Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary biochemistry: revealing the historical and physical causes of protein properties

Key Points

  • Evolutionary biochemistry aims to dissect the evolutionary processes and physical mechanisms by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution.

  • The historical separation between biochemists and evolutionary biologists is breaking down, allowing for powerful investigations of protein evolution at the interface of the two disciplines.

  • Among the key techniques for studying the biochemical mechanisms of protein evolution are ancestral protein reconstruction, directed laboratory evolution and high-throughput evolutionary analysis of protein sequence space.

  • Evolutionary analysis illuminates core questions in biochemistry because it can efficiently reveal the sequence determinants of differences in function, structure and other physical properties among proteins. It also provides the ultimate explanation for why any protein has the properties it has today.

  • Biochemical approaches illuminate core questions in molecular evolution because they can reveal the mechanisms by which historical mutations led to the emergence of new phenotypes, they can characterize the topology of the genotype–function space on which evolution occurred, and they can illuminate how the physical properties of biological molecules shaped the evolutionary processes.

  • Work in evolutionary biochemistry explains the interplay of contingency and determinism in molecular evolution as the result of the specific functional constraints and genetic interactions that are produced by the physical architecture of each protein.

Abstract

The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel evolution due to biophysical constraints.
Figure 2: Molecular mechanisms of evolutionary epistasis.
Figure 3: The position of a protein in its neutral network determines which mutational path it takes to a derived function.

Similar content being viewed by others

References

  1. Anfinsen, C. Molecular Basis of Evolution (John Wiley & Sons, 1959). This is a prescient early attempt by a Nobel-prize-winning biochemist to consider how chemistry might shape protein evolution.

    Google Scholar 

  2. Florkin, M. Biochemical Evolution (Academic Press, 1949).

    Google Scholar 

  3. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    Article  CAS  PubMed  Google Scholar 

  4. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (Bryson, 1965). Two chemists defend the potential contributions of biochemistry to evolutionary knowledge at a 1964 conference that brought molecular biologists and classical evolutionary biologists together.

    Google Scholar 

  5. Pauling, L. & Zuckerkandl, E. Chemical paleogenetics: molecular 'restoration studies' of extinct forms of life. Acta Chem. Scand. 17, S9–S16 (1963).

    Article  CAS  Google Scholar 

  6. Ingram, V. M. Gene evolution and the haemoglobins. Nature 189, 704–708 (1961).

    Article  CAS  PubMed  Google Scholar 

  7. Wald, G. Phylogeny and ontogeny at the molecular level. Evol. Biochem. 3, 12–51 (1963).

    CAS  Google Scholar 

  8. Dietrich, M. R. Paradox and persuasion: negotiating the place of molecular evolution within evolutionary biology. J. Hist. Biol. 31, 85–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Morgan, G. J. Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J. Hist. Biol. 31, 155–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Aronson, J. D. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution. Hist. Philos. Life Sci. 24, 441–465 (2002).

    Article  PubMed  Google Scholar 

  11. Simpson, G. G. The status of the study of organisms. Am. Scientist 50, 36–45 (1962).

    CAS  PubMed  Google Scholar 

  12. Simpson, G. Organisms and molecules in evolution. Science 146, 1535–1538 (1964).

    Article  CAS  PubMed  Google Scholar 

  13. Dobzhansky, T. Biology, molecular and organismic. Am. Zool. 4, 443–452 (1964).

    Article  CAS  PubMed  Google Scholar 

  14. Fitch, W. M. Homology: a personal view on some of the problems. Trends Genet. 16, 227–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Baum, D. A., Smith, S. D. & Donovan, S. S. S. The tree-thinking challenge. Science 310, 979–980 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Watt, W. B. Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics 136, 11–16 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Wilke, C. O. Bringing molecules back into molecular evolution. PLoS Comput. Biol. 8, e1002572 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blundell, T. L. & Wood, S. P. Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature 257, 197–203 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Perutz, M. F. Species adaptation in a protein molecule. Mol. Biol. Evol. 1, 1–28 (1983). This is the first article in the inaugural issue of Molecular Biology and Evolution . It lays out an agenda for experimental studies of protein evolution, using biochemical and structural studies of haemoglobin in a phylogenetic context as a template.

    CAS  PubMed  Google Scholar 

  22. Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345, 86–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Serrano, L., Day, A. G. & Fersht, A. R. Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. J. Mol. Biol. 233, 305–312 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Golding, G. B. & Dean, A. M. The structural basis of molecular adaptation. Mol. Biol. Evol. 15, 355–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed evolution. Nature Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  Google Scholar 

  26. Peisajovich, S. G. & Tawfik, D. S. Protein engineers turned evolutionists. Nature Meth 4, 991–994 (2007).

    Article  CAS  Google Scholar 

  27. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. A. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011). A high-throughput experimental evolution study is presented that directly characterizes the distribution of fitness effects of a very large number of possible mutations in heat shock protein 90 ( HSP90).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama, S., Yang, H. & Starmer, W. T. Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics 179, 2037–2043 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harms, M. J. & Thornton, J. W. Analyzing protein structure and function using ancestral gene reconstruction. Curr. Opin. Struct. Biol. 20, 360–366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brustad, E. M. & Arnold, F. H. Optimizing non-natural protein function with directed evolution. Curr. Opin. Chem. Biol. 15, 201–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Storz, J. F. et al. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl Acad. Sci. USA 106, 14450–14455 (2009). This multifaceted study links ecological context and population-level variation in haemoglobin allele frequencies to the experimentally measured oxygen affinity of those alleles.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yokoyama, S., Tada, T., Zhang, H. & Britt, L. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc. Natl Acad. Sci. USA 105, 13480–13485 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Da Silva, J., Coetzer, M., Nedellec, R., Pastore, C. & Mosier, D. E. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region. Genetics 185, 293–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lunzer, M., Golding, G. B. & Dean, A. M. Pervasive cryptic epistasis in molecular evolution. PLoS Genet. 6, e1001162 (2010). This elegant experiment demonstrates that functionally equivalent, orthologous proteins can have different tolerances for identical mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller, S. P., Lunzer, M. & Dean, A. M. Direct demonstration of an adaptive constraint. Science 314, 458–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Ortlund, E. A., Bridgham, J. T., Redinbo, M. R. & Thornton, J. W. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317, 1544–1548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461, 515–519 (2009). References 36 and 37 describe the first experimental identification of permissive and restrictive mutations, which open and close evolutionary trajectories despite being functionally neutral themselves; this paper also reports the first X-ray crystallographic structures of reconstructed ancestral proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berkhout, B., Klaver, B. & Das, A. Forced evolution of a regulatory RNA helix in the HIV-1 genome. Nucl. Acids Res. 25, 940–947 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burch, C. L. & Chao, L. Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature 406, 625–628 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92–95 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, N., Mao, Y., Shi, Y. & Tao, S. Coevolution in RNA molecules driven by selective constraints: evidence from 5S rRNA. PLoS ONE 7, e44376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldstein, R. A. The structure of protein evolution and the evolution of protein structure. Curr. Opin. Struct. Biol. 18, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Zeldovich, K. B. & Shakhnovich, E. I. Understanding protein evolution: from protein physics to Darwinian selection. Annu. Rev. Phys. Chem. 59, 105–127 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Wright, S. in Proceedings of the Sixth International Congress of Genetics 356–366 (1932).

    Google Scholar 

  45. Dobzhansky, T. Genetics and the Origin of Species (Columbia Univ. Press, 1937).

    Google Scholar 

  46. Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564 (1970).

    Article  CAS  PubMed  Google Scholar 

  47. Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. McGhee, G. R. The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  49. Carneiro, M. & Hartl, D. L. Colloquium paper: adaptive landscapes and protein evolution. Proc. Natl Acad. Sci. USA 107, 1747–1751 (2009).

    Article  PubMed  Google Scholar 

  50. Fowler, D. M. et al. High-resolution mapping of protein sequence-function relationships. Nature Meth 7, 741–746 (2010).

    Article  CAS  Google Scholar 

  51. Harms, M. J. et al. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1303930110 (2013). This paper presents an evolutionary biochemical study that uses ancestral reconstruction to identify two historical substitutions that cause a massive historical shift in binding specificity in the steroid receptors. It then follows up with detailed biophysical investigations of the mechanism of the transition.

  52. Gruebele, M. Downhill protein folding: evolution meets physics. Comp. Rend. Biol. 328, 701–712 (2005).

    Article  CAS  Google Scholar 

  53. Rose, G. D., Fleming, P. J., Banavar, J. R. & Maritan, A. A backbone-based theory of protein folding. Proc. Natl Acad. Sci. USA 103, 16623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geiler-Samerotte, K. A. et al. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc. Natl Acad. Sci. USA 108, 680–685 (2011).

    Article  PubMed  Google Scholar 

  56. Serohijos, A. W. R., Rimas, Z. & Shakhnovich, E. I. Protein biophysics explains why highly abundant proteins evolve slowly. Cell Rep. 2, 249–256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hughes, A. L. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99, 364–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nature Rev. Genet. 12, 767–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Lewontin, R. C. Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

    Google Scholar 

  60. Eyre-Walker, A. Changing effective population size and the McDonald-Kreitman test. Genetics 162, 2017–2024 (2002).

    PubMed  PubMed Central  Google Scholar 

  61. Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Timpson, N., Heron, J., Smith, G. D. & Enard, W. Comment on papers by Evans et al. and Mekel-Bobrov et al. on evidence for positive selection of MCPH1 and ASPM. Science 317, 1036–1036 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Zhuang, H., Chien, M.-S. & Matsunami, H. Dynamic functional evolution of an odorant receptor for sex-steroid-derived odors in primates. Proc. Natl Acad. Sci. USA 106, 21247–21251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hopkins, R., Levin, D. A. & Rausher, M. D. Molecular signatures of selection on reproductive character displacement of flower color in Phlox drummondii. Evolution 66, 469–485 (2012).

    Article  PubMed  Google Scholar 

  65. Pace, C. N. The stability of globular proteins. Crit. Rev. Biochem. 3, 1–43 (1975).

    Article  CAS  Google Scholar 

  66. Fersht, A. R. & Serrano, L. Principles of protein stability derived from protein engineering experiments. Curr. Opin. Struct. Biol. 3, 75–75 (1993).

    Article  CAS  Google Scholar 

  67. Tang, K. E. S. & Dill, K. A. Native protein fluctuations: the conformational-motion temperature and the inverse correlation of protein flexibility with protein stability. J. Biomol. Struct. Dynam. 16, 397–411 (1998).

    Article  CAS  Google Scholar 

  68. Dunker, A. K. & Obradovic, Z. The protein trinity—linking function and disorder. Nature Biotech. 19, 805–806 (2001).

    Article  CAS  Google Scholar 

  69. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet. 6, 678–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Giver, L., Gershenson, A., Freskgard, P. O. & Arnold, F. H. Directed evolution of a thermostable esterase. Proc. Natl Acad. Sci. USA 95, 12809–12813 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arnold, F. H., Wintrode, P. L., Miyazaki, K. & Gershenson, A. How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26, 100–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Taverna, D. M. & Goldstein, R. A. Why are proteins marginally stable? Proteins Struct. Function Genet. 46, 105–109 (2002).

    Article  CAS  Google Scholar 

  73. Goldstein, R. A. in Computational Science — ICCS 2004 718–727 (2004).

    Book  Google Scholar 

  74. Bloom, J. D., Raval, A. & Wilke, C. O. Thermodynamics of neutral protein evolution. Genetics 175, 255–266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Godoy-Ruiz, R., Perez-Jimenez, R., Ibarra-Molero, B. & Sanchez-Ruiz, J. M. Relation between protein stability, evolution and structure, as probed by carboxylic acid mutations. J. Mol. Biol. 336, 313–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006). A directed evolution experiment is presented here that shows how increasing the stability of a protein makes it more 'evolvable' by offsetting the destabilizing effects of function-switching mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006). This is a direct demonstration in a laboratory evolution experiment that epistasis can arise directly from stability thresholds.

    Article  CAS  PubMed  Google Scholar 

  78. Couñago, R., Wilson, C. J., Peña, M. I., Wittung-Stafshede, P. & Shamoo, Y. An adaptive mutation in adenylate kinase that increases organismal fitness is linked to stability–activity trade-offs. Protein Eng. Des. Sel. 21, 19–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wilke, C. O. & Drummond, D. A. Signatures of protein biophysics in coding sequence evolution. Curr. Opin. Struct. Biol. 20, 385–389 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Godoy-Ruiz, R. et al. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. J. Mol. Biol. 362, 966–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Worth, C. L., Gong, S. & Blundell, T. L. Structural and functional constraints in the evolution of protein families. Nature Rev. Mol. Cell Biol. 10, 709–720 (2009).

    Article  CAS  Google Scholar 

  83. Schreiber, G., Buckle, A. M. & Fersht, A. R. Stability and function: two constraints in the evolution of barstar and other proteins. Structure 2, 945–951 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Zeldovich, K. B., Chen, P. & Shakhnovich, E. I. Protein stability imposes limits on organism complexity and speed of molecular evolution. Proc. Natl Acad. Sci. USA 104, 16152–16157 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (W. W. Norton & Company, 1990).

    Google Scholar 

  86. Losos, J. B., Jackman, T. R., Larson, A., Queiroz, K. de & Rodriguez-Schettino, L. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rokas, A. & Carroll, S. B. Frequent and widespread parallel evolution of protein sequences. Mol. Biol. Evol. 25, 1943–1953 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. McCracken, K. G. et al. Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl. Mol. Ecol. 18, 3992–4005 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Pelz, H.-J. et al. The genetic basis of resistance to anticoagulants in rodents. Genetics 170, 1839–1847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Menéndez-Arias, L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res. 85, 210–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, R. E. et al. Chloroquine transport via the malaria parasite's chloroquine resistance transporter. Science 325, 1680–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Powles, S. B. & Yu, Q. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61, 317–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Lozovsky, E. R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl Acad. Sci. USA 106, 12025–12030 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brown, K. M. et al. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol. Biol. Evol. 27, 2682–2690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Costanzo, M. S., Brown, K. M. & Hartl, D. L. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum. PLoS ONE 6, e19636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Counago, R., Chen, S. & Shamoo, Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol. Cell 22, 441–449 (2006). This is a laboratory demonstration of the capacity of biophysical constraints to cause the parallel accumulation of identical mutations in independent lineages.

    Article  CAS  PubMed  Google Scholar 

  99. Miller, C. et al. Experimental evolution of adenylate kinase reveals contrasting strategies toward protein thermostability. Biophys. J. 99, 887–896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Davis, B. H., Poon, A. F. Y. & Whitlock, M. C. Compensatory mutations are repeatable and clustered within proteins. Proc. R. Soc. B 276, 1823–1827 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Summers, R. L., Nash, M. N. & Martin, R. E. Know your enemy: understanding the role of PfCRT in drug resistance could lead to new antimalarial tactics. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-011-0906-0 (2012).

  102. Field, S. F. & Matz, M. V. Retracing evolution of red fluorescence in GFP-like proteins from faviina corals. Mol. Biol. Evol. 27, 225–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Tokuriki, N. et al. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nature Commun. 3, 1257 (2012).

    Article  CAS  Google Scholar 

  104. Nijhuis, M. et al. Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS 13, 2349–2359 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Maisnier-Patin, S. & Andersson, D. I. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res. Microbiol. 155, 360–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Alexander, P. A., He, Y., Chen, Y., Orban, J. & Bryan, P. N. A minimal sequence code for switching protein structure and function. Proc. Natl Acad. Sci. USA 106, 21149–21154 (2009). This is an amazing demonstration of epistasis in protein folding, in which a mutation that is merely destabilizing in some genetic backgrounds drives a transition to an entirely different fold in another background.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lynch, V. J., May, G. & Wagner, G. P. Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 480, 383–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Green, S. M. & Shortle, D. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochemistry 32, 10131–10139 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. LiCata, V. J. & Ackers, G. K. Long-range, small magnitude nonadditivity of mutational effects in proteins. Biochemistry 34, 3133–3139 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. O'Maille, P. E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nature Chem. Biol. 4, 617–623 (2008).

    Article  CAS  Google Scholar 

  111. Süel, G. M., Lockless, S. W., Wall, M. A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nature Struct. Mol. Biol. 10, 59–69 (2002).

    Article  CAS  Google Scholar 

  112. Lee, J. et al. Surface sites for engineering allosteric control in proteins. Science 322, 438–442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Poelwijk, F. J., de Vos, M. G. J. & Tans, S. J. Tradeoffs and optimality in the evolution of gene regulation. Cell 146, 462–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Bloom, J. D., Gong, L. I. & Baltimore, D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328, 1272–1275 (2010). This analysis of historical viral evolution data unequivocally identifies permissive mutations that preceded function-switching mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tungtur, S., Meinhardt, S. & Swint-Kruse, L. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. J. Mol. Biol. 395, 785–802 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bloom, J. D., Romero, P., Lu, Z. & Arnold, F. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol. Direct 2, 17 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nature Genet. 37, 73–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Thomas, V. L., McReynolds, A. C. & Shoichet, B. K. Structural bases for stability-function tradeoffs in antibiotic resistance. J. Mol. Biol. 396, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Bloom, J. D., Arnold, F. H. & Wilke, C. O. Breaking proteins with mutations: threads and thresholds in evolution. Mol. Syst. Biol. 3, 76 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. W. A. Relationship between protein stability and protein function. Proc. Natl Acad. Sci. USA 92, 452–456 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beadle, B. M. & Shoichet, B. K. Structural bases of stability-function tradeoffs in enzymes. J. Mol. Biol. 321, 285–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Peña, M. I., Davlieva, M., Bennett, M. R., Olson, J. S. & Shamoo, Y. Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection. Mol. Syst. Biol. 6, 387 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Russell, R. J. et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Ives, J. A. L. et al. The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo. Antiviral Res. 55, 307–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Gong, L. I., Suchard, M. A. & Bloom, J. D. Stability-mediated epistasis constrains the evolution of an influenza protein. eLife 2, e00631 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shortle, D. & Lin, B. Genetic analysis of staphylococcal nuclease: identification of three intragenic 'global' suppressors of nuclease-minus mutations. Genetics 110, 539–555 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Shortle, D. & Meeker, A. K. Mutant forms of staphylococcal nuclease with altered patterns of guanidine hydrochloride and urea denaturation. Proteins 1, 81–89 (1986).

    Article  CAS  PubMed  Google Scholar 

  129. Wagner, A. Neutralism and selectionism: a network-based reconciliation. Nature Rev. Genet. 9, 965–974 (2008). This is a thoughtful Review of how the vast neutral networks accessible to evolving biological molecules shape the mode and tempo of molecular evolution.

    Article  CAS  PubMed  Google Scholar 

  130. Grutter, M. G., Weaver, L. H. & Matthews, B. W. Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? Nature 303, 828–831 (1983).

    Article  CAS  PubMed  Google Scholar 

  131. Neidhart, D. J., Kenyon, G. L., Gerlt, J. A. & Petsko, G. A. Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347, 692–694 (1990).

    Article  CAS  PubMed  Google Scholar 

  132. Nagano, N., Orengo, C. A. & Thornton, J. M. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J. Mol. Biol. 321, 741–765 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Tie, J.-K., Jin, D.-Y. & Stafford, D. W. Mycobacterium tuberculosis vitamin K epoxide reductase homologue supports vitamin K–dependent carboxylation in mammalian cells. Antioxid. Redox Signal. 16, 329–338 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Loeb, D. D. et al. Complete mutagenesis of the HIV-1 protease. Nature 340, 397–400 (1989).

    Article  CAS  PubMed  Google Scholar 

  135. Shortle, D., Stites, W. E. & Meeker, A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29, 8033–8041 (1990).

    Article  CAS  PubMed  Google Scholar 

  136. Sun, D. et al. Cumulative site-directed charge-change replacements in bacteriophage T4 lysozyme suggest that long-range electrostatic interactions contribute little to protein stability. J. Mol. Biol. 221, 873–887 (1991).

    Article  CAS  Google Scholar 

  137. Meeker, A. K., Garcia-Moreno, B. & Shortle, D. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease. Biochemistry 35, 6443–6449 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Guo, H. H., Choe, J. & Loeb, L. A. Protein tolerance to random amino acid change. Proc. Natl Acad. Sci. USA 101, 9205–9210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, W. et al. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463, 507–512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Dutton, R. J. et al. Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc. Natl Acad. Sci. USA 107, 297–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Ariyoshi, K. et al. Patterns of point mutations associated with antiretroviral drug treatment failure in CRF01_AE (subtype E) infection differ from subtype B infection. J. Acquir. Immune Def. Syndr. 33, 335–342 (2003).

    Google Scholar 

  142. Bandaranayake, R. M. et al. The effect of clade-specific sequence polymorphisms on HIV-1 protease activity and inhibitor resistance pathways. J. Virol. 84, 9995–10003 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jessen, T. H., Weber, R. E., Fermi, G., Tame, J. & Braunitzer, G. Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. Proc. Natl Acad. Sci. USA 88, 6519–6522 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402, 47–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  145. Kollmann, M., Løvdok, L., Bartholomé, K., Timmer, J. & Sourjik, V. Design principles of a bacterial signalling network. Nature 438, 504–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Brzezinski, P. & Ädelroth, P. Design principles of proton-pumping haem-copper oxidases. Curr. Opin. Struct. Biol. 16, 465–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  CAS  PubMed  Google Scholar 

  148. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A. Single amino acid. mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Manceau, M., Domingues, V. S., Mallarino, R. & Hoekstra, H. E. The developmental role of agouti in color pattern evolution. Science 331, 1062–1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Hopkins, R. & Rausher, M. D. Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii. Nature 469, 411–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Hoffmann, F. G., Storz, J. F., Gorr, T. A. & Opazo, J. C. Lineage-specific patterns of functional diversification in the α- and β-globin gene families of tetrapod vertebrates. Mol. Biol. Evol. 27, 1126–1138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Thornton, J. W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nature Rev. Genet. 5, 366–375 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dickinson, B. C., Leconte, A. M., Allen, B., Esvelt, K. M. & Liu, D. R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl Acad. Sci. USA 110, 9007–9012 (2013). An ultra-high-throughput directed evolution study is discussed here that reveals how epistasis can lead to stochastic and irreproducible outcomes in protein evolution.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Hietpas, R., Roscoe, B., Jiang, L. & Bolon, D. N. A. Fitness analyses of all possible point mutations for regions of genes in yeast. Nature Protoc. 7, 1382–1396 (2012).

    Article  CAS  Google Scholar 

  159. McLaughlin, R. N., Poelwijk, F. J., Raman, A., Gosal, W. S. & Ranganathan, R. The spatial architecture of protein function and adaptation. Nature http://dx.doi.org/10.1038/nature11500 (2012).

  160. Roscoe, B. P., Thayer, K. M., Zeldovich, K. B., Fushman, D. & Bolon, D. N. A. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. J. Mol. Biol. 425, 1363–1377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Babajide, A., Hofacker, I. L., Sippl, M. J. & Stadler, P. F. Neutral networks in protein space: a computational study based on knowledge-based potentials of mean force. Fold Des. 2, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Broser, M. et al. Structural basis of cyanobacterial photosystem II inhibition by the herbicide terbutryn. J. Biol. Chem. 286, 15964–15972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health Grants R01-GM081592, R01-GM104397 and F32-GM090650, as well as by the Howard Hughes Medical Institute. The authors thank A. Drummond, T. Dean and members of the Thornton laboratory for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Thornton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Biochemistry

The study of the chemical and physical properties of biological molecules and how those properties determine the functions of each molecule. Defined this way, biochemistry also includes structural biology, biophysics and some areas of molecular and computational biology.

Molecular clock

The hypothesis that, over long timescales, mutations accumulate at a characteristic rate for each gene. For genes with clock-like evolution, the proportion of sequence differences between related genes can be used to estimate the time since they diverged.

Ancestral protein reconstruction

The use of statistical phylogenetic methods to infer ancestral protein sequences from large alignments of present-day proteins, followed by synthesis, expression and experimental characterization of the 'resurrected' ancestral proteins.

Homology

Similarity due to descent from a shared common ancestral form.

Protein stability

A thermodynamic description of the difference in free energy between the folded and unfolded states of a protein.

Parallel evolution

The repeated acquisition of the same phenotype on different lineages under similar forms of selection.

Epistasis

Dependency of the phenotypic effects of a mutation on the genetic state at other sites in the same or other loci.

Sequence signatures

Patterns in groups of protein or DNA sequences — such as the relative frequency of synonymous and nonsynonymous mutations or the degree of genetic diversity within and between populations — that are interpreted as reflecting specific evolutionary processes.

Directed evolution

A laboratory procedure for identifying genotypes with a desired property by iteratively introducing random mutations into a protein and using chemical or biological means to select for variants in which the property is improved.

Mutation–selection balance

Equilibrium between the accumulation of variation in a population due to ongoing mutation and the removal of variation due to purifying selection.

Genetic drift

Changes in the frequency across generations of genotypes in populations due to stochastic factors.

Neutral network

A set of protein sequences that are connected to each other by single amino acid replacements and have similar enough functions and physical properties that selection does not distinguish among them.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harms, M., Thornton, J. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet 14, 559–571 (2013). https://doi.org/10.1038/nrg3540

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing