Trends Plant Sci. 15, 23–30 (2010).

    CAS  PubMed  Google Scholar 

  123. Lau, S., Slane, D., Herud, O., Kong, J. & Jurgens, G. Early embryogenesis in flowering plants: setting up the basic body pattern. Annu. Rev. Plant Biol. 63, 483–506 (2012).

    CAS  PubMed  Google Scholar 

  124. Muralla, R., Lloyd, J. & Meinke, D. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS ONE 6, e28398 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ingouff, M., Hamamura, Y., Gourgues, M., Higashiyama, T. & Berger, F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr. Biol. 17, 1032–1037 (2007).

    CAS  PubMed  Google Scholar 

  126. Meyer, S. & Scholten, S. Equivalent parental contribution to early plant zygotic development. Curr. Biol. 17, 1686–1691 (2007).

    CAS  PubMed  Google Scholar 

  127. Scholten, S., Lorz, H. & Kranz, E. Paternal mRNA and protein synthesis coincides with male chromatin decondensation in maize zygotes. Plant J. 32, 221–231 (2002).

    CAS  PubMed  Google Scholar 

  128. Xin, H. P., Zhao, J. & Sun, M. X. The maternal-to-zygotic transition in higher plants. J. Integr. Plant. Biol. 54, 610–615 (2012).

    CAS  PubMed  Google Scholar 

  129. Autran, D. et al. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145, 707–719 (2011).

    CAS  PubMed  Google Scholar 

  130. Nodine, M. D. & Bartel, D. P. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482, 94–97 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, Z. J. Genomic and epigenetic insights into the molecular bases of heterosis. Nature Rev. Genet. 14, 471–482 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. H. Le and R. Feil for critical reading of the manuscript. F.B. and T.K. were supported by Temasek Life Sciences Laboratory. They apologize to colleagues whose publications are not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Berger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Epigenetic marks

Modifications of the chromatin that are inherited through cell division.

Spores

Haploid cells that are derived from meiosis of meiocytes and that undergo several rounds of mitosis to give rise to gametophytes. The male and female spores are also known as microspores and megaspores, respectively.

Gametophytes

Haploid life forms that define the germ line and that are produced by the development of spores. Each gametophyte generally comprises a small number of cells, such as the embryo sac (female gametophyte) and the pollen (male gametophyte) in flowering plants. However, in mosses, the gametophyte constitutes the major part of the life cycle.

Endosperm

The product of the fertilized central cell. It protects the embryo, controls the transfer of nutrients from the mother and, in some species, stores seed nutrient reserves. The role of the endosperm can be compared to that of the placenta in mammals.

RNA-directed DNA methylation

(RdDM). A plant-specific pathway that regulates de novo DNA methylation in all sequence contexts (CG, CHG and CHH). Small RNAs establish DNA methylation by guiding protein components required for DNA methylation to genomic loci that are homologous to the small RNAs.

Meiocyte

The cell differentiated from the somatic cell in a position- dependent manner to undergo meiosis. Male and female meiocytes are also known as pollen mother cells and megaspore mother cells, respectively.

Asymmetrical division

Cell division that results in two cells with dissimilar morphologies and/or fates.

Pollen vegetative cell

The male companion cell generated during male gametogenesis. It germinates to give rise to the pollen tube, through which sperm cells are transferred to the female gamete.

Generative cell

The male germline cell, which undergoes one round of cell division to generate two sperm cells in the vegetative cell.

Sperm cells

Male gametes produced in the pollen.

Embryo sac

The female gametophyte that contains four cell types: the egg cell (female gamete), the central cell (female companion cell) and accessory cells (three antipodal cells and two synergid cells).

Egg cell

The female gamete, which produces the embryo. As the product of the fertilized egg cell reinitiates the plant life cycle, the egg cell can be considered the true female gamete.

Central cell

The female companion cell generated from female gametogenesis. It is fertilized by the sperm cell to give rise to the endosperm and can be considered the somatic part of the female gametophyte, which reinitiates its development following fertilization.

Argonaute

A family of effector proteins involved in small-RNA-directed gene silencing. Small RNAs bind to Argonaute proteins and guide the complex to their RNA targets.

Functional unreduced gametes

Gametes produced in the absence of the reduction meiotic division. They are diploid and result in triploid progeny after fertilization.

Imprinted genes

Genes in which one allele is silenced, whereas the other allele is expressed in a parent-of-origin-specific manner.

Epialleles

Alleles that cause changes in gene expression and that are produced by epigenetic marks (generally DNA methylation in a CG context) but not by mutations in the DNA sequence

Sporophyte

The diploid life form in which meiosis takes place to produce the haploid spores.

Hybrid vigour

A phenomenon that causes the hybrid progeny to differ from the predicted average of the parental traits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, T., Berger, F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15, 613–624 (2014). https://doi.org/10.1038/nrg3685

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing