Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genotype to phenotype: lessons from model organisms for human genetics

Key Points

  • Forward- and reverse-genetic screens in model organisms have revealed that phenotypic traits are typically influenced by the activities of hundreds or thousands of genes and that, conversely, individual genes typically influence many different traits. 'Phenologue' relationships allow these gene–trait connections to be systematically transferred between species.

  • The results of these systematic screens can be used to evaluate and to refine genome-scale methods for linking genes to phenotypes such as integrated 'functional' networks.

  • One reason why the outcome of a particular mutation can vary across individuals is epistasis or genetic interactions between mutations. The systematic mapping of genetic interaction networks in model organisms is providing basic insights into how mutations interact and is leading to the development of computational methods to predict epistasis.

  • The environment can influence the outcome of mutations not only in specific ways, but also in promiscuous ways, such as by altering the activity of molecular chaperones.

  • Whole-genome reverse genetics is the challenge of predicting how individuals vary from their complete genome sequences. Making and experimentally evaluating these predictions in model organisms will lead to the development of improved computational methods for predicting phenotypic variation from genetic variation.

  • In model organisms, mutations often have variable outcomes even in the absence of genetic variation and in a controlled environment. One cause of this is inter-individual variation in the expression or activity of genetic interaction partners, which is termed epigenetic epistasis and occurs, for example, during early embryonic development.

  • Transgenerational genetic and environmental influences can also underlie phenotypic variation. These influences are now being dissected at a molecular level in model organisms.

  • Genetic predictions have both practical and fundamental limitations. More effort should be focused on building clinically useful personalized predictions that incorporate genetic markers and intermediate biomarkers that capture both genetic and non-genetic sources of variance.

Abstract

To what extent can variation in phenotypic traits such as disease risk be accurately predicted in individuals? In this Review, I highlight recent studies in model organisms that are relevant both to the challenge of accurately predicting phenotypic variation from individual genome sequences ('whole-genome reverse genetics') and for understanding why, in many cases, this may be impossible. These studies argue that only by combining genetic knowledge with in vivo measurements of biological states will it be possible to make accurate genetic predictions for individual humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenologues: mapping phenotypes between organisms.
Figure 2: Guilt-by-association: integrating data into genome-scale networks that can be used to link genes to phenotypes.
Figure 3: Systematic analysis of genetic interactions (epistasis): disease specifiers and disease modifiers.
Figure 4: Whole-genome reverse genetics: making and evaluating phenotypic predictions from the genome sequences of individuals.
Figure 5: Epistasis with only a single mutation: inter-individual variation in the expression of genetic interaction partners contributes to incomplete penetrance.
Figure 6: Sources of phenotypic variance in individuals.

Similar content being viewed by others

References

  1. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burga, A. & Lehner, B. Beyond genotype to phenotype: why the phenotype of an individual cannot always be predicted from their genome sequence and the environment that they experience. FEBS J. 279, 3765–3775 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Clayton, D. G. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 5, e1000540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts, N. J. et al. The predictive capacity of personal genome sequencing. Sci. Transl. Med. 4, 133ra58 (2012). This study provides estimates of the maximum ability of whole-genome sequencing to predict clinically useful risk information for 24 diseases on the basis of analyses of monzygotic twin pairs.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, D. U. et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nature Biotech. 28, 617–623 (2010).

    Article  CAS  Google Scholar 

  8. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003). This is the first genome-wide analysis of the effects of gene function inhibition in an animal.

    CAS  PubMed  Google Scholar 

  10. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hobert, O. The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 184, 317–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehrenreich, I. M. et al. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464, 1039–1042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ehrenreich, I. M. et al. Genetic architecture of highly complex chemical resistance traits across four yeast strains. PLoS Genet. 8, e1002570 (2012). This paper describes the detection of more than 800 loci that influence resistance to 13 chemicals in all 6 pairwise crosses of four yeast strains, using extremely large pools of segregants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liti, G. & Louis, E. J. Advances in quantitative trait analysis in yeast. PLoS Genet. 8, e1002912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parts, L. et al. Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res. 21, 1131–1138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Swinnen, S. et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 22, 975–984 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dudley, A. M., Janse, D. M., Tanay, A., Shamir, R. & Church, G. M. A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. 1, 2005.0001 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brown, J. A. et al. Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol. Syst. Biol. 2, 2006.0001 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, S. Physiological and evolutionary theories of dominance. Am. Nat. 68, 24–53 (1934).

    Article  Google Scholar 

  21. McGary, K. L. et al. Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc. Natl Acad. Sci. USA 107, 6544–6549 (2010). This paper describes the systematic identification of 'phenologues', which are phenotypes in different species that are linked because they are affected by overlapping sets of genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cha, H. J. et al. Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. PLoS Biol. 10, e1001379 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fraser, A. G. & Marcotte, E. M. A probabilistic view of gene function. Nature Genet. 36, 559–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lehner, B. & Lee, I. Network-guided genetic screening: building, testing and using gene networks to predict gene function. Brief. Funct. Genom. Proteom. 7, 217–227 (2008).

    Article  CAS  Google Scholar 

  25. Lee, I., Date, S. V., Adai, A. T. & Marcotte, E. M. A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Troyanskaya, O. G., Dolinski, K., Owen, A. B., Altman, R. B. & Botstein, D. A. Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl Acad. Sci. USA 100, 8348–8353 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rhodes, D. R. et al. Probabilistic model of the human protein–protein interaction network. Nature Biotech. 23, 951–959 (2005).

    Article  CAS  Google Scholar 

  28. McGary, K. L., Lee, I. & Marcotte, E. M. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biol. 8, R258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, I. et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genet. 40, 181–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, I., Li, Z. & Marcotte, E. M. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS ONE 2, e988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Z. et al. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 7, e1000213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myers, C. L. et al. Discovery of biological networks from diverse functional genomic data. Genome Biol. 6, R114 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chikina, M. D., Huttenhower, C., Murphy, C. T. & Troyanskaya, O. G. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput. Biol. 5, e1000417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pena-Castillo, L. et al. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence. Genome Biol. 9 (Suppl. 1), S2 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, I., Ambaru, B., Thakkar, P., Marcotte, E. M. & Rhee, S. Y. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotech. 28, 149–156 (2010).

    Article  CAS  Google Scholar 

  36. Lee, I. et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc. Natl Acad. Sci. USA 108, 18548–18553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lage, K. et al. A human phenome–interactome network of protein complexes implicated in genetic disorders. Nature Biotech. 25, 309–316 (2007).

    Article  CAS  Google Scholar 

  38. Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Res. 21, 1109–1121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gillis, J. & Pavlidis, P. The impact of multifunctional genes on “guilt by association” analysis. PLoS ONE 6, e17258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sopko, R. et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21, 319–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moriya, H., Shimizu-Yoshida, Y. & Kitano, H. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet. 2, e111 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  45. Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nature Rev. Genet. 10, 184–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Francesconi, M., Jelier, R. & Lehner, B. Integrated genome-scale prediction of detrimental mutations in transcription networks. PLoS Genet. 7, e1002077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gertz, J., Siggia, E. D. & Cohen, B. A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Sharon, E. et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotech. 30, 521–530 (2012).

    Article  CAS  Google Scholar 

  49. Phillips, P. C. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Genet. 9, 855–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27, 323–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lehner, B. Modelling genotype–phenotype relationships and human disease with genetic interaction networks. J. Exp. Biol. 210, 1559–1566 (2007).

    Article  PubMed  Google Scholar 

  53. Drees, B. L. et al. Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol. 6, R38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillips, P. C. The language of gene interaction. Genetics 149, 1167–1171 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010). The most comprehensive analysis of epistatic interactions in any organism; the effects on growth are quantified for more than 5 million pairs of mutations in yeast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell 46, 691–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Byrne, A. B. et al. A global analysis of genetic interactions in Caenorhabditis elegans. J. Biol. 6, 8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nature Methods 8, 341–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause natural variation in yeast. Science 323, 498–501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lorenz, K. & Cohen, B. A. Small- and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency. Genetics 192, 1123–1132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brem, R. B. & Kruglyak, L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc. Natl Acad. Sci. USA 102, 1572–1577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brem, R. B., Storey, J. D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703 (2005). This paper highlights the importance of epistatic interactions between natural variants that influence gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328, 469 (2010). By constructing a gene deletion collection for a second laboratory strain of yeast, the authors identify >40 genes that are essential in this strain but not in a previously analysed strain. In most cases, this 'conditional' essentiality in one strain is due to variation in four or more different modifier loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koch, E. N. et al. Conserved rules govern genetic interaction degree across species. Genome Biol. 13, R57 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wong, S. L. et al. Combining biological networks to predict genetic interactions. Proc. Natl Acad. Sci. USA 101, 15682–15687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, I. et al. Predicting genetic modifier loci using functional gene networks. Genome Res. 20, 1143–1153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kelley, R. & Ideker, T. Systematic interpretation of genetic interactions using protein networks. Nature Biotech. 23, 561–566 (2005).

    Article  CAS  Google Scholar 

  71. Ulitsky, I. & Shamir, R. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks. Mol. Syst. Biol. 3, 104 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bellay, J. et al. Putting genetic interactions in context through a global modular decomposition. Genome Res. 21, 1375–1387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hess, D. C. et al. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet. 5, e1000407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gerke, J., Lorenz, K., Ramnarine, S. & Cohen, B. Gene–environment interactions at nucleotide resolution. PLoS Genet. 6, e1001144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. St Onge, R. P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nature Genet. 39, 199–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Bandyopadhyay, S., Kelley, R., Krogan, N. J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harrison, R., Papp, B., Pal, C., Oliver, S. G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl Acad. Sci. USA 104, 2307–2312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dixon, S. J. et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl Acad. Sci. USA 105, 16653–16658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tischler, J., Lehner, B. & Fraser, A. G. Evolutionary plasticity of genetic interaction networks. Nature Genet. 40, 390–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lindquist, S. Protein folding sculpting evolutionary change. Cold Spring Harb. Symp. Quant. Biol. 74, 103–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Casanueva, M. O., Burga, A. & Lehner, B. Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans. Science 335, 82–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Jelier, R., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Predicting phenotypic variation in yeast from individual genome sequences. Nature Genet. 43, 1270–1274 (2011). This paper reports the application of whole-genome reverse genetics: phenotypic predictions are made from the complete genome sequences of yeast strains and the accuracy of these predictions are evaluated by experimentation. Predictions are generally good, even for genetically complex traits, when the genes linked to the trait are evaluated as reliable using a gene network.

    Article  CAS  PubMed  Google Scholar 

  87. Liti, G. et al. Population genomics of domestic and wild yeasts. Nature 458, 337–341 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baker, M. Functional genomics: the changes that count. Nature 482, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim. 24, 71–77 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Eldar, A. et al. Partial penetrance facilitates developmental evolution in bacteria. Nature 460, 510–514 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burga, A., Casanueva, M. O. & Lehner, B. Predicting mutation outcome from early stochastic variation in genetic interaction partners. Nature 480, 250–253 (2011). Whether an inherited mutation affects genetically identical individuals or not is predicted by inter-individual variation in the expression of a specific and a promiscuous genetic interaction partner during early embryonic development.

    Article  CAS  PubMed  Google Scholar 

  93. Hales, C. N. & Barker, D. J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nature Med. 17, 448–453 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Seidel, H. S., Rockman, M. V. & Kruglyak, L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319, 589–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xing, Y. et al. Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genet. 3, 1598–1606 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Frazier, H. N. & Roth, M. B. Adaptive sugar provisioning controls survival of C. elegans embryos in adverse environments. Curr. Biol. 19, 859–863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ng, S. F. et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467, 963–966 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Carone, B. R. et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).

    Article  PubMed  Google Scholar 

  101. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nature Rev. Genet. 12, 565–575 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Ashe, A. et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012). References 103–105 establish that piRNA-triggered gene silencing is stably transmitted across many generations in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Greer, E. L. et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, C., van Dyk, D., Li, Y., Andrews, B. & Rao, H. A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2. BMC Biol. 7, 75 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burga, A. & Lehner, B. Predicting phenotypes from genotypes, phenotypes and a combination of the two. Curr. Opin. Biotech. (in the press).

Download references

Acknowledgements

Our research is funded by the European Research Council (ERC), MINECO Plan Nacional grants BFU2008-00365 and BFU2011-26206, ERASysBio+ ERANET project EUI2009-04059 GRAPPLE, the European Molecular Biology Organization (EMBO) Young Investigator Program, EU Framework 7 project 277899 4DCellFate and the EMBL/CRG Systems Biology Program.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

FURTHER INFORMATION

Author's homepage

Glossary

Modules

Groups of genes or proteins in a network that have strong interactions among themselves and that carry out particular functions largely independently of other genes or proteins. Mutations in genes from a module often have similar phenotypic consequences.

Orthologous

A gene in one species is orthologous to a gene in another species if they are derived from a common ancestor.

Disordered regions

Regions of proteins that are intrinsically unfolded; that is, they are without a well-defined tertiary structure under physiological conditions.

Expression quantitative trait loci

(eQTLs). Regions of the genome containing genetic polymorphisms that alter how genes are regulated, influencing how much RNA or protein they produce.

Major- and minor-effect loci

Regions of the genome containing genetic polymorphisms that account for a large or small proportion of variance in a particular phenotype, respectively.

Isogenic

Lacking genetic variation. Some laboratory animals, such as Caenorhabditis elegans and mice, are inbred and so siblings have identical genome sequences except for de novo mutations arising in each generation.

Haploinsufficiency

A gene is haploinsufficient if removal of one of the two copies in a diploid organism has a detectable effect on fitness or a phenotype.

Dominance

The extent to which one allele of a gene exerts its effects irrespective of a second allele in diploid organisms. Complete dominance implies that the heterozgygote has a phenotype that is indistinguishable from that of the dominant homozygote. Overdominance implies that the phenotype of the heterozygote lies outside the range of both homozygote parents.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehner, B. Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet 14, 168–178 (2013). https://doi.org/10.1038/nrg3404

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3404

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research