Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

De novo mutations in human genetic disease

Key Points

  • Traditional genetic approaches such as linkage analysis and genome-wide association studies are focused on inherited genetic variation. Unbiased whole-genome and whole-exome sequencing now, for the first time, allows us to study the role of de novo mutations in health and disease.

  • Each generation (per individual), approximately 74 de novo single-nucleotide variants (SNVs), three novel indels (small insertions or deletions) and 0.02 larger copy number variants (CNVs) arise in our genome. Risk factors that increase this de novo mutation rate include advanced paternal age at conception, a local genomic architecture that is full of segmental duplications, and genetic variation that is yet to be discovered.

  • Exome sequencing has recently revealed disruptive de novo mutations in one or two genes as the major cause of many rare genetic syndromes, such as Kabuki, Schinzel–Giedion, Bohring–Opitz, Baraitser–Winter and Coffin–Siris syndromes.

  • De novo mutations can also play a major part in common diseases such as intellectual disability, autism and schizophrenia, which are all associated with reduced fitness and have a large mutational target (that is, a large number of genes or non-genic elements that cause the disease when mutated).

  • Predicting the pathogenicity of rare de novo missense mutations in novel genes is particularly challenging. However, it is greatly facilitated by the identification of recurrent mutations in patients with similar phenotypes, allowing detailed genotype–phenotype studies to be carried out. The identification of these mutations requires international collaboration, as the recurrent mutations will be rare for genetically heterogeneous diseases.

Abstract

New mutations have long been known to cause genetic disease, but their true contribution to the disease burden can only now be determined using family-based whole-genome or whole-exome sequencing approaches. In this Review we discuss recent findings suggesting that de novo mutations play a prominent part in rare and common forms of neurodevelopmental diseases, including intellectual disability, autism and schizophrenia. De novo mutations provide a mechanism by which early-onset reproductively lethal diseases remain frequent in the population. These mutations, although individually rare, may capture a significant part of the heritability for complex genetic diseases that is not detectable by genome-wide association studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: De novo mutations and their impact on genetic disease.
Figure 2: Information used to establish the pathogenicity of de novo mutations.

Similar content being viewed by others

References

  1. Raychaudhuri, S. Mapping rare and common causal alleles for complex human diseases. Cell 147, 57–69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nature Genet. 43, 712–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Vogel, F. & Rathenberg, R. Spontaneous mutation in man. Adv. Hum. Genet. 5, 223–318 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Kondrashov, A. S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21, 12–27 (2002). These authors accurately estimate the de novo mutation rate of SNVs long before the availability of whole-genome and whole-exome sequencing technologies.

    Article  CAS  Google Scholar 

  5. Crow, J. F. The origins, patterns and implications of human spontaneous mutation. Nature Rev. Genet. 1, 40–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hoischen, A. et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nature Genet. 42, 483–485 (2010). The first demonstration of exome sequencing being used to identify de novo mutations in a rare clinical syndrome.

    Article  CAS  PubMed  Google Scholar 

  8. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genet. 42, 790–793 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Hoischen, A. et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nature Genet. 43, 729–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Lindhurst, M. J. et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N. Engl. J. Med. 365, 611–619 (2011). The first application of exome sequencing to discover somatic de novo mutations as the cause of a genetic disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vissers, L. E. L. M. et al. A de novo paradigm for mental retardation. Nature Genet. 42, 1109–1112 (2010). The first study to use exome sequencing of patient–parent trios to identify de novo mutations in a complex trait that is characterized by extreme genetic heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  12. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012). The largest-scale exome sequencing study carried out to date. The authors study 343 quartets, each consisting of a patient with an ASD, an unaffected sibling and their unaffected parents, to evaluate the frequency and type of de novo mutations in affected and unaffected siblings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Girard, S. L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nature Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nature Genet. 43, 864–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. McClellan, J. & King, M. C. Genomic analysis of mental illness: a changing landscape. JAMA 303, 2523–2524 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, L., Wendl, M. C., Koboldt, D. C. & Mardis, E. R. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum. Mol. Genet. 19, R188–R196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnheim, N. & Calabrese, P. Understanding what determines the frequency and pattern of human germline mutations. Nature Rev. Genet. 10, 478–488 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nature Rev. Genet. 12, 756–766 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Loewe, L. & Hill, W. G. The population genetics of mutations: good, bad and indifferent. Phil. Trans. R. Soc. B. 365, 1153–1167 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haldane, J. B. S. The rate of spontaneous mutation of a human gene. J. Genet. 31, 317–326 (1935).

    Article  Google Scholar 

  27. Kondrashov, A. S. & Crow, J. F. A molecular approach to estimating the human deleterious mutation rate. Hum. Mutat. 2, 229–234 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010). The first family-based whole-genome sequencing study in which all potential de novo mutations are independently validated to provide accurate de novo mutation rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Itsara, A. et al. De novo rates and selection of large copy number variation. Genome Res. 20, 1469–1481 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Allen, G. Aetiology of Down's syndrome inferred by Waardenburg in 1932. Nature 250, 436–437 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Girirajan, S., Campbell, C. D. & Eichler, E. E. Human copy number variation and complex genetic disease. Annu. Rev. Genet. 45, 203–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vissers, L. E. L. M. et al. Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bamshad, M. J., et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Rev. Genet. 12, 745–755 (2011). A valuable review that explains the experimental and analytical options for applying exome sequencing in studies of disease genes. The key challenges in using this approach are also discussed.

    Article  CAS  PubMed  Google Scholar 

  36. Gilissen, C., Hoischen, A., Brunner, H. G. & Veltman, J. A. Unlocking Mendelian disease using exome sequencing. Genome Biol. 12, 228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sirmaci, A., et al. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am. J. Hum. Genet. 89, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rivière, J. B., et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nature Genet. 44, 440–444 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Tsurusaki, Y., et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nature Genet. 44, 376–378 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Santen, G. W., et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nature Genet. 44, 379–380 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Pansuriya, T. C., et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nature Genet. 43, 1256–1261 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Vissers, L. E. L. M. et al. Whole-exome sequencing detects somatic mutations of IDH1 in metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA). Am. J. Med. Genet. A 155, 2609–2616 (2011).

    Article  CAS  Google Scholar 

  43. Limaye, N., Boon, L. M. & Vikkula, M. From germline towards somatic mutations in the pathophysiology of vascular anomalies. Hum. Mol. Genet. 18, R65–R74 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pasmooij, A. M., Pas, H. H., Bolling, M. C. & Jonkman, M. F. Revertant mosaicism in junctional epidermolysis bullosa due to multiple correcting second-site mutations in LAMB3. J. Clin. Invest. 117, 1240–1248 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frank, S. A. Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc. Natl Acad. Sci. USA 107 (Suppl. 1), 1725–1730 (2010).

    Article  CAS  Google Scholar 

  46. Carlson, C. A. et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nature Methods 9, 78–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vanneste, E. et al. Chromosome instability is common in human cleavage-stage embryos. Nature Med. 15, 577–583 (2009). A remarkable study which shows that de novo chromosomal aberrations are common in early embryogenesis. This identifies postzygotic chromosome instability as a major cause of constitutional genomic disorders.

    Article  CAS  PubMed  Google Scholar 

  48. van Echten-Arends, J. et al. Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum. Reprod. Update 17, 620–627 (2011).

    Article  PubMed  Google Scholar 

  49. Cook, E. H. Jr & Scherer, S. W. Copy-number variations associated with neuropsychiatric conditions. Nature 455, 919–923 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Vissers, L. E. L. M., de Vries, B. B. & Veltman, J. A. Genomic microarrays in mental retardation: from CNV to gene, from research to diagnosis. J. Med. Genet. 47, 289–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Koolen, D. A. et al. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum. Mutat. 30, 283–292 (2009).

    Article  PubMed  Google Scholar 

  52. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007). One of the first large-scale studies to highlight the important role of de novo CNVs in sporadic forms of ASDs, establishing de novo germline mutation as a more significant risk factor for ASDs than was previously recognized.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nature Genet. 40, 880–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Vermeesch, J. R., Balikova, I., Schrander-Stumpel, C., Fryns, J. P. & Devriendt, K. The causality of de novo copy number variants is overestimated. Eur. J. Hum. Genet. 19, 1112–1113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Girirajan, S. et al. A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature Genet. 42, 203–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Hamdan, F. F. et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N. Engl. J. Med. 360, 599–605 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gauthier, J. et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc. Natl Acad. Sci. USA 107, 7863–7868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010). These authors carry out the first systematic large-scale sequencing study to evaluate the role of de novo mutations in candidate genes for ASDs and schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hamdan, F. F. et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am. J. Hum. Genet. 88, 306–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hultman, C. M. et al. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol. Psychiatry 16, 1203–1212 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. He, Y. & Casaccia-Bonnefil, P. The Yin and Yang of YY1 in the nervous system. J. Neurochem. 106, 1493–1502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Webber, C. et al. Forging links between human mental retardation-associated CNVs and mouse gene knockout models. PLoS Genet. 5, e1000531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O'Dushlaine, C. et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol. Psychiatry 16, 286–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Erten, S. et al. DADA: degree-aware algorithms for network-based disease gene prioritization. BioData Min. 4, 19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, Y. et al. In silico gene prioritization by integrating multiple data sources. PLoS ONE 6, e21137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cooper, G. M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).

    Article  CAS  PubMed  Google Scholar 

  71. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang, N. et al. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, J. et al. Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet. Genome Res. 115, 205–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Najmabadi, H. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Vadlamudi, L. et al. Timing of de novo mutagenesis — a twin study of sodium-channel mutations. N. Engl. J. Med. 363, 1335–1340 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Aretz, S. et al. Somatic APC mosaicism: a frequent cause of familial adenomatous polyposis (FAP). Hum. Mutat. 10, 985–992 (2007).

    Article  CAS  Google Scholar 

  79. Goriely, A. et al. Germline and somatic mosaicism for FGFR2 mutation in the mother of a child with Crouzon syndrome: implications for genetic testing in “paternal age-effect” syndromes. Am. J. Med. Genet. A 152A, 2067–2073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Erickson, R. P. Somatic gene mutation and human disease other than cancer: an update. Mutat. Res. 705, 96–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Helderman-van den Enden, A. T. et al. Recurrence risk due to germ line mosaicism: Duchenne and Becker muscular dystrophy. Clin. Genet. 75, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Twigg, S. R. et al. The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males. Am. J. Hum. Genet. 78, 999–1010 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. et al. X-linked adrenoleukodystrophy: ABCD1 de novo mutations and mosaicism. Mol. Genet. Metab. 104, 160–166 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Lo, Y. M. Fetal nucleic acids in maternal plasma. Ann. NY Acad. Sci. 1137, 140–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Lo, Y. M. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Fragouli, E., Wells, D. & Delhanty, J. D. Chromosome abnormalities in the human oocyte. Cytogenet. Genome Res. 133, 107–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Goriely, A. & Wilkie, A. O. Missing heritability: paternal age effect mutations and selfish spermatogonia. Nature Rev. Genet. 11, 589 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Goriely, A. & Wilkie, A. O. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet. 90, 175–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Toriello, H. V., Meck, J. M. & Professional Practice and Guidelines Committee. Statement on guidance for genetic counseling in advanced paternal age. Genet. Med. 10, 457–460 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hehir-Kwa, J. Y. et al. De novo copy number variants associated with intellectual disability have a paternal origin and age bias. J. Med. Genet. 48, 776–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Koolen, D. A. et al. A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genet. 38, 999–1001 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Shaw-Smith, C. et al. Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genet. 38, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Koolen, D. A. et al. Clinical and molecular delineation of the 17q21.31 microdeletion syndrome. J. Med. Genet. 45, 710–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Itsara, A. et al. Resolving the breakpoints of the 17q21.31 microdeletion syndrome with next-generation sequencing. Am. J. Hum. Genet. 90, 599–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet. 37, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Baudat, F. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327, 836–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Berg, I. L. et al. Variants of the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots highly active in African populations. Proc. Natl Acad. Sci. USA 108, 12378–12383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Berg, I. L. et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nature Genet. 42, 859–863 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Tomé, S. et al. Maternal germline-specific effect of DNA ligase I on CTG/CAG instability. Hum. Mol. Genet. 20, 2131–2143 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements, Cell 146, 889–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bunyan, D. J. & Robinson, D. O. Multiple de novo mutations in the MECP2 gene. Genet. Test. 12, 373–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lam, H. Y. et al. Performance comparison of whole-genome sequencing platforms. Nature Biotech. 30, 78–82 (2011).

    Article  CAS  Google Scholar 

  104. Londin, E. R. et al. Whole-exome sequencing of DNA from peripheral blood mononuclear cells (PBMC) and EBV-transformed lymphocytes from the same donor. BMC Genomics 12, 464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hussein, S. M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Liang, Q., Conte, N., Skarnes, W. C. & Bradley, A. Extensive genomic copy number variation in embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 17453–17456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pamphlett, R., Morahan, J. M. & Yu, B. Using case-parent trios to look for rare de novo genetic variants in adult-onset neurodegenerative diseases. J. Neurosci. Methods 197, 297–301 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Joris A. Veltman is supported by personal grants from the Netherlands Organization for Health Research and Development (917-66-363) and the European Research Council (281964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris A. Veltman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Genomic Disorders Nijmegen

NRG article series on the Applications of Next-Generation Sequencing

1000 Genomes

dbSNP

DECIPHER

DGV

GERP

HGMD

phyloP

PolyPhen-2

Glossary

Single-nucleotide variants

Differences in the nucleotide composition at single positions in the DNA sequence. The most common form of variation in the human genome.

Indels

Small insertions or deletions of 1–1,000 nucleotides.

Copy number variants

Large insertions or deletions of more than 1,000 nucleotides.

Schinzel–Giedion syndrome

A rare genetic disorder that is characterized by congenital hydronephrosis, skeletal dysplasia and severe developmental retardation.

Kabuki syndrome

A rare genetic condition that is characterized by distinctive facial features, skeletal abnormalities and intellectual disabilities.

Bohring–Opitz syndrome

A rare genetic disorder that is characterized by facial anomalies, multiple malformations, failure to thrive and severe intellectual disabilities.

Proteus syndrome

A rare syndrome that is characterized by patchy or mosaic overgrowth and hyperplasia of various tissues and organs.

CpG sites

Genomic regions of several hundred base pairs with a high GC content and many unmethylated CpG dinucleotides.

Somatic mosaicism

The presence of mutations in a proportion of the cells in the body but not in sperm and egg cells.

Achondroplasia

A common form of dwarfism that is inherited in an autosomal dominant manner.

Apert syndrome

An autosomal dominant disorder that is characterized by premature closing of cranial sutures and by fused fingers and toes.

Crouzon syndrome

A rare genetic disorder that is characterized by premature fusion of the skull bones (craniosynostosis).

Multiple endocrine neoplasia type 2

Early-childhood thyroid cancer caused by mutations in the proto-oncogene RET that are inherited in an autosomal dominant manner.

Charcot–Marie–Tooth disease type 1a

A rare genetic neurological disorder that affects the peripheral nerves.

CHARGE syndrome

A rare genetic disorder that arises during early fetal development and affects multiple organ systems, such as the eyes, heart and ears.

KBG syndrome

A rare genetic condition that is characterized by facial dysmorphisms, macrodontia, skeletal anomalies and developmental delay.

Lymphoblastoid cell lines

Cell lines that are created through in vitro infection (and thus immortalization) of B cells with Epstein–Barr virus.

Induced pluripotent stem cells

Adult cells that have been reprogrammed to stem cells, which can differentiate into different cell types.

Penetrance

The proportion of patients with a specific phenotype among all carriers of a specific genotype.

Expressivity

The severity of the disease in individuals who have both the risk variant and the disease.

Genetic heterogeneity

The phenomenon by which mutations in different genes can cause a similar phenotype.

Purifying selection

The conservation of functional genetic features during evolution because of selection against deleterious mutations.

Privately inherited

Pertaining to a genetic variant: confined to a single individual, family or population.

Grantham difference score

A score that predicts the effect of non-synonymous mutations based on the chemical properties of the substituted amino acids.

Adrenoleukodystrophy

A rare genetic disorder that results in progressive brain damage, failure of adrenal glands and, eventually, death.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veltman, J., Brunner, H. De novo mutations in human genetic disease. Nat Rev Genet 13, 565–575 (2012). https://doi.org/10.1038/nrg3241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3241

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research