Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The nature of confounding in genome-wide association studies

Abstract

The authors argue that population structure per se is not a problem in genome-wide association studies — the true sources are the environment and the genetic background, and the latter is greatly underappreciated. They conclude that mixed models effectively address this issue.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lander, E. S. & Schork, N. J. Science 265, 2037–2048 (1994).

    CAS  PubMed  Google Scholar 

  2. Devlin, B. & Roeder, K. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Pritchard, J. K. et al. Am. J. Hum. Genet. 67, 170–181 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Price, A. L. et al. Nature Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).

    Google Scholar 

  6. Fisher, R. A. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  7. Haseman, J. K. & Elston, R. C. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  8. Henderson, C. R. Applications of Linear Models in Animal Breeding (Univ. Guelph Press, 1984).

    Google Scholar 

  9. Yu, J. et al. Nature Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, K. et al. PLoS Genet. 3, e4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kang, H. M. et al. Nature Genet. 42, 348–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Price, A. L. et al. Nature Rev. Genet. 11, 459–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, J. et al. Nature Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Segura, V. et al. Nature Genet. 44, 825–830 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Zaitlen, N. & Kraft, P. Hum. Genet. 131, 1655–1664 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zuk, O. et al. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atwell, S. et al. Nature 465, 627–631 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Platt, A., Vilhjálmsson, B. J. & Nordborg, M. Genetics 186, 1045–1052 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dickson, S. P. et al. PLoS Biol. 8, e1000294 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang, X. et al. Nature Genet. 42, 961–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Listgarten, J. et al. Nature Methods 9, 525–526 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou, X., Carbonetto, P. & Stephens, M. Preprint at arXiv [online], (2012).

  23. Deary, I. J. et al. Nature 482, 212–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Korte, A. et al. Nature Genet. 44, 1066–1071 (2012).Article

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Buckler, D. Balding, P. Donnelly, A. Hancock, I. Hellmann, M. Horton, A. Korte, Q. Long, D. Meng, N. Patterson, A. Platt, A. Price, V. Segura, O. Stegle and Q. Zhang for discussions and/or comments on the manuscript. We are especially grateful to A. Price for sharing the observation that mixed models can explain a substantial fraction of the phenotypic covariance in randomly generated individuals. Remaining errors or omissions are our responsibility. This work was supported by US National Institutes of Health grant HG002790, European Research Council grant AdG-268962 and the Gregor Mendel Institute. We apologize to authors whose work could not be cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bjarni J. Vilhjálmsson or Magnus Nordborg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bjarni J. Vilhjálmsson's homepage

Magnus Nordborg's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilhjálmsson, B., Nordborg, M. The nature of confounding in genome-wide association studies. Nat Rev Genet 14, 1–2 (2013). https://doi.org/10.1038/nrg3382

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3382

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research